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Abstract

We propose to unify the filtering and control in Partially Observable Markov Deci-
sion Processes (POMDPs) via maximizing the marginal likelihood of observations,
rewards, and surrogate optimality variables. Our approach allows for trust region
optimization of policy parameters and filtering to occur simultaneously, increasing
the learning speed.

1 Introduction

Igl et al. (2018) introduced the framework of variational sequential Monte Carlo (SMC) (Le et al.,
2017; Maddison et al., 2017; Naesseth et al., 2017) for policy optimization in POMDPs. Reported
improvement in practical performance may be attributed to an inductive bias imposed by learning of
a generative model of the environment. The joint optimization of policy and transition dynamics were
formulated as a weighted sum of four losses: Advantage Actor Critic loss (A2C), evidence lower
bound on observation marginal log-likelihood, entropy regularization and value prediction loss.

In this work, we unify policy optimization and belief tracking via a single probabilistic model and,
consequently, single loss function – evidence lower bound on marginal likelihood of observations,
rewards, and optimality of policy. This unification is possible due to a dual role of rewards in POMDP:
they are both the target for policy optimization and an observation for belief tracking.

The proposed method subsumes several forms, which are closely related to Max-Entropy learning
(Ziebart, 2010) and Trust Region Policy Optimization (Schulman et al., 2015); improves filtering, as it
accounts for additional information about hidden states, revealed by emitted rewards; and regularizes
the learning process by penalizing the discrepancy between the policy and its prior.

2 Method

To reformulate the control problem as approximate inference, we introduce a latent binary variable
Ot, which signifies if the t-th step was played optimally – the greater the reward rt is, the more
probable it orginated from the optimal action at t-th step:

p(rt,Ot = 1|st, at) ∝ exp(rt)p(rt|st, at), (1)

where st, at, rt are state, action and reward at time step t. The approximate inference in MDPs
with such a likelihood and a uniform prior over actions yields the policy that maximizes entropy-
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regularized total reward objective (see Levine (2018) for further details and Appendix A for a minimal
exposition).

Acting in POMDPs inevitable relies on inference of a state st given previous observations o1:t. One
approach to quantifying the uncertainty in st (the so-called belief state) is particle filtering (PF). PF
methods approximate the distribution p(st|o1:t) at each time step with a mixture of K weighted
particles.

We propose to unify belief state tracking and reward maximization by performing inference on states
and optimal actions in a joint probabilistic model (see Appendix B). We approximate the posterior
over optimal actions and states with particle-weighted mixture of delta functions:

p(at, st+1|O1:t, r1:t, o1:t+1) ≈
K∑
k=1

W k
t+1δ(at − a1t )δ(st+1 − skt+1), (2)

where W k
t+1 =

wk
t+1∑K

1 wk
t+1

is the normalized version of unnormalized importance sampling weight:

wkt+1 =
p(Ot|rt)µ(at|skt )∑K
i=1W

i
tπ(at|sit)

·
pθ(rt|skt , at)pθ(st+1|skt , at)pθ(ot+1|skt+1, at)

qφ(skt+1|skt , at, rt, ot+1)
. (3)

An action is sampled from the policy averaged over the state uncertainty at ∼
∑
kW

k
t π(at|skt ),

while the next state representation st+1 ∼ q(st+1|st, at, rt, ot+1) (see algorithm in Appendix C).

The parameters φ, θ are optimized by maximizing the lower bound (Appendix B) on the marginal
likelihood:

log p(r1:τ ,O1:T , o1:τ+1) ≥ E
[ τ∑
t=1

log
1

K

K∑
k=1

wkt + log p(Oτ+1:T |sτ+1)
]
,

where τ is the length of the observed part of the episode. As we show in Appendix B, one part of this
lower bound is equivalent to the entropy-regularized advantage actor critic loss, while another part –
to the belief tracking in state-space models.

The concept of optimal variable Ot and explicit probabilistic model of rewards allows for the joint
optimization of policy and system dynamics. In Appendix B we derive the proposed lower bound,
show the correctness of the iterative update of the posterior, and discuss the connections with some of
the Reinforcement Learning methods.

3 Experiments & discussion

In preliminary experiments on flickering Atari environments (see Appendix E for learning curves
and Appendix D for the experiment setup) our method performed comparably to the state of the art
DVRL algorithm (Igl et al., 2018).

As Table 1 suggests, in some games – i.e. Pong (P), Chopper Command (CC) – our method scored
much higher total rewards given the same amount of experience, while not losing significantly in any
one of the environments. This is notable, since this testbench is not the one, in which our method
is designed to shine – it is characterized by sparse rewards, that are intentionally clipped to few
distinctive values, {−1, 0, 1}. The detailed empirical evaluation of the algorithm, as well as the
quality of the learned transition dynamics is the work in progress.

