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External memory has become an important technique for handling partial observability in rein-
forcement learning. However, deciding what to store in memory is often approached with heuristic
techniques. We introduce online policy gradient over a reservoir (OPGOR) to learn to favor re-
tention of useful state variables, in a way that is tractable for an online agent. We utilize reservoir
sampling (Chao, 1982) to maintain a weighted sample of state variables from the full history, while
only storing a fixed-size buffer. Nevertheless, the policy gradient is still a function of the full history.
In order to perform policy gradient without actually storing the full history, we introduce a novel
sampling technique.

Consider an actor-critic agent whose policy has access to an external memory consisting of n stored
state variables from previous time-steps. A state variable is a feature vector φt generated at each
time-step which acts as the agent’s state representation. For simplicity, consider the case where
n = 1, i.e. the memory contains a single past state variable mt. At each time-step the remembered
state variable, mt = φi for some i < t, will be used, alongside the current state variable φt, to
condition the policy π(At|φt,mt). This allows the agent to condition its decisions on past events.
Assume mt is drawn from a distribution parameterized as follows by a set of importance weights
{w(φi)|i ∈ {0, ..., t− 1}}, where w(φi) is generated by a write network w(·) when the associated
state is visited:

Pt(mt = φi) = exp(w(φi))

/
t−1∑
j=0

exp(w(φj)) (1)

Naively sampling from this distribution at each time-step would require us to store the full history, and
then draw a sample. This is not feasible for an online agent, and eliminates much of the computational
advantage of using a limited memory. Reservoir sampling allows us to maintain such a sample
online, while storing only a single state variable. Reservoir sampling works by carefully choosing the
probability of adding each observed state variable, and the probability of dropping state variables
from memory, such that the marginal inclusion probability for each state variable has a desired
form. The reservoir sampling algorithm we use, including the more complex multiple item case, was
originally described by Chao (1982), see Appendix A for a review of this algorithm.

The expected return conditioned on the history of state variables up to time t can be written:

Et[Gt] =

t−1∑
i=0

Pt(mt = φi)
∑
a∈A

π(a|φt, φi)Et[Gt|At = a] (2)

We can write the gradient of the return with respect to the parameters θw of the write network as a
sum of terms of the following form at each time-step:

t−1∑
i=0

Pt(mt = φi)

∂w(φi)

∂θw
−

t−1∑
j=0

Pt(mt = φj)
∂w(φj)

∂θw

∑
a∈A

π(a|φt, φi)Et[Gt|At = a] (3)

Note that this is essentially identical to the derivation of ordinary policy gradient (Sutton, McAllester,
Singh, & Mansour, 2000), applied to state variable selection, except that we have explicitly expanded:
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(a) Rapid Action Association (b) Return v.s. Episodes

Figure 1: (a) Diagram illustrating the rapid action association problem. (b) Returns over time for
OPGOR and 2 baseline agents. Each curve is the average of 30 runs. The α value for each agent was
tuned from {2−i : i ∈ {5, 6, ..., 10}}
.

∂ log(Pt(mt = φi))

∂θw
=
∂w(φi)

∂θw
−

t−1∑
j=0

Pt(mt = φj)
∂w(φj)

∂θw
(4)

as a difference of terms corresponding to the numerator and denominator of equation 1. While
the numerator term is easily computed as the gradient of the write network for the state variable
stored in memory, to naively compute the gradient of the denominator term would require storing the
entire history of state variables, which is not feasible in an online setting. We can instead sample
an unbiased estimate the denominator term online, using a second reservoir, sampled identically but
independently to mt. The state variable in the first reservoir mt conditions the policy. The state
variable in the second reservoir, say m̃t, is an independent sample from the same distribution, which
allows us to compute an unbiased sample of the denominator gradient.

