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Abstract
Deep reinforcement learning (DRL) offers many opportunities in the machine learning area due to its ability to solve
fundamentally different objectives using the same architecture and algorithm. Deepmind for instance has shown that
the same configuration of deep Q-learning (DQN) can be used to achieve human-level performance in a vast number
of different Atari games. However, DRL suffers from poor sample efficiency and is dominated by naive exploration
strategies like the ε-greedy policy. DQN usually requires a vast number of experiences, which the agent samples through
interactions with an environment, to learn good policies. This thesis investigates the usage of value bounds for faster
reward propagation [21] in combination with bootstrapped DQN for deeper exploration [4]. Enforcing constraints on
value functions potentially leads to more accurate estimations in poorly explored state spaces (early training). Several
environments included in OpenAI’s Gym toolkit and a subset of Atari games are used to evaluate the proposed method
w.r.t. its exploratory ability. It is demonstrated that performance can be improved in early training by a combination
of deep exploration and fast reward propagation in some environments. However, results also show that the proposed
method sometimes has difficulties to converge to an optimal solution. This thesis lays a foundation for future work in the
area of more sophisticated exploration strategies in DRL, as the proposed algorithm requires improvement in some areas
to consistently achieve good performance.

Zusammenfassung
Deep reinforcement learning (DRL) bietet aufgrund seiner Fähigkeit mittels eines identischen Agenten unterschiedliche
Aufgaben zu lösen viele Möglichkeiten im Bereich des maschinellen Lernens. Deepmind zeigte zum Beispiel, dass die-
selbe Konfiguration von Deep Q-Learning (DQN) verwendet werden kann, um in einer großen Anzahl verschiedener
Atari-Spiele mit Menschen vergleichbare Leistung zu erzielen. DRL leidet jedoch unter einer schlechten Stichprobenef-
fizienz und wird von naiven Explorationsstrategien, wie z.B. ε-greedy, dominiert. DQN benötigt normalerweise eine
große Anzahl an Daten, die durch Interaktion mit einer RL Umgebung gesammelt werden müssen, um gute Hand-
lungsstrategien zu lernen. Diese Masterarbeit untersucht die Verwendung von beschränkten Nutzenfunktionen, für eine
schnellere Ausbreitung von Belohnungen [21], in Kombination mit bootstrapped DQN für tiefere Exploration [4]. Die
beschränkte Optimierung von Wertefunktionen kann insbesondere in wenig erforschten Zustandsräumen (frühes Trai-
ning) zu genaueren Schätzungen führen. Das vorgestellte Verfahren wird auf verschiedenen Umgebungen des RL toolkits
Gym und einigen Atari-Spielen bezüglich seiner explorativen Fähigkeit ausgewertet. Es wird gezeigt, dass die Leistung
im frühen Training durch eine Kombination aus tiefer Exploration und schneller Ausbreitung von Belohnungen in meh-
reren Umgebungen verbessert werden kann. Allerdings wird auch gezeigt, dass das vorgestellte Verfahren gelegentlich
Schwierigkeiten hat, zu einer optimalen Handlungsstrategie zu konvergieren. Diese Masterarbeit bildet ein Fundament
für zukünftige Arbeiten im Bereich komplexerer Erforschungsstrategien in DRL, da Verbesserungen am vorgestellten
Verfahren notwendig sind, um konsistent gute Ergebnisse zu erzielen.
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1 Introduction
Efficient exploration of state spaces is one of the main challenges in reinforcement learning (RL), where state spaces tend
to explode with more challenging tasks. Exploration directly determines how fast RL agents learn, as agents learn on
data sampled from the environment by interacting with it. The exploration-exploitation trade-off states that an algorithm
has to find the right balance between acting greedily, i.e. making a choice that maximizes some goal measure according
to the current knowledge, and exploring new states that may lead to suboptimal immediate results, but could lead to
better performance in the long run.
Agents are inherently greedy, as they strive to maximize some reward signal returned by the environment, where the
reward determines how useful an action executed from the current state is. While acting greedily may lead to immediate
best actions, it makes no assumption about the long term effects of these actions. Acting only greedily dampens an
agent’s ability to learn, as unseen states with potential high rewards are never explored. Thus, exploration has to be
induced through random actions or some heuristic that evaluates the potential information growth of visiting states
non-greedily. Directing exploration to useful states is difficult. Hence, many algorithms rely on simple exploration
strategies that randomly select actions with some probability. The random action probability is usually decreased over
time to encourage random exploration in early training, while actions are chosen more greedily once the state space is
sufficiently explored and the agent is able to make more accurate predictions.
RL agents learn from trial and error. An agent interacts with an environment and receives reward signals based on its
actions. The current state of the agent, executed actions, and environment feedback in form of rewards act as experience
for an agent to learn from. Although RL is able to learn vastly different tasks with the same agent, it requires sophisticated
algorithms to minimize the training time.
DQN uses ANNs in combination with Q-learning to approximate value functions and automatically extract relevant
feature representations from network inputs. Using ANNs in combination with RL enables an agent to deal with high-
dimensional inputs and large state spaces. However, the problem of exploration still persists. Rewards are often spare in
the sense that they are received only rarely, which makes it difficult to find correlations between executed actions and
observed rewards. DQN iteratively improves the parameters of a Q-function via gradient steps, but reward propagation
is slow. He et al. propose an OT approach, where lower and upper bounds are enforced by a penalty on the basic DQN
loss function [21]. The usage of value bounds leads to faster reward propagation, which significantly improves results in
early training, where the state space is sparsely explored.
To tackle the problem of sample efficiency in DQN, Osband et al. propose BDQN [4], which extends the DQN architecture
by approximating several Q-functions using different network heads. The parameters of each head are updated using
the same data, but each head is initialized randomly and trained against a distinct target network. Osband et al. show
that bootstrapped DQN can partially solve some hard exploration Atari games like MONTEZUMA’S REVENGE, where DQN
is unable to find any useful policy. For sparse reward environments, where several tasks have to be solved before any
positive rewards are received, random exploration alone is insufficient. Whenever a long sequence of actions are required
to receive positive rewards, DQN either does not get into positive reward states at all or is unable to draw a connection
between cause (action) and effect (reward).
This thesis combines OT via value bounds and BDQN. The agent should get into positive reward states more frequently
through faster reward propagation (OT) and a deeper exploration (BDQN). The proposed method BOT is described
in detail in section 4.3. The performance, benefits and drawbacks of BOT are evaluated in chapter 5 by running the
modified DQN agent on several smaller environments offered by OpenAI’s Gym toolkit (https://gym.openai.com/), which
is commonly used to evaluate the performance of RL agents, and some Atari games, the common evaluation platform for
DQN agents.
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2 Foundations
In this chapter, the most crucial fundamentals of the RL literature are explained. First of all, Markov decision processes
(MDPs) are discussed in section 2.1, as RL builds on the same principles. Next, basic terminologies and iterative learning
approaches of RL are explained in section 2.2. An introduction to the basic components of ANNs is given in section 2.3,
followed by an explanation how ANNs are used in combination with RL giving rise to deep reinforcement learning (DRL)
in section 2.4.