Table 1: Resulting scores. We report here both models trained on 10M frames. Game names are
indicated with first letters: A: Asteroids, BR: Beam Rider, B: Bowling, C: Centipede, CC: Chopper
Command, DD: Double Dunk, F: Frostbite, IH: Ice Hockey, MP: Ms. Pacman, P: Pong.

A BR B C CC DD F IH MP P

DVRL 1456 773 29 3825 2703 -16.3 254 -6.7 1752 -10
Ours 1603 928 28 3865 3329 -16.4 262 -6.8 1592 -4
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A Control as inference in MDPs

As usual in variational inference, we specify the prior p(·) and the posterior q(·). In RL context these
are specified over trajectories τ = 〈s1, a1, ..., sT , aT 〉, i.e.

p(τ) = p(s1)

T∏
t=1

p(st+1|st, at)µ(at|st), q(τ) = p(s1)

T∏
t=1

p(st+1|st, at)π(at|st),

where µ and π are prior and posterior policies respectively.

To reformulate the total reward optimization as approximate inference, we reweight the prior likeli-
hood of the trajectory proportionally to the exponentiated reward obtained along it:

p(O1:T = 1|τ) =

T∏
t=1

p(Ot = 1|st, at) ∝
T∏
t=1

exp r(st, at)

Under this model, approximate inference is equivalent to maximization of the reward, penalized for
the high discrepancy between prior and posterior policies via KL divergence:

log p(O1:T ) ≥ Eq(τ) log
p(O1:T = 1|τ)p(τ)

q(τ)
= Eq(τ)

T∑
t=1

[r(st, at)−KL (π(·|st)||µ(·|st))]

Uniform prior, µ, yield a Max Entropy framework (Haarnoja et al., 2018; Ziebart, 2010). For the
thorough discussion of relations with the usual RL objective, see Levine (2018).

3



B Joint filtering and control for POMDPs
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Figure 1: Graphical model of POMDP with optimality variables Ot. Grey nodes are observed, white
nodes are hidden.

B.1 Lower bound

Assume an agent has collected experience up to the time step t = τ . We aim to maximize the
marginal likelihood of the observed data and optimality indicators:

p(r1:τ ,O1:T , o1:τ+1) = p(Oτ+1:T |r1:τ ,O1:τ , o1:τ+1) ·
τ∏
t=0

p(rt,Ot, ot+1|r1:t−1,O1:t−1, o1:t)

= p(Oτ+1:T |r1:τ ,O1:τ , o1:τ+1) ·
τ∏
t=0

p(Ot|rt)p(rt, ot+1|r1:t−1, o1:t).

,

where we assume that p(rt,Ot, ot+1|r1:t−1,O1:t−1, o1:t) equals to p(o1) if t = 0.
For this we introduce the joint likelihood defined with respect to some prior policy µ(at|st) and
system dynamics p(st+1|st, at):

p(a1:τ , r1:τ ,O1:T , s1:τ+1, o1:τ+1)

= p(Oτ+1:T |sτ+1)

τ∏
t=0

p(Ot|rt)µ(at|st)p(rt|st, at)p(st+1|st, at)p(ot+1|st+1, at),

where we employed conditional independencies (Figure 1) to simplify

p(Oτ+1:T |a1:τ , r1:τ ,O1:T , s1:τ+1, o1:τ+1) = p(Oτ+1:T |sτ+1)

and defined p(Ot|rt)µ(at|st)p(rt|st, at)p(st+1|st, at)p(ot+1|st+1, at) at t = 0 as p(o1|s1)p(s1).

Thus, the lower bound on the marginal likelihood:

log p(r1:τ ,O1:T , o1:τ+1) ≥
∫
q(s1:τ+1)π(a1:τ ) log

p(a1:τ , r1:τ ,O1:T , s1:τ+1, o1:τ+1)

q(s1:τ+1)π(a1:τ )
ds1:τ+1da1:τ

= E

[
τ∑
t=0

logwt+1(st, at, st+1) + log p(Oτ+1:T |sτ+1)

]
,

(4)
where

wt+1(st, at, st+1) =
p(Ot|rt)µ(at|st)

π(at|ht)
· p(rt|st, at)p(st+1|st, at)p(ot+1|st+1, at)

q(st+1|st, at, rt, ot+1)
.

