Neural belief states for partially observed domains

Pol Moreno* Jan Humplik* George Papamakarios® Bernardo Avila Pires
Lars Buesing Nicolas Heess = Théophane Weber
DeepMind

1 Learning neural belief states

An important challenge in reinforcement learning arises in domains where the agent’s observations are
partial or noisy measurements of the state of the environment. In such domains, a policy that depends
only on the current observation x; is generally suboptimal; an optimal policy must in principle depend
on the entire history of observations and actions hy = (x1,a1,...,a:_1,%t).

Alternatively, an optimal policy can depend on a statistic b; of the history h;, as long as b; is sufficient
for predicting future observations; in a POMDP, b; is known as a belief state 1} 2| [3]]. Ideally, a rich
belief state should capture the agent’s memory of the past (e.g. where the agent has been) as well
as represent the agent’s remaining uncertainty about the world (e.g. what the agent has not yet seen
but may be able to infer). The most commonly used solution for tackling POMDPs in deep RL is
to endow agents with memory (e.g. LSTMs), which could in principle learn such a representation
implicitly through model-free reinforcement learning. However, the memory formed is often limited,
and the reward signal alone may be too weak to form a good approximation to the belief state.
Enriching the learning signal with auxiliary losses (see e.g. [4}5]) often increases performance, but
does not capture a clear or interpretable notion of uncertainty. Similar observations were made in [6],
where the belief state is represented by a collection of particles. [7]] also investigates agents with
predictive modeling of the environment, but filtering state-space models do not provide access to a
full belief state, single samples only. In contrast, our approach is to learn a neural belief state, i.e. a
representation that fully parametrizes the state distribution.

Our design of agent architectures is guided by the fact that the posterior p(s; | h;) over the state of the
environment s; given the history h; is itself a belief state, and so is any statistic b, = ¢(h;) for which
p(s¢|be) = p(s¢ | he). Our proposed agent architectures (Fig. [Ia]and[Ib) consist of a recurrent model
by = f(bt—1, ar—1,) that aggregates the history and computes the belief state b;, and a conditional
generative model p(s; | b;) that predicts a distribution of the state given b;. In addition to maximizing
reward, we train the agent with an auxiliary loss that encourages p(s; | b;) to become the posterior
over the true state of the environment. We investigate two training schemes for achieving this:

(1) Supervised with privileged information, where the true current state of the environment is provided
as a target to the generative model at training time (but not at test time).

(i1) Unsupervised, where the state is defined implicitly by reconstructing future observations (no
privileged information).

2 Experiments and discussion

Our first environment is MiniPacman [8]], a 15 x 19 grid world where the agent (Pacman) navigates a
maze and tries to eat all the food while being chased by enemies. The observation is restricted to a
5 x 5 window around Pacman (Fig. @ The second is Numpad, an environment with continuous
states and actions. A torque-actuated spherical robot (6 DoF, 3 action dimensions) has to visit a
sequence of numbered tiles on a platform which light up if they were stepped on in the right order
and turn off when stepped on out of sequence. The robot only observes its location on a platform, an
indicator of which tiles are currently active, and a partial specification of the sequence of tiles it has
to visit (Fig.[2b]and [2c] also appendix [A). This task is difficult because the agent needs to search for
the correct sequence and memorize previous unsuccessful attempts, while also learning to actuate the
rolling ball so as to produce temporally coherent behavior which includes turning and speeding up.

|7rt—17V| |7Tt:V | |7Tt+11V|

(a) Actor-critic architecture with shared belief and (b) Actor-critic architecture with separate belief
policy networks. and policy networks. The policy network takes the
belief from the previous step as an additional input.

=41 r=0
r=+1 $
ﬂ ’ =
- ~
e (o3 [DTe
—
®
r=0 r=0

(c) Logic of Numpad: the sequence to be visited is [1, 2]
(b) Numpad. but the agent only observes the first digit. The agent
doesn’t know how to make the right move in the 2nd
step, so it may visit 4 before trying again (appendix EI)

(a) MiniPacman.

Fig. Ba and 3] show average reward vs training time. In MiniPacman we used the shared architecture
(Fig. |Ia), whereas in Numpad we used the separate architecture (Fig.[Tb). The supervised agent
(red) is trained with the full state as privileged information. In MiniPacman, the unsupervised agent
(green) is a variational state-space model trained to reconstruct the sequence of observations, whereas
in Numpad it is a next-step predictor trained to predict the state of the tiles in the next step. For
comparison, we also trained a baseline agent which did not utilize any belief-related auxiliary losses
(blue), as well as an agent which had access to the full state of the environment (black). For a fair
comparison, all agents follow the same architecture (see appendix [B]for details).

