
Learning a System-ID Embedding Space for Domain
Specialization with Deep Reinforcement Learning

James A. Preiss
Univ. of Southern California

Los Angeles, CA 90089
japreiss@usc.edu

Karol Hausman
Google Brain

Mountain View, CA 94043
karolhausman@google.com

Gaurav S. Sukhatme
Univ. of Southern California

Los Angeles, CA 90089
gaurav@usc.edu

Abstract
We propose a method to improve the ability of reinforcement-learned policies
to adapt to unknown dynamics of the agent at test time. Our method learns an
embedding space to distill system identification information into a form that is both
useful for policy specialization, and easy to estimate.

1 Introduction and related work
Policies trained with reinforcement learning (RL) are often brittle and fail to generalize beyond the
training environment. An important instance of this problem is sim-to-real transfer for robotics.
Domain randomization during training can improve robustness [1, 15, 13, 9, 11], but it is limited by
its assumption that a single policy can perform adequately in all possible test domains. In addition,
domain randomization introduces partial observability to the underlying MDP as the agent is not
aware of the changes in its randomized dynamics. Meta-learning and fine-tuning [4, 8, 3] assume
there will be an opportunity to collect data from the test domain and update the policy. In this work,
we seek a policy that specializes to a novel test environment rapidly, without using significant data or
computational effort at test time.

We assume that dynamics parameters are known during training but unknown under test. Our method
includes two key contributions: 1) a learned embedding space that represents the system dynamics
parameters in a form that is both useful and easy to identify, and 2) an observability reward that
encourages the agent to maximize identification accuracy. We eliminate the task of estimating the
actual dynamics parameters of the test environment, as in [14], without introducing the training
complexity of a recurrent policy as in [7].

2 Problem statement and method
We consider RL in a continuous Markov decision process with states S ⊆ Rn, actions A ⊆ Rd,
dynamics p : S ×A×S 7→ R≥0, initial state distribution ρ : S 7→ R≥0, and rewards r : S ×A 7→ R.
The state S is partitioned into an observed space Z consisting of the changing states such as angles
and angular velocities of joints, and a dynamics space D consisting of joint geometries, moments of
inertia, coefficients of friction, etc. During training, d ∈ D is known, but at test time the agent only
observes z ∈ Z . Our goal is to learn a policy π that maximizes a standard RL objective in expectation
over a distribution pD on D. If pD covers a wide enough range of system dynamics, it is reasonable
to assume that no blind policy, where π(a|z, d) = π(a|z) ∀ d ∈ D, can perform adequately.

A natural approach is to train a policy π(a|z, d) conditioned on the known value of d, alongside a
system identification function that yields an estimate δ of d. At test time, we act with the policy
a ∼ π(a|z, δ). This method, explored by Yu et al. [14], creates two challenges. First, it requires
estimating every dynamics parameter, even though some may be difficult to estimate, redundant,
or unneeded to maximize reward. Second, behavior that maximizes reward in training may be
suboptimal for system identification. It is preferable to learn a behavior that balances the primary
reward with a secondary goal of making the system identification task as easy as possible.
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(a) Learned mapping from
gain g to one dimension of
embedding space E .
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(b) Comparison of actual vs. estimated gain g (left)
and embeddings E (right). Embedding spreads param-
eters requiring disjoint behavior to distant clusters.
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(c) With redundant param-
eters, g = m line (spatial)
maps to same ε (color).

Figure 1: Desirable properties of learned embedding e : D 7→ E for point-mass environment.

We address both of these concerns by introducing a learned abstract representation E ⊆ RdE of the
dynamics parameters. This creates an opportunity to distill the full complexity ofD into a form that is
potentially more useful for the policy to produce optimal behavior, while simultaneously being easier
to estimate. During training, we learn an embedding function e : D 7→ E and a policy πε(a|s, ε),
where ε = e(d). We simultaneously learn an identification function id : (Z ×A)K 7→ E , to estimate
the embedding value from a fixed-length state-action trajectory. To aid observability, we augment the
main RL reward with a term penalizing estimation error of id, thus rewarding behavior that makes
estimating ε easier. Then, at test time, we store a rolling buffer τ of the past K pairs (z, a) and act
with the policy at ∼ πε(at|zt, id(τt−K:t)).

3 Experiments

In this section, we show desirable properties of our learned embedding space E and compare the
performance of our architecture against several baselines. Details are given in Appendix B.