Appendix B provides a detailed derivation of OPGOR, including how we extend it to the multiple-state
memory case. In the simplest case, using a single-state memory and one step advantage estimation,
OPGOR consists of the following update rule for the write network parameters θw,t at each time-step:

θw,t+1 = θw,t + αδt

(
∂w(mt)

∂θw
− ∂w(m̃t)

∂θw

)
In Figure 1, we show the results of an experiment comparing this approach against two baselines
on a rapid action association problem, designed to test an agent’s ability to learn to recall salient
past state variables in order to inform present decisions. In this problem, the agent wandered a grid
world filled with food items. Each item had an associated type which was specified by a random 5 bit
key, which formed part of the state variable when the agent was collocated with the item. For each
type, one of two special actions gave reward +1 while the other gave reward −1. This information
was only made available after committing to an action for a given item. To succeed the agent had
to remember the outcome of acting on past items of matching type within an episode and use this
information to select the positive reward action for the current item. Item types were randomized
each episode. See Appendix D for a full description of this environment.

The uniform reservoir baseline fixed the importance weights used in reservoir sampling to one, thus
sampling uniformly from the history. The least recently used baseline was a strong heuristic, which
droped the state variable which had been least recently written or queried at each time-step. We also
show the expected performance for a memoryless agent, which is fixed at zero. See Appendix E for
further details of our experiment setup.

We suggest OPGOR represents the first step towards a principled, online approach to a problem which
is often approached using various heuristics (e.g. Gulcehre, Chandar, and Bengio (2017), Gulcehre,
Chandar, Cho, and Bengio (2018), Oh, Chockalingam, Singh, and Lee (2016), Wayne et al. (2018)),
and/or backpropagation through time (e.g. Graves et al. (2016)), which is not tractable for an online
agent.
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A Reservoir Sampling Overview

Here, we provide the relevant background on reservoir sampling, which we apply to manage the
external memory of a reinforcement learning agent.

Reservoir sampling refers to a class of algorithms for sampling from a distribution over n-subsets
of items from a larger set streamed one item at a time. The goal is to ensure, through specific add
and drop probabilities, that the n items in the reservoir at each time-step correspond to a sample
with some desired statistical properties over n-subsets of all observed items. The particular reservoir
sampling technique we apply gives closed form, differentiable inclusion probabilities for each state
variable in terms of an associated weight. In our case, this weight will be generated by an neural
network for each observed state variable. This allows us to apply the techniques of policy gradient to
improve the weights assigned to states in memory with respect to the resulting expected return.

One of the simplest examples of a reservoir sampling algorithm maintains a reservoir of n items
drawn uniformly at random from a stream observed one item at a time (Vitter, 1985). To achieve
this, the first n items are added to the reservoir automatically, after which the algorithm proceeds as
follows at each time-step t:

• Observe a new item φt

• Choose whether to add the item to the current reservoir with probability n/t

• If we do choose to add it, replace an item from the current reservoir uniformly at random

To see that this correctly produces uniform inclusion probabilities, first note that the most recently
observed item is included with precisely probability n/t. Assume towards a proof by induction that
all other items in the reservoir are included with probability n/(t − 1) prior to observing φt. φt
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is added with P = n/t. If φt is added, each item is equally likely to be replaced. As a result, the
inclusion probability of each item in the reservoir after the new observation is:

P =
n

t− 1
·
(

1− n

t
+
n

t
·
(

1− 1

n

))
=

n

t− 1
·
(
t− n
t

+
n− 1

t

)
=
n

t
which is indeed equal to the inclusion probability of φt. As the base case for the inductive proof
simply note that at time n the inclusion probability of each item is 1 which is indeed n/t at that time.