B.2 Improving the lower bound

To make the bound tighter and enable sequential sampling we use Variational Sequential Monte Carlo
(Le et al., 2017; Maddison et al., 2017; Naesseth et al., 2017) and approximate with particles the
posterior over states and optimal actions:

p(at, st+1|r1:t,O1:t, o1:t+1) =
p(at, rt,Ot, st+1, ot+1|r1:t−1,O1:t−1, o1:t)

p(rt,Ot, ot+1|r1:t−1,O1:t−1, o1:t)
. (5)
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This allows us to refine the distribution over the hidden state, accounting for the new observations.

Assume at time step t we approximate a distribution p(st|O1:t−1, r1:t−1, o1:t) with a weighted
mixture of delta functions

∑K
k=1W

k
t δ(st − skt ), s.t.

∑
kW

k
t = 1.

First, for each k we sample an ancestor indexes ukt ∼ Discrete
({
W k
t

}K
k=1

)
, which makes the

approximation equally weighted
∑K
k=1W

k
t δ(st − skt ) ≈ 1

K

∑K
k=1 δ(st − s

uk
t
t ).

For clarity we derive approximations for the numerator and denominator of (5) separately. To reduce
the clutter, we also shorthand π(at|r1:t−1, o1:t,O1:T ) = π(at|ht). The numerator

p(at, rt,Ot, st+1, ot+1|r1:t−1,O1:t−1, o1:t)

=

∫
p(st|r1:t−1,O1:t−1, o1:t)p(at, rt,Ot, st+1, ot+1|st)dst

=

∫
p(st|r1:t−1,O1:t−1, o1:t)wt+1(st, at, st+1)π(at|ht)q(st+1|st, at, rt, ot+1)dst

≈ 1

K

K∑
k=1

wt+1(s
uk
t
t , at, st+1)π(at|ht)q(st+1|s

uk
t
t , at, rt, ot+1)

≈ 1

K

K∑
k=1

wt+1(s
uk
t
t , a1t , s

k
t+1)δ(at − a1t )δ(st+1 − skt+1).

Here we approximate the measures q(·|su
k
t
t , at, rt, ot+1) and π(at|ht) by sampling from the respective

distributions (once for the distribution over actions and once for each su
k
t
t for the distributions over

the next state).

From now on we write wkt+1 for w(s
uk
t
t , a1t , s

k
t+1) The denominator is just an integral of the numerator

over at, st+1, that is

p(rt,Ot, ot+1|r1:t−1,O1:t−1, o1:t) ≈
1

K

K∑
j=1

wjt+1 (6)

This allows us to arrive at the expression of self-normalized importance sampling:

p(at, st+1|r1:t,O1:t, o1:t+1) ≈
1
K

∑K
k=1 w

k
t+1δ(at − a1t )δ(st+1 − skt+1)

1
K

∑K
j=1 w

j
t+1

=
K∑
k=1

W k
t+1δ(at − a1t )δ(st+1 − skt+1)

We can integrate out the at in the the last equation to obtain approximation for

p(st+1|r1:t,O1:t, o1:t+1) =

K∑
k=1

W k
t+1δ(st+1 − skt+1)

Since the product of (6) over time gives an unbiased estimate of the marginal likelihood (Laubenfels,
2005):

p(r1:τ ,O1:τ , o1:τ+1) =

τ∏
t=1

1

K

K∑
k=1

wkt+1,

the improved sequential Monte Carlo (SMC) lower bound (4) can be written as

log p(r1:τ ,O1:T , o1:τ+1) ≥ E
[ τ∑
t=1

log
1

K

K∑
k=1

wkt + log p(Oτ+1:T |sτ+1)
]

The full algorithm is given in Appendix C.
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B.3 Analysis of the lower bound

For k = 1 the lower bound admits an illuminating expression

E

[
log p(Oτ+1:T |s1τ+1) +

τ∑
t=1

log p(Ot|rt)− KL(π(·|h), µ(·|s1t ))

+ log
p(rt|s1t , a1t )p(s1t+1|s1t , a1t )p(ot+1|s1t+1, a

1
t )

q(s1t+1|s1t , a1t , rt, ot+1)

]
In particular, the first three terms inside the expectation are equivalent to REINFORCE algorithm
applied to rewards, adjusted for the discrepancy between π and µ (assuming p(Ot|rt) = exp(rt)).
The last term is responsible for learning dynamics. From this expression, we can see that the choice
of µ may yield different algorithms: for the uniform µ we obtain the analog of Maximum Entropy
framework (Ziebart, 2010), for the µ equal to the previous version of π (i.e. before the last gradient
update) makes our algorithms similar to TRPO (Schulman et al., 2015) in a POMDP setting.