Point-Mass Environment: This low-dimensional system allows us to visualize learned embeddings.
A 2D point mass p ∈ R2 follows dynamics p̈ = a for action a ∈ [−1, 1]2 and reward r = −‖p‖2.
The system identification state d is a gain factor g ∈ ±[0.175, 1.75], such that the true force applied
to the mass is g · a. Due to the unknown sign of g, a domain randomization policy cannot possibly
perform well in this environment. As shown in Figures 1a and 1b, the learned e “squashes” the gain
factor g into positive and negative clusters, helping the policy switch between disjoint behavior styles.

To demonstrate distillation of redundant parameters, we construct a version of the point-mass en-
vironment with a mass parameter m alongside the gain g, such that p̈ = ga/m, making all (g,m)
combinations with the same ratio indistinguishable. This poses a problem for any approach that re-
quires accurate identification ofD at test time. In contrast, our framework learns an embedding where
all (g,m) combinations with similar ratios map similar embedding values, as shown in Figure 1c.

Half-Cheetah Environment: As a more complex task, we demonstrate results on the Half-Cheetah
planar locomotion environment from the OpenAI Gym [2]. We randomize 37 kinematic and dynamic
parameters of the model (see Appendix B for details). The embedding space E is 8-dimensional; we
did not observe significant sensitivity to this choice.
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Figure 2: Box plot of training and test reward
for blind, ours, and plain policies. Whiskers
indicate full extent (min/max) of rewards.

Results are shown in Figure 2. Variance of rewards is
large due to the randomized dynamics. The blind pol-
icy fails to achieve high rewards because it is unable
to specialize its behavior to the dynamics parame-
ters. The plain policy, conditioned on d instead of ε,
achieves similar training rewards but worse general-
ization error, and suffers negative rewards in some
test environments, while ours does not.

In current experiments, we have not yet observed a
significant effect of our observability reward term.
In future work, we plan to investigate other systems
where observability-seeking behavior is most critical.
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A Expanded description of method

In this section, we give additional details on our proposed method outlined in Section 2. As previously
mentioned, we operate in the continuous MDP defined by (S,A, p, ρ, r). We partition the state space
S into observed states Z and dynamics states D. To aid exposition, we refer to the full state s and the
pair (z, d) interchangeably as appropriate. The states in D influence the system dynamics, i.e.

d1, d2 ∈ D, d1 6= d2 =⇒ p(s|a, z, d1) 6= p(s|a, z, d2) (1)

for s ∈ S, a ∈ A, z ∈ Z in general, but d is unobserved by the agent at test time. This setting could
also be formalized as a partially observable MDP (POMDP), but we use the present formalism to
emphasize the following assumptions:
Assumption A.1. The dynamics state d is independent of the observed states and actions:

p(dt+1|at, zt, dt) = p(dt+1).

In this paper, we consider episodic RL and hold d constant during a single episode; however, our
architecture does not prohibit training under non-stationary d and in non-episodic environments.
Assumption A.2. The test-time observation is a deterministic truncated identity functionO(z, d) = z,
rather than a more general and/or stochastic function.

This assumption emphasizes that we are not concerned with the partial observability resulting from,
e.g., an agent perceiving its environment through a camera.

In training, the dynamics parameters follow the distribution pD(d) : D 7→ R≥0. We note that in
practical applications, we are often free to choose pD, in which case we should choose a distribution
that covers all values of d that might be encountered at test time. Our goal is to learn the embedding
function e : d 7→ ε and a policy conditioned on the learned embedding πε : Z × E ×A 7→ R≥0 that
maximizes the expectation of a standard RL objective over pD:

maximize
π, e

JR(πε, e) , Ed∼pD, τ∼p(τ |πε,e,d)

H∑
t=0

r(st, at), (2)

where τ = (s0, a0), . . . , (sH , aH) denotes a state-action trajectory and p(τ |πε, e, d) denotes the
trajectory distribution induced by πε and e under dynamics parameters d:

p(τ |πε, d) = ρ(s0)

H−1∏
t=0

p(st+1|st, at)πε(at|zt, e(dt)). (3)

We simultaneously train the identification function id to minimize estimation error under the induced
trajectory distribution:

Jid(id, πε, e) , Ed∼pD, τ∼p(τ |πε,e,d)

[
H∑
t=0

‖id(τt−K:t)− e(d)‖22

]
, (4)

While the embedding space may help make system identification easier, it has a failure mode that
must be considered: if e and id both map to the same constant value for any input, id will achieve
perfect performance during training, but the embedding will not influence the policy, and πε will be
reduced to a blind policy equivalent to that learned under pure domain randomization. To avoid this
problem, we impose a structure where the parameters of the embedding function e can only be learned
via backpropagation of the RL objective gradient through πε. We then augment the main objective (2)
with an observability objective term based on Jid to reward accurate system identification of ε. We
additionally include an entropy regularization term,