There are various ways to extend reservoir sampling to the more complex case of unequal probabilities,
for example probabilities proportional to a weight wt associated with each φt. In this work, we use
of one such method, first presented by Chao (1982), which we will now describe. In this case at
each time-step we observe an item φt along with an associated weight wt. We want the inclusion
probability of each φt in the reservoir to be linearly proportional to the associated wt. However, if we
allow arbitrary positive weights this may necessitate some probabilities greater than one, so we have
to refine this desiderata slightly. Precisely, define the set of inadmissible indices:

Ωt = arg min
ω⊂[0,..,t−1]

|ω| s.t. ∀i ∈ {0, .., t− 1} \ ω, (n− |ω|)wi <
∑

j∈{0,..,t}\ω

wj (5)

i.e., those indices for which the weight is too large to represent a relative probability of inclusion.
Note that such a set is easily constructed by recursively removing the largest weight item until the
inequality holds for the next largest. Now defineMt as the set of items in the reservoir prior to
observing item φt. We will assert the following probabilities for each item indexed from 0 to t− 1
being present in the reservoir at time t:

P (φi ∈Mt) =

1 if i ∈ Ωt
(n−|Ωt|)wi∑

j 6∈Ωt

wj
if i 6∈ Ωt (6)

All items whose probability would be greater than one are included with certainty, while the re-
maining items are included with probability proportional to their weight. With the desired inclusion
probabilities in place, it remains to describe how to formulate incremental replacement rules to give
rise to these probabilities. As in the equal probability case, the first step will be to determine whether
or not to add φt to the reservoir. There is little choice in this step, to achieve the desired inclusion
probability for the new item we must add it with probability P (φt ∈Mt+1) as defined in equation 6.
After that, we separately handle the items which were included with certainty at time t− 1 and those
which were not. The full procedure goes as follows:

• Observe a new item φt

• Choose whether to add the item to the current reservoir with probability P (φt ∈Mt+1)

• If we choose not to add it, stop here and maintain the same reservoir, otherwise continue to
the next step

• From all items φi with index in Ωt choose one, or none, to drop with probability
1−P (φi∈Mt+1)
P (φt∈Mt+1) , note that this may be 0 if wi remains inadmissible

• If no item is dropped in the previous step, drop one of the other items uniformly at random

we will refer to this procedure as Chao sampling, after the author who originally described it. We
omit the proof here for brevity, but note that this procedure gives rise to precisely the inclusion
probability specified in equation 6 for each item at each time. In the single-item case this procedure
is particularly simple, as there is no possibility of inadmissible items. In that case Chao sampling
gives rise to the probability given by equation 1, except that the weights have been exponentiated.
We use exponentiated weights because it simplifies the gradient calculation, and enforces positive
probability for arbitrary real numbers.
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B Details of Online Policy Gradient Over a Reservoir

Here we provide a detailed derivation of the OPGOR algorithm. We will first derive OPGOR for the
simple case of a memory that can hold only a single state variable. We will then describe how we
extend the algorithm to the more complex case of multiple state variables, for which we employ a
semi-gradient approximation.

B.1 Single-State Memory

We will begin our derivation of OPGOR for the single-state memory case from the following
expression for the gradient of equation 2, the expected return, with respect to the write network
parameters θw:

∂

∂θw
Et[Gt] =

t−1∑
i=0

(
∂Pt(mt = φi)

∂θw

∑
a∈A

(π(a|φt, φi)Et[Gt|At = a]− v̂(φt))

+ Pt(mt = φi)
∑
a∈A

π(a|φt, φi)
∂Et[Gt|At = a]

∂θw

)
(7)

We subtract a baseline v̂(φt) for variance reduction. Working out the first term from the right hand
side of equation 7:

t−1∑
i=0

∂Pt(mt = φi)

∂θw

(∑
a∈A

π(a|φt, φi)Et[Gt|At = a]− v̂(φt)

)

=

t−1∑
i=0

Pt(mt = φi)
∂ log(Pt(mt = φi))

∂θw(∑
a∈A

π(a|φt, φi)Et[Gt|At = a]− v̂(φt)

)

=

t−1∑
i=0

Pt(mt = φi)
∂

∂θw

wi − log(

t−1∑
j=0

exp(wj))


(∑
a∈A

π(a|φt, φi)Et[Gt|At = a]− v̂(φt)

)

=

t−1∑
i=0

Pt(mt = φi)

