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1 Introduction

Sequence similarity is a critical concept for comparing short- and long-term memory in order
to identify hidden states in partially observable Markov decision processes. While connectionist
algorithms can learn a range of ad hoc proximity functions, they do not reveal insights and generic
principles that could improve overall algorithm efficiency.

Our work uses the instance-based Nearest Sequence Memory (NSM) [5] algorithm as a basis for
exploring different explicit sequence proximity models including the original NSM proximity model
and two new models, temporally discounted proximity and Laplacian proximity. The models were
compared using three benchmark problems, two discrete grid world problems and one continuous
space navigation problem. The results show that more forgiving proximity models perform better
than stricter models and that the difference between the models is more pronounced in the continuous
navigation problem than in the discrete grid world problems.

The hidden state identification problem can to some extent be avoided by concatenating information
from several time steps in the learning input [6, 8] so that temporal features can be extracted directly
without the use of memory. Though successful in some domains, this approach is limited by the quick
growth in the size of the input space. Hidden state estimation fundamentally involves comparing
recent observations and actions from the current episode, stored in STM, to observations and actions
from earlier episodes stored in LTM. It is possible to estimate the current state by maintaining
an explicit probability distribution across states, a belief state [2]. The solutions following this
approach, however, have required knowledge of a discrete state space and state transition function
which is unrealistic in many applications. Recurrent neural networks (RNNs) are currently the most
successful way of encoding sequence information and using it for hidden state identification and
reward optimization [1, 3] though temporal convolutional networks now offer a potentially more
powerful, hierarchical, non-recurrent, alternative [4]. The HSOME algorithm [7] uses temporal
abstraction, hierarchy and a generic sequence proximity function to encode temporal features in
a Kohonen self-organizing map and use these for reward optimisation. This encoding avoids the
biologically infeasible back-propagation mechanism but increased learning speed has not been
demonstrated. Though the HSOME algorithms could be used for this work, we have for simplicity,
focused on an instance-based approach.

2 Sequence Proximity Models

NSM is based on the K-nearest neighbor algorithm. During an episode, the agent records the actions,
observations and reward values at each step in STM. During action selection, it compares STM with
previous episodes stored in LTM, and identifies K matches in LTM that most closely resemble its
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current situation. From these K instances, the agent then calculates and selects the action with the
highest mean discounted reward. The NSM model of proximity is the length of the unbroken chain
backwards in time, of steps that are identical in STM and LTM. This is a fairly strict proximity model
as a single point of deviation will terminate the chain of matches. Any matching nodes further back
in time are not taken into consideration. We evaluated the relative performance of the NSM proximity
model by comparing it to two less strict models, the discounted proximity model and the Laplacian
proximity model. The three models are presented graphically in Figure 1.

(a) NSM proximity (b) Discounted proximity (c) Laplacian proximity

Figure 1: The three proximity models used in this work. Ticks indicate matches while crosses
indicate mismatches. Figure 1(a), NSM proximity, counts subsequent matches between STM and
LTM. Figure 1(b), discounted proximity, uses a sum of discounted values ignoring non-matching
values in LTM. Figure 1(c), Laplacian proximity, uses a sum of values from a sequence of Laplacian
distributions across LTM centered on each node.

The discounted model introduces a temporal discount factor, µ, for each step backwards in time away
from the current STM step. It also skips mismatching LTM steps and continues to evaluate the next
step instead of terminating the sequence on the first mismatch. This model emphasizes early matches
and can pick up on similarities beyond the first mismatch. The Laplacian proximity model combines
a global discount factor, β, with a local discount factor, λ, which is used to discount the contribution
of a match in accordance with its distance from the corresponding step in STM. In this model the
contribution of the match is discounted by the factor µ for each STM step away from the current step.
This produces the globally discounted value which is further discounted by the factor λ for each LTM
step away from the corresponding STM step the match is found. Each LTM step are only allowed to
be matched once. This model provides further flexibility in the matching by looking both forward
and backwards in time for a possible match. It also punishes gaps unlike the discounted model.