Discussion. We propose to train generative models of the true state given the internal state of an
agent, in order to endow agents with a notion of a belief state. There are two key benefits. First, such
models enable us to inspect and interpret the agent’s belief about the state of the world (appendix [C}
see also [9]). We find that model-free agents often capture rather limited notions of uncertainty about
the world. Although unsupervised prediction helps, current techniques may still provide too weak
a signal to form a strong belief state / memory. Second, our experiments show that learning belief
states can lead to significant improvements in RL performance without any changes to the agent
architecture. If privileged information is not available, we show that modest improvements in RL
performance can still be achieved by unsupervised modeling of the state. As such, state supervision
provides an ‘upper bound’ to unsupervised modeling. In future work, we will scale up our approach
to more complex environments, and investigate whether other unsupervised prediction models and
algorithms may help close the gap between state supervision and predictive modeling.

1600 R RN B AR ETTT B R AT |
— Mo state supervision
1400 4| — Variational 55M
= State supervision
12004 — Fully observed
1000

8004

600

400

200 4

0] T T

108 107 108 10° 1010 o 1 2 3 4 5 6 7
Environment steps Days

Average return

No state supervision L
Agent with one step prediction
State supervision

Fully observed at test time

(a) Average reward on MiniPacman. (b) Average reward on Numpad.

References

[1] Karl J Astrom. Optimal control of Markov decision processes with incomplete state estimation.
Journal of mathematical analysis and applications, 10:174-205, 1965.

[2] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in
partially observable stochastic domains. Artificial intelligence, 101(1-2):99—134, 1998.

[3] Milos Hauskrecht. Value-function approximations for partially observable Markov decision
processes. Journal of artificial intelligence research, 13:33-94, 2000.

[4] Andrea Banino, Caswell Barry, Benigno Uria, Charles Blundell, Timothy Lillicrap, Piotr
Mirowski, Alexander Pritzel, Martin J Chadwick, Thomas Degris, et al. Vector-based navigation
using grid-like representations in artificial agents. Nature, 557(7705):429, 2018.

[5] Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo,
David Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary
tasks. arXiv preprint arXiv:1611.05397, 2016.

[6] Maximilian Igl, Luisa Zintgraf, Tuan Anh Le, Frank Wood, and Shimon Whiteson. Deep
variational reinforcement learning for POMDPs. arXiv preprint arXiv:1806.02426, 2018.

[7] Greg Wayne, Chia-Chun Hung, David Amos, Mehdi Mirza, Arun Ahuja, Agnieszka Grabska-
Barwinska, Jack Rae, Piotr Mirowski, Joel Z Leibo, Adam Santoro, et al. Unsupervised
predictive memory in a goal-directed agent. arXiv preprint arXiv:1803.10760, 2018.

[8] Sébastien Racaniere, Théophane Weber, David Reichert, Lars Buesing, Arthur Guez,
Danilo Jimenez Rezende, Adria Puigdomenech Badia, Oriol Vinyals, Nicolas Heess, Yujia Li,
et al. Imagination-augmented agents for deep reinforcement learning. In Advances in Neural
Information Processing Systems, pages 5690-5701, 2017.

[9] Anonymous. Neural predictive belief representations. Submitted to International Conference
on Learning Representations, 2019. Under review.

[10] Karol Gregor, Frederic Besse, Danilo Jimenez Rezende, Ivo Danihelka, and Daan Wierstra.
Towards conceptual compression. In Advances In Neural Information Processing Systems,
pages 3549-3557, 2016.

[11] Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Volodymir Mnih, Tom Ward,
Yotam Doron, Vlad Firoiu, Tim Harley, lain Dunning, et al. IMPALA: Scalable distributed deep-
RL with importance weighted actor-learner architectures. In Proceedings of the International
Conference on Machine Learning (ICML), 2018.

[12] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Proceedings of the
35th International Conference on Machine Learning, pages 1861-1870, 2018.

[13] Nicolas Heess, Gregory Wayne, David Silver, Tim Lillicrap, Tom Erez, and Yuval Tassa.
Learning continuous control policies by stochastic value gradients. In Advances in Neural
Information Processing Systems 28, pages 2944-2952. 2015.

[14] Remi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. Safe and efficient
off-policy reinforcement learning. In Advances in Neural Information Processing Systems 29,
pages 1054-1062. 2016.