∂wi
∂θw

−
t−1∑
j=0

Pt(mt = φj)
∂wj
∂θw


(∑
a∈A

π(a|φt, φi)Et[Gt|At = a]− v̂(φt)

)
Working out the second term from the right hand side of equation 7:

t−1∑
i=0

Pt(mt = φi)
∑
a∈A

π(a|φt, φi)
∂Et[Gt|At = a]

∂θw

=

t−1∑
i=0

Pt(mt = φi)
∑
a∈A

π(a|φt, φi)
(
∂Et[Rt+1|At = a]

∂θw
+
∂Et[Gt+1|At = a]

∂θw

)
= Et

[
∂

∂θw
Et+1[Gt+1]

]
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Where we are able to drop ∂Et[Rt+1|At=a]
∂θw

because the immediate reward is independent of the state
variable in memory once conditioned on the action. Thus, we finally arrive at:

∂

∂θw
Et[Gt] =

t−1∑
i=0

Pt(mt = φi)

∂wi
∂θw

−
t−1∑
j=0

Pt(mt = φj)
∂wj
∂θw


(∑
a∈A

π(a|φt, φi)Et[Gt|At = a]− v̂(φt)

)

+ Et

[
∂

∂θw
Et+1[Gt+1]

]
(8)

Note that this derivation is essentially identical to the derivation of ordinary policy gradient (Sutton
et al., 2000) except that we have explicitly expanded:

∂ log(Pt(mt = φi))

∂θw
=

∂wi
∂θw

−
t−1∑
j=0

Pt(mt = φj)
∂wj
∂θw


in order to emphasize the separate numerator term ∂wk

∂θw
, and denominator term

t−1∑
j=0

Pt(mt = φj)
∂wj

∂θw
.

Each of these terms can be estimated by maintaining a single-item Chao sample of the state variable
associated with each weight, and computing the gradient only with respect to the selected item. For
the numerator term the sampled state variable mt will also be used to condition the policy, while the
denominator sample m̃t will be independently sampled from the same distribution. Each time we
compute the gradient with respect to the importance weight of the state variable mt we subtract the
gradient of the importance weight of the state variable m̃t. More precisely, we use the following
sample based estimate of equation 8 at t = 0:

∂

∂θw
E0[G0] ≈

∞∑
t=0

(
∂w(mt)

∂θw
− ∂w(m̃t)

∂θw

)(
Ĝt − v̂(φt)

)
(9)

Where Ĝt is some estimate of the return. In this work we apply online generalized advantage
estimation (Schulman, Moritz, Levine, Jordan, & Abbeel, 2015) for this purpose, taking Ĝt to be
equal to the λ-return:

Gλt = Rt+1 + γ
(
(1− λ)v̂(φt+1) + λGλt+1

)
= v̂(φt) +

∞∑
k=t

(γλ)k−tδk

where we have defined the TD-error:
δt = Rt + γv̂(φt+1)− v̂(φt)

Thus, our gradient estimate becomes:

∂

∂θw
E0[G0] ≈

∞∑
t=0

(
∂w(mt)

∂θw
− ∂w(m̃t)

∂θw

) ∞∑
k=t

(γλ)k−tδk

=

∞∑
t=0

δt

t∑
k=0

(γλ)t−k
(
∂w(mk)

∂θw
− ∂w(m̃k)

∂θw

)
Now define an eligibility trace:

zw,t =

t∑
k=0

(γλ)t−k
(
∂w(mk)

∂θw
− ∂w(m̃k)

∂θw

)
such that:

∂

∂θw
E0[G0] ≈

∞∑
t=0

δtzt
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We use online updating, meaning we update the parameters of the write network at each time-step
according to a single term in the above sum as follows:

zw,0 = 0

zw,t = γλzw,t−1 +

(
∂w(mt)

∂θw
− ∂w(m̃t)