3 Experiments and Results

All three proximity models were evaluated on three benchmark reinforcement learning problems: the
Tiegr problem, Sutton’s grid world and a simulated E-puck navigation problem. The robot navigation
problem was discretized using a representation with three actions: turn-left, turn-right and move
forward and eight observations representing the readings of four infrared sensors. The problems are
illustrated in Appendix A.

For all the experiments, the key parameters of the learning algorithms were kept the same. For the
fundamental nearest sequence memory algorithm, we used k = 8, γ = 0.9 and ε = 0.2. The number
of subsequent observations kept in short-term memory were 20 and the number of episodes stored in
long-term memory were also 20. For the discount model of proximity we also used a discount factor
µ = 0.95 and for the Laplacian proximity model we used a global discount factor β = 0.95 and a
local discount factor λ = 0.95. For all the problems we ran 20 trials of 100 episodes with the above
experimental parameters.

The results of our experiments are presented as plots in Appendix B. They show that less strict
proximity models, such as the Laplacian model in general perform better than the stricter ones, such
original NSM model. The result is particularly clear in the robot navigation problem, there is also a
clear difference in the mean proximity values.
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A Problems

The three problems used for this work were two grid worlds and one mobile robot navigation task in
a continuous domain. The grid worlds were a T-maze and a world with four rooms initially presented
by Sutton et al. [9]. The worlds are presented in Figure 2.

B Performance

Below are plots of the performance and proximity values for the different benchmark problems
and algorithms discussed in the paper are presented below as well as a table summarizing the
Mann-Whitney U-test results for comparing the performance of the different proximity models. The
proximity values are the sum of all the proximity values in the K-nearest sequences for each step.
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(a) T-maze (b) Sutton’s world (c) Robot navigation

Figure 2: The three proximity models used in this work. Ticks indicate matches while crosses indicate
mismatches. Figure 2(a) shows the T-maze, a very simple POMDP. Figure 2(b) shows Sutton’s grid
world, a POMDP with a large number of hidden states. Figure 2(c) shows the robot navigation
problem, a continuous POMDP

(a) McCallum proximity (b) Discounted proximity (c) Laplacian proximity

Figure 3: The performance of the different proximity models on the Tiger problem

(a) McCallum proximity (b) Discounted proximity (c) Laplacian proximity

Figure 4: The proximity values produced on the Tiger problem

(a) McCallum proximity (b) Discounted proximity (c) Laplacian proximity

Figure 5: The performance of the different proximity models on Sutton’s grid-world problem
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(a) McCallum proximity (b) Discounted proximity (c) Laplacian proximity

Figure 6: The proximity values produced on the Sutton’s grid-world problem

(a) McCallum proximity (b) Discounted proximity (c) Laplacian proximity

Figure 7: The performance of the different proximity models on the E-puck navigation problem

(a) McCallum proximity (b) Discounted proximity (c) Laplacian proximity

Figure 8: The proximity values produced on the E-puck navigation problem

Problem Comparison 1 10 20 50 80 100

Tiger
Discounted < McCallum 0.241 0.208 0.347 0.357 0.023 0.950
Laplacian < McCallum 0.886 0.780 0.107 0.462 0.511 0.955
Laplacian < Discounted 0.857 0.965 0.672 0.857 0.973 0.984

Sutton
Discounted < McCallum 0.290 0.026 0.672 0.733 0.373 0.596
Laplacian < McCallum 0.484 0.965 0.995 0.988 0.977 0.997
Laplacian < Discounted 0.691 0.993 0.999 0.996 0.999 0.983

E-Puck
Discounted < McCallum 0.961 0.307 0.332 0.643 0.419 0.633
Laplacian < McCallum 0.894 0.034 0.114 0.707 0.101 0.608
Laplacian < Discounted 0.388 0.102 0.248 0.511 0.164 0.644

Table 1: Mann-Whitney U-test results o
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