A Numpad environment details

The agent is supposed to visit a sequence of up to four tiles specified as four numbers (if the sequence
is shorter, then the specification is padded with —1). The specification which the agent has access to
is a masked version of the full sequence, i.e. some digits are masked out with Os. The reward structure
is as follows (see Fig. [2c|for an illustration). When the agent visits a correct tile for the first time, it
gets a reward of +1, and the tile activates (i.e. it changes color). When it steps on a tile which breaks

the correct order, then all the tiles are deactivated and the agent does not receive any reward. At this
point, the agent needs to reactivate all the tiles which it already got right before but now it does not
get any reward for activating them. Therefore, it can collect at most four 41 rewards before it finishes
the sequence for the first time. Once that happens, it is allowed to reset the rewards by stepping on an
arbitrary tile not on the sequence, and start re-executing the sequence. The agent can keep repeating
the sequence and collecting rewards until it runs out of time (which is 500 control steps).

The agent observes its position and orientation on the platform, an indicator of which tiles are
currently active, partial specification of the sequence to be executed, and several proprioceptive
features necessary for motion control. The sequences are uniformly sampled from continuous paths,
i.e. we only allow sequences such that each tile is a neighbor of the previous tile. We sample the
masks over sequences by first uniformly sampling how many digits will be hidden, and then uniformly
sampling from binary masks with that many zeros.

B Architecture and training details

B.1 MiniPacman

Fig.fa|shows the architecture chosen to train the MiniPacman agents, with the supervised component
marked in red. The belief state transition function is a convolutional LSTM, and the belief state loss
uses the variational model DRAW [10]. We represent the full state s; as a one-hot encoding of the
agent per cell in the MiniPacman grid. The belief state b; is further encoded via a ConvNet and fed to
an LSTM network that computes the policy logits 7, and value function V.

For the unsupervised experiment, we used a variational state-space model that encodes the sequence of
observations into a sequence of latent states, and then decodes them back to reconstructed observations.
The encoder ¢(s; | b;) has the same architecture as in Fig. The decoder is a state-space model,
where the state transition model p(s; | s;—1) is an MLP that outputs a diagonal Gaussian, and the
observation model p(z; | s¢) is a transpose ConvNet that outputs a discrete distribution. The auxiliary
loss is the following variational lower bound:

logp(xy,...,27) > Z]Estrwq(st 15, [log p(w | s¢) +logp(st | si-1) —logq(se | by)]. (1)
t

Both the supervised and the unsupervised agent were trained using the distributed actor-critic set-up
of the Importance Weighted Actor-Learner Architecture [[11].

B.2 Numpad

The agents consist of networks which process the observations with a MLP before passing them into
a LSTM. The output of the LSTM is then passed through a single linear layer to output the relevant
targets. For the actor, the targets are the parameters of a diagonal Gaussian distribution which models
the policy. For the belief network, the targets are the parameters of the posterior distribution which
we model as four independent categorical distributions (one for each number in a sequence of four).
For the critic, the target is the action-value. The critic also processes an action by concatenating it
with the outputs of the MLP.

The agents for the Numpad environment are trained using a distributed, asynchronous version of the
soft actor-critic algorithm [[12} [13]] in which the critic is learned using the Retrace algorithm [14]].

C Visualizing and interpreting the belief state

In addition to learning a neural belief state, the posterior p(s; | b;) can be used to interpret the belief
state at test time, and visualize the agent’s uncertainty about the state of the world. This information
enables us to diagnose the agent’s behavior, and potentially improve on its weaknesses. We test the
ability of the agents in Sec. 2]to understand the environment dynamics by training a new DRAW model
conditioned on their belief states. In Fig. [Ab] we show the negative ELBO loss on a validation set of
MiniPacman trajectories. We see how the agent with privileged supervision results in a significantly
better predictive performance, and how the variational SSM agent has captured the uncertainty of the
environment better than the one without auxiliary losses. Fig. [5|and[6]show different snapshots of the

agents’ internal notion of the environment. The agent with a learned belief state is able to track the
position of the ghosts (orange pixels) and remember the food its eaten in the past (black pixels), as
seen in Fig. VS ﬂ Samples produced by p(s; | b;) are also more consistent with the state.

> ﬂtsVI 3000 | | 1 | | | |

. — No state supervision
— Variational 55M

2500 — State supervision

Negative ELB
et et I
(=] wu [==]
(=) [aw] (=]
= (=] (=]
1 1 1

O T T T T T T T
o 1 2 3 4 5 6 7T 8

X, Environment steps le7

(a) MiniPacman agent architecture. (b) Negative ELBO loss per frame in the trajectory.

(a) Full state. (b) Per-pixel entropy.

=S

(c) Obser-
vation.

(d) Samples of the state p(s¢ | bt).

Figure 5: Belief state of the agent trained without auxiliary losses.

(a) Full state (b) Per-pixel entropy.

(c) Obser-
vation. (d) Samples of the state p(s¢ | bt).

Figure 6: Belief state of the agent trained with privileged supervision.

	Learning neural belief states
	Experiments and discussion
	Numpad environment details
	Architecture and training details
	MiniPacman
	Numpad

	Visualizing and interpreting the belief state