∂θw

)
θw,t+1 = θw,t + αδtzt

B.2 Multiple-State Memory

In the multiple-state case, the memory will be managed by the full, multiple-item, version of Chao
sampling, which we reviewed in Appendix A. Instead of just one state variable mt stored in memory
at each time we will now have a reservoirMt = (Mt(0), ...,Mt(n− 1)) of some fixed number of
state variables n. We will continue to use mt to refer to the particular state variable returned by the
query from the network at time t. With this notation we can write the expected return as:

Et[Gt] =

t−1∑
i=0

Pt(mt = φi)
∑
a∈A

π(a|φt, φi)Et[Gt|At = a]

=

t−1∑
i=0

Pt(φi ∈Mt)Pt(mt = φi|φi ∈Mt)∑
a∈A

π(a|φt, φi, θ)Et[Gt|At = a]

=

t−1∑
i=0

Pt(φi ∈Mt)Et[Q(φi|φt,Mt)|φi ∈Mt]∑
a∈A

π(a|φt, φi)Et[Gt|At = a]

To compute a gradient estimate for the multiple-state case, we will make a simplifying approximation,
using a form of semi-gradient, and take ∂Et[Q(φk|φt,Mt)|φk∈Mt]

∂wi
≈ 0 for all k and i. Note that

in reality since Q(φk|φt,Mt) is a function of not just φk but all the other items in memory at
time t this derivative will actually be non-zero. Nonetheless, we suggest that propagating gradients
through Pt(mt = φk) while treating Et[Q(φk|φt,Mt)|φk ∈ Mt] as constant with respect to
the importance weights wi will adequately capture the primary effect of the write process, while
Et[Q(φk|φt,Mt)|φk ∈Mt] can be optimized with respect to the query process alone. Investigating
the implications of this approximation is left to future work. With the above approximation in place
we compute the gradient with respect to the write network parameters θw as follows:

∂

∂θw
Et[Gt] ≈

t−1∑
i=0

(
∂Pt(φi ∈Mt)

∂θw
Et[Q(φi|φt,Mt)|φi ∈Mt](∑

a∈A
π(a|φt, φi)Et[Gt|At = a]− v̂(φt)

)

+ Pt(mt = φi)
∑
a∈A

π(a|φt, φi)
∂Et[Gt|At = a]

∂θw

)
(10)

Again, we have subtracted a constant baseline of v̂(φt). Modifying equation 6 slightly to use
exponentiated weights, the inclusion probabilities for each state variable will be given by:

Pt(φi ∈Mt) =

1 if i ∈ Ωt
n exp(wi)∑

j∈Ωt

exp(wj) if i 6∈ Ωt (11)

where:
Ωt = arg min

ω⊂[0,..,t]

|ω| s.t. ∀i ∈ [0, .., t] \ ω, (n− |ω|) exp(wi) <
∑

j∈[0,..,t]\ω

exp(wj)
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is the inadmissible set. Recall from Appendix A that the inadmissible set refers to those indices
where the inclusion probability of the associated state variable would be greater than one if computed
naively. Applying this to work out the first term from the right hand side of equation 10 gives, for all
i 6∈ Ωt:

t−1∑
i=0

∂Pt(φi ∈Mt)

∂θw
Et[Q(φi|φt,Mt)|φi ∈Mt](∑

a∈A
π(a|φt, φi)Et[Gt|At = a]− v̂(φt)

)

=
∑
i6∈Ωt

∂ log(Pt(φi ∈Mt))

∂θw
Pt(φi ∈Mt)Et[Q(φi|φt,Mt)|φi ∈Mt](∑

a∈A
π(a|φt, φi)Et[Gt|At = a]− v̂(φt)

)

=
∑
i 6∈Ωt

Pt(mt = φi)
∂

∂θw

wi − log

∑
j 6∈Ωt

exp(wj)


(∑
a∈A

π(a|φt, φi)Et[Gt|At = a]− v̂(φt)

)

=
∑
i6∈Ωt

Pt(mt = φi)

∂wi
∂θw

−
∑
j 6∈Ωt

exp(wj)∑
k 6∈Ωt

exp(wk)