The policy π(at|ht) does not depend on the summation index k. So, we can move it out of the
averaging over particles and arrive at the explicit entropy maximization:

E

[
log p(Oτ+1:T |skτ+1) +

τ∑
t=1

log p(Ot|rt) + H(π(·|ht))

+ log
1

K

K∑
k=1

µ(at|s
uk
t
t )p(rt|s

uk
t
t , a1t )p(s

k
t+1|s

uk
t
t , a1t )p(ot+1|skt+1, a

1
t )

q(s1t+1|s
uk
t
t , a1t , rt, ot+1)

]

The term log p(Oτ+1:T |skτ+1) is essentially the approximation of the V π(skτ+1) (state conditioned
expectation over all future observed and hidden variables). Thus, the expression

∑τ
t=1 log p(Ot|rt) +

log p(Oτ+1:T |skτ+1) is equivalent to the τ -step return r1 + ...+ rτ + V (skτ+1). Moreover, we can
recover the analogue of Advantage Actor Critic entropy-regularized update, if we additionally subtract
from the objective the baseline V (sk1) and average objectives with different lengths of collected
experience, e.g. τ = 1, 2, 3.

C Algorithm

C.1 Latent state

To represent the belief state with particles we follow Igl et al. (2018) and use triplets {zkt , hkt , wkt }.
Latent variable hkt is the latent state of an RNN, which aggregates all previous history. Stochastic
latent variable zkt represents stochastic transition via proposal distribution q. Weights wkt represent
importance weights.

C.2 Latent state update

To update latent state we proceed as follows:

ukt ∼ Discrete(
wkt∑K
k=1 w

k
t

)

zkt+1 ∼ qφ(zkt+1|h
uk
t
t , at, rt, ot+1)

hkt+1 = ψRNN
θ (zkt+1, h

uk
t
t , at, rt, ot+1)

wkt+1 =
p(Ot|rt)µ(at|z

uk
t
t , h

uk
t
t )∑K

i=1W
i
tπφ(at|zit, hit)

pθ(rt|h
uk
t
t , at)pθ(z

k
t+1|h

uk
t
t , at)pθ(ot+1|h

uk
t
t , at, z

k
t+1)

qφ(zkt+1|h
uk
t
t , at, rt, ot+1)

C.3 Pseudocode

We introduce some additional notations to clarify algorithm’s pseudocode. Slighly abusing the
notation let π̄t =

∑K
k=1W

k
t πφ(at|zkt , hkt ) and V̄t =

∑K
k=1W

k
t V (zkt , h

k
t ). We divide the variational
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lower bound into three summands:

l = E

[
p(Oτ+1:T |skτ+1) +

te∑
t=ts

log p(Ot|rt)

]
︸ ︷︷ ︸

l1

+E

[
−

te∑
t=ts

log(π̄t−1)

]
︸ ︷︷ ︸

l2

+E

[
log

1

K

K∑
k=1

w̃kt

]
︸ ︷︷ ︸

l3

where

w̃kt =
µ(at−1|z

uk
t−1

t−1 , h
uk
t−1

t−1 )pθ(rt−1|h
uk
t−1

t−1 , at−1)pθ(z
k
t |h

uk
t−1

t−1 , at−1)pθ(ot|h
uk
t−1

t−1 , at−1, z
k
t )

qφ(zkt |h
uk
t−1

t−1 , at−1, rt−1, ot)

The first summand (l1) manifests the REINFORCE algorithm which can be transformed into Advan-
tage Actor Critic algorithm by approximating the log p(Oτ+1:T |sτ+1) and introducing the baseline.

The second summand (l2) is the policy entropy, which could be computed analytically for categorical
distribution and lower-bounded in case of continuous control for mixture of Gaussians policy (e.g.
following Kolchinsky and Tracey (2017)).

The last summand (l3) estimates the quality of environment modelling. Note, that if we omit the
gradients with respect to categorical resampling of ukt (following Le et al. (2017); Maddison et al.
(2017); Naesseth et al. (2017)) the last addend becomes fully differentiable.