JH(πε, e) , Ed∼pD, τ∼p(τ |πε,e,d)H [πε(·|z, e(d))] , (5)

because it is inherent in the Soft Actor-Critic (SAC) RL algorithm [5] we use in experiments
(additional details in Appendix B). The complete RL maximization objective is given by

J(πε, e) = JR(πε, e)− αidJid(id, π, e) + αHJH(πε, e). (6)
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The regularization weights αid > 0, αH > 0 are user-chosen hyperparameters. Note that the
summation in (4) intentionally includes negative values of the timestep t. At test time, id will be
required to produce an input to πε before enough time has passed to fill the K-length history buffer.
To include this case in training, we initialize the history buffer with zeros at the episode start (or clear
it periodically during non-episodic training), and include a reward for these initial timesteps in (4).
The value of states and actions for negative values of t are therefore defined as zero vectors.

We emphasize that the observability objective term (4) is added to the reinforcement learning reward
rather than optimized directly. The parameters of id are considered constant when optimizing πε and
e; and the parameters of e are considered constant when optimizing id. The system identification
function id is not updated by the RL algorithm. It is updated in a separate supervised learning step,
performed alongside each iteration of RL.

B Experimental details

B.1 Policy and identifier parameterizations

In our experiments, the policy πε is parameterized as a fully connected neural network with 2 hidden
layers of 128 units each, using ReLU nonlinearities [6]. The same architecture is used to parameterize
the value- and Q-function estimators used by SAC. The embedding function e network contains one
hidden layer of 128 units.

We employ a one-dimensional convolutional architecture for the identifier function id, composed of
three 1D-convolutional layers, each with 64 filters of width 3 and ReLU activation, followed by a
single fully connected layer with 128 units, and a linear output layer. The convolutional architecture
is chosen to allow a longer trajectory window K without requiring a large number of parameters
(K = 16 in our experiments). Additionally, it matches the intuition that differentiation and/or
integration of the state and action trajectories is often required to identify the underlying dynamics
parameters. For example, an engineered approach for estimating the gain parameter of the point-mass
environment could differentiate the velocity observation to obtain acceleration.

B.2 RL algorithm

For all experiments, we use the entropy-regularized Soft Actor-Critic (SAC) reinforcement learning
algorithm [5]. SAC is an off-policy algorithm where a stochastic policy is trained only with TD-
learned value function estimates. We observed significantly higher rewards using SAC compared
to the on-policy, Monte Carlo policy gradient algorithm PPO [10]. We conjecture that the use of
TD-learning and a replay buffer is especially helpful in our scenario compared to single-environment
training, since the replay buffer helps prevent “forgetting” about areas of the dynamics distribution
pD that have not been sampled recently.

The value function estimators used by SAC are parameterized by fully-connected networks of identical
structure to the policy. For blind policies, the value function networks are conditioned only on the
observed state z ∈ Z to emulate domain randomization approaches. For plain policies, they are
conditioned on both z and d ∈ D to emulate the setup of [14]. For ours policies, they are conditioned
on z, d, and ε ∈ E . The gradient update of the embedding function e is only taken w.r.t. the policy
reward and not the value function training losses.

B.3 Randomized Half-Cheetah environment

Here we give more details on our procedure for randomizing the Half-Cheetah environment. The
following parameters are randomized: lengths of seven kinematic links, damping, stiffness 1, and
ranges of six planar revolute joints, and gear ratios of six rotary actuators. In total, 37 parameters are
randomized. For joint ranges, limits on either side are shifted by ω ∼ unif(−0.3, 0.3) radians. All
other parameters must take nonnegative values, and some should not be too close to zero. Thus, we
multiply those parameters by a random nonnegative ratio βp where p ∼ unif(−1, 1). The parameter
β > 1 controls the amount of randomness. For example, if β = 2, then 1/2 ≤ βp ≤ 2. In our

1Joint stiffness in MuJoCo denotes the strength of a virtual spring pulling the joint to its resting position.
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Figure 3: Variations of Half-Cheetah environment produced by randomization of kinematic and
dynamic properties.

experiments, β = 1.75, which was the largest value we could use without generating too many overly
difficult configurations. Some examples of the randomized half-cheetahs are shown in Figure 3.

Due to the architecture of the MuJoCo physics simulator used in this environment [12], it is not
practical to sample new random dynamics parameters d for each training iteration. Instead, we
construct a “universe” of 256 models initially, and sample a new “universe” at test time.
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