∂wj
∂θw


(∑
a∈A

π(a|φt, φi)Et[Gt|At = a]− v̂(φt)

)

Note that the term exp(wj)∑
k 6∈Ωt

exp(wk) is precisely the single-item probability given in equation 1, except

that the summation is now restricted to state variables not in Ωt. Hence, even though we are using a
multiple-state memory, we can still use a single-state reservoir with single-item Chao sampling to
sample the denominator gradient, now sampling only from items which are admissible inMt. We
can also use a larger denominator reservoir M̃t = (M̃t(0), ...,M̃t(ñ− 1)) with multiple-item Chao
sampling to get a lower variance estimate of the denominator gradient. Inclusion probabilities under
mutliple-item Chao sampling, given by equation 11, are simply a multiple of the associated single-item
inclusion probabilities as long as all items are admissible. Hence, as long as the denominator reservoir
is smaller than, or the same size as the external memory (ñ ≤ n), we can simply take the average
gradient of the items in the denominator reservoir as our estimated denominator gradient. If the
denominator reservoir is larger it will be necessary to re-weight any inadmissible items appropriately.
We do, however, have to be careful to sample from only admissible state variables, which can be
accomplished by only streaming state variables to M̃t when they first become admissible inMt.

With the approximation we applied, the multiple-state memory version of OPGOR works out very
similarly to the single-state memory version discussed in Section 7. The only difference is the
condition that we only propagate gradients through admissible items. Local modifications of the
importance weights have no effect on items whose inclusion probability is saturated at one, hence we
don’t update those weights further. Likewise, the second term of equation 10 works out the same
as the second term of equation 8 and no modification to its derivation is necessary. We also modify
the update equations to account for a larger denominator reservoir, but limit it to the case where the
denominator reservoir is no larger than the external memory for simplicity. The associated online
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update rule becomes:
zw,0 = 0

zw,t = γλzw,t−1 + 1(mt 6∈ Ωt)

(
∂w(mt)

∂θw
− 1

ñ

ñ−1∑
i=0

∂w(M̃t(i))

∂θw

)
θw,t+1 = θw,t + αδtzt

C Algorithmic and Architectural details

We build our architecture on the advantage actor-critic architecture introduced by Mnih et al. (2016),
which consists of a value network and policy network. In addition to the value and policy networks
of the advantage actor-critic architecture, we include an external memory consisting of a sequence
of n pairs ((Mt(0),Wt(0)), ..., (Mt(n− 1),Wt(n− 1))) of vectorsMt(i) with associated scalar
importance weightWt(i). Following Wayne et al. (2018), we refer to the vectors stored in memory
as state variables. The state variable generated at time t will be a vector of fixed size, denoted by φt.
In this work, for the sake of simplicity, φt is generated directly by the environment, in general we
would want to use some learned state representation.

The importance weightsWt(i) stored with each state variable in memory are generated by the write
network w(φt, θ), which takes the current state variable as input and outputs a single real value. The
parameter θ represents the full parameter vector of the agent. In this work, each of the discussed
network modules will be independently parameterized, however in general some of the parameters in
θ may be shared. The importance weights will be used to manage the external memory via the Chao
sampling algorithm described in Appendix A, and adjusted via OPGOR.

The query network q(φt, θ) outputs a vector of size equal to the size of φt with tanh activation. At
each time-step, a single state variable mt =Mt(i) is drawn from the memory to condition the policy
π(At|φt,mt, θ) according to the probability distribution:

Q(Mt(i)|φt,Mt, θ) = exp (〈q(φt, θ)|Mt(i)〉β)

/
n−1∑
j=0

exp (〈q(φt, θ)|Mt(j)〉β) (12)

where β is a positive learnable parameter representing the inverse temperature of the softmax. The
parameter β is intended to allow the agent to make its queries more or less precise as appropriate
as learning progresses. The state variable mt selected from memory is given as input to the policy
network along with the current state variable φt, both of which condition the resulting policy. An
illustration of this architecture is shown in Figure 2.