Algorithm 1 Training algorithm
Initialize parameters θ for environment model and φ for variational approximation (see (3))
Initialize prior update rate λ
τ ← 1
repeat

Initialize play interval τs ← τ ; τe ← τ + n− 1 and log-likelihoods l2, l3 ← 0
for τ = τs to τ = τe do

if τ = 1 then
{zk1 , hk1 , wk1}Kk=1, {o1} ← Initial step()

else
{zkτ , hkτ , wkτ }Kk=1, {aτ−1, rτ−1, oτ , done} ← Forward step({zkτ−1, h

k
τ−1, w

k
τ−1}Kk=1)

Update entropy with analytical estimate l2 ← l2 + H(π̄τ−1)

Update model likelihood with Monte Carlo estimate l3 ← l3 + log 1
K

∑K
k=1 w̃

k
τ

end if
if done then

τe ← τ
break

end if
end for
Gradient of RL part of loss is computed akin to Advantage Actor Critic algorithm:
∇l1 =

∑τe
t=τs

(
∇ log

(
π̄t)
)[∑τe

i=t

[∑i
j=t rj + V̄ −

i+1 − V̄
−
t

]]
, where (·)− is stop gradient

Gradient of policy entropy and environment model parts of loss is computed via usual autograd:
∇l2,3 = ∇

∑τe
t=τs

[
H(π̄t−1) + log 1

K

∑K
k=1 w̃t

]
, where H(·) is entropy

Make baseline more precise (in fact, TD loss):
∇lTD = ∇

∑τe
t=τs

[∑τe
i=t

[∑i
j=t rj + V̄ −

i+1 − V̄t
]2]

Gradient update
if prior policy update then

Soft update for prior policy parameters:
φµ ← (1− λ)φµ + λφπ

end if
if done then

Set τ = 1
end if

until Convergence
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Algorithm 2 Forward step
Input: {zkt , hkt , wkt }Kk=1

Sample action according to belief state at ∼
∑K
k=1 πφ(at|zkt , hkt )wkt

Take action, get reward and observation rt, ot+1, done
for k = 1 do to K

Sample ancestor index ukt ∼ Discrete
(
wkt /

∑K
j=1 w

j
t

)
Sample first part of latent state zkt+1 ∼ qφ(zkt+1|h

uk
t
t , at, rt, ot+1)

Update second part of latent state hkt+1 = ψRNN
θ (zkt+1, h

uk
t
t , at, ot+1)

Compute weights wkt+1 following equation (3)
end for
return {zkt+1, h

k
t+1, w

k
t+1}Kk=1, {at, rt, ot+1, done}

Algorithm 3 Initial step
Reset environment, observe initial state o1
Let hk0 ← hinit, zk0 ← zinit, a0 ← ainit, r0 ← rinit
for k = 1 do to K

Sample first part of particle zk1 ∼ qφ(zk1 |hk0 , a0, r0, o1)
Update second part of particle hk1 = ψRNN

θ (zk1 , h
k
0 , a0, o1)

Compute initial weights wk1 following equation (3)
end for
return {zk1 , hk1 , wk1}Kk=1, {o1}

D Experimental setup

We have parametrized distributions in the same way as in DVRL Igl et al. (2018).

Transition distribution pθ(zt+1|ht, at), emission model pφ(ot+1|zt+1, ht, at) were exactly the same
as in Igl et al. (2018). The proposal distribution qφ(zt+1|ht, at, rt, ot+1) was conditioned on an
additional argument, rt, and thus is the function of [ht, at, rt, ot+1].

We have modelled the reward pθ(rt|ht, at) as a discrete distribution (rewards are clipped to
{−1, 0,−1} as usual) whose parameters are determined by a neural network with the same ar-
chitecture as of the emission network).

The prior µ(at|st) was exactly of the same architecture as the policy π(at|st) (see Igl et al. (2018)),
albeit with different parameters.

E Learning curves on the Flickering Atari

We compare our method with the state of the art DVRL algorithm (Igl et al., 2018) on flickering Atari
games. In these environments, each game screen and reward are blacked out with probability 0.5,
hiding the state from the agent. Additionally, as in Igl et al. (2018), our model receives only a single
frame per time step, making it more difficult for an agent to account for velocities and accelerations
of various objects.

Our preliminary experiments are 5 times shorter than experiments in original DVRL paper (i.e. 10
million frames vs 50 million frames). However, they are illustrative, since our algorithm performs
comparably to the state of the art and marginally better in some cases.

Empirical evaluation of the proposed approach is in progress, and we conjecture that the very same
algorithm will shine on the problems with more variability in rewards (i.e. on Flickering Atari games
without reward clipping).
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Figure 2: Results for DVRL (Igl et al., 2018) and our model on Flickering Atari environments.
The green horizontal line represents the DVRL performance after five times as many environment
interactions, as is reported by Igl et al. (2018).

9


	Introduction
	Method
	Experiments & discussion
	Control as inference in MDPs
	Joint filtering and control for POMDPs
	Lower bound
	Improving the lower bound
	Analysis of the lower bound

	Algorithm
	Latent state
	Latent state update
	Pseudocode

	Experimental setup
	Learning curves on the Flickering Atari