We used a single hidden layer neural network for the value, query and write networks, and two
hidden layers for the policy network. This choice is based on the intuition that the policy network
must aggregate information from the current state variable as well as the state variable recalled from
memory in order to select a good action. This is likely to be a more complex function than what is
necessary for the other three networks. For simplicity, there will be no parameter sharing between
networks. Unless otherwise specified, hidden layers will be of size 32 and use sigmoid linear unit
(SiLU) activations. The SiLU activation is described by Elfwing, Uchibe, and Doya (2018), where it
was found to be beneficial when training neural networks for online RL with eligibility traces, as we
will do in this work.

We train our agent using a variant of actor-critic with eligibility traces, AC(λ) Degris, Pilarski, and
Sutton, 2012. An online variant of actor-critic which utilizes eligibility traces in both the actor and
the critic. The basic AC(λ) algorithm can be written as follows:

z0 = 0

zt = γλzt−1 +
∂v̂(St, θt)

∂θ
+

1

2

∂ log(π (At|St, θt))
∂θ

θt+1 = θt + αztδt
Note that the trace zt contains a term for the actor update and another for the critic. In addition to
this basic algorithm we add in a term for the query network, similar to another actor term where the
queried item is treated as an action. We also add a term for the write network which uses OPGOR, as
described in Appendix B. We applied entropy regularization to the policy, as well as L2 regularization
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Figure 2: Advantage actor-critic with external memory conditioned policy architecture. Each grey
circle represents an neural network module. The state variable (φ) is provided as input to the query
(q), write (w), value (v) and policy (π) networks at each time-step. The query network outputs a
vector, equal in length to the state variable, which is used (via equation 12) to choose a past state
variable from the memory (m1 ,m2 or m3 in the above diagram) to condition the policy. The write
network assigns a weight to each new state variable, determining how likely it is to stay in memory.
The policy network assigns probabilities to each action conditioned on current state variable and
recalled state variable. The value network estimates expected return (value) from the current state
variable.

to the generated importance weight w(φt, θ). Entropy regularization helps to maintain exploration,
and prevent premature convergence to suboptimal policies. L2 regularization was added to the
importance weights to prevent weights from growing arbitrarily large, potentially leading to overflow.
The full set of update equations used by our agent is:

z0 =0

zt =γλzt−1 + 1(mt 6∈ Ωt)

(
∂w(mt)

∂θ
− 1

ñ

ñ−1∑
i=0

∂w(M̃t(i))

∂θ

)

+
∂v̂(φt, θt)

∂θ

+
1

2

∂ log(π(at|φt,mt, θt))

∂θ

+
1

2

∂ log(Q(Mt(i)|φt,Mt, θt)

∂θ

θt+1 =θt + α

(
δtzt + ψ

∂Ht
∂θ
− η ∂w(φt, θt)

2

∂θ

)
where Ht =

∑
a∈A π(a|φt,mt, θt) log(π(a|φt,mt, θt)) is the single-step policy entropy. Follow-

ing Mnih et al. (2016) we fixed ψ = 0.01. We set η to a small value of 0.0001 to minimize its
influence beyond avoiding numerical overflow and keeping the importance weights more-or-less
centered about 0. We fixed γ = 0.99 and λ = 0.8.

D Details of Rapid Action Association Problem

This environment was loosely based on the rapid reward valuation task outlined by Wayne et al.
(2018). The task consisted of a 5x5 grid world populated by an agent along with 15 food items of 3
distinct types. The agents position on the grid was available to it via a cell index which formed part of
the state variable. The presence of each item in a cell was represented to the agent by a random binary
food type indicator (of length 5 in our experiments), which was also included in the state variable.
Each food type was also classified as either good or bad, mandating that there be at least one good
and one bad item. When occupying the same cell as a food item, the agent could choose to select the
eat action or discard action. Eating a good item gave +1 reward while eating a bad item gave −1.
Conversely discarding a good item gave −1 reward while discarding a bad item gave +1. When an
item was either eaten or discarded it was removed from the grid and the next state variable seen by
the agent included the food type indicator along with a two bit good/bad food indicator, indicating
whether it was good or bad. Selecting eat or discard in a cell which contained no food item had no
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Feature Name Length Meaning
Cell Index grid width × grid height Index of grid cell the agent currently occu-

pies.
Food Type Indicator 5 Randomly generated key corresponding to

food type in current cell, all zeros if no food
in cell. Remains active one time-step after
food is eaten. Normalized by dividing by
half of the key length.

Remaining Food Map grid width × grid height Indicates grid cells in which food remains.
Normalized by dividing by initial number
of food items for stability.

Good Food Indicator 1 Indicates agent just ate or discarded good
food.

Bad Food Indicator 1 Indicates agent just ate or discarded bad
food.

Table 1: Feature representation for rapid action association.

effect. In addition to the eat and discard actions, the action space consisted of moving in the four
cardinal directions (up, down, left, right). The agent also received, as part of the state variable, a
remaining food map indicating the location of remaining food items on the board. The remaining
food map would allow the agent to quickly navigate between food items once it had learned to do so.

At the start of each episode, 3 new item types were generated with random quality and keys, and 15
items from this set were placed at random positions on the grid. An episode ended either when all
food items were consumed, or when 500 time-steps had elapsed. Ideally, to solve this task the agent
would learn to store the quality indicator associated with an item after trying it once. On subsequent
encounters with the same item, the agent could query the item in memory and use the quality indicator
to decide whether to eat or discard it.

An illustration of an instance of the rapid action association problem is illustrated in Figure 1 (a).
Table 1 outlines the (binary) state variable presented to the agent in each grid cell.

E Experiment Details

Our experiment tested OPGOR, along with 2 alternative memory selection strategies on the rapid
action association problem. OPGOR, as well as both baselines were run within the external memory
of the architecture outlined in Appendix C. All agents were trained with the AC(λ) variant outlined
in Appendix C (except that only the OPGOR agent included the importance weight term to the trace).
All agents used a relatively small memory size n = 5. This small memory size was chosen to ensure
the memory selection problem was nontrivial on the problem at hand. For the OPGOR reservoir agent
we also fixed the denominator reservoir size ñ = 5. The step-size α for each agent was tuned from
{2−i : i ∈ {5, 6, ..., 10}} to optimize average performance over the final 100 training episodes. We
restrict ourselves to the single-agent online RL case, using no experience replay or multiple parallel
actors. We now describe the two baseline agents against which we compared OPGOR, and discuss
their significance.

Uniform Reservoir: This agent is similar to our OPGOR reservoir agent, but with importance
weights fixed to one instead of learned using OPGOR. This reservoir sampling procedure reduces
to the simple procedure for sampling items uniformly, introduced at the start of Section A. The
performance of this agent gives us an idea of how effective OPGOR was at tuning importance weights
and how important this was.

Least Recently Used (LRU): For each state variable in memory, this agent keeps track of a usage
timer equal to the number of time-steps passed since each state variable in memory was either written
or returned as a query result. It always replaces the state variable with the largest usage timer with
the current state variable. This is based on the reasoning that state variables which the query network
has determined would be useful to query in the recent past are also likely to be more useful in the
future. This served as a simple, though potentially powerful, heuristic against which to test OPGOR.
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The results of this experiment are displayed in Figure 1, each curve is the average of 30 runs, with
error bars showing standard error in the mean. This figure also displays the return for a memoryless
agent as 0. We did not test a memoryless agent but include this to clarify that memory is essential
for this task. Except for intra-episode learning, which is unlikely to play a significant role in a
conventional agent, a memoryless agent would have no means to discern the correct action for a given
food item any better than random, for which the expected reward is 0.

12


	Reservoir Sampling Overview
	Details of Online Policy Gradient Over a Reservoir
	Single-State Memory
	Multiple-State Memory

	Algorithmic and Architectural details
	Details of Rapid Action Association Problem
	Experiment Details