2.1 Markov Decision Processes

Decision processes can be utilized to model the interaction of an agent with its environment. The agent is in a state
and has a possible set of actions to choose from. Each action leads the agent to a new state. Furthermore, each state
transition results in a reward signal as feedback to evaluate the optimality of a chosen action or being in some state in
general.

2.1.1 Markov Decision Process

An MDP consists of a set of states and transitions, where the probability to land in the next state depends only on the
current state and chosen action, not all previously visited states (cf. figure ??). This dependency is called the Markov
property. An MDP is a tuple (S, A, P, R,γ), where:

• S is a finite set of states s,

• A is a finite set of actions a,

• P is the transition model. Each state transition is described by a probability P(s′|s, a), where s is the current state,
a the action chosen in state s, and s′ the next state,

• R is a reward model that assigns a reward r after the transition from s to s′,

• γ is a discount factor.

The discount factor γ serves two purposes. First, the value of γ describes the preference of immediate over future rewards,
where a value of 1 weights all rewards equally and a value close to 0 disregards future rewards. Second, the discount
factor ensures that an infinite sequence of observed rewards still results in a finite value. This property is important,
when dealing with infinite MDPs.
MDPs are generally used to described the state s an agent is in, while choosing some action a returns a new state s′. Each
state transition also returns a reward that can be used to analyze the behavior of an agent. Solving the underlying MDP
is crucial to obtaining the optimal behavior. Methods that can be used to solve MDPs are described in 2.2.3.

2.1.2 Partially Observable Markov Decision Process

In contrast to MDPs, where the agent assumes full knowledge over its current state, partially observable Markov decision
processes (POMDPs) model an environment, where the agent’s state is dependent on imperfect observations. The agent
has to estimate its belief-state in the environment by maintaining a probability distribution over the set of possible states.
Hence, the MDP notation is extended by a set of observations Ω and a set of conditional observation probabilities O.

st−1 st st+1
at−1 at

Figure 2.1: Illustration of an MDP. Executing an action at in state st leads to a transition into a new state st+1.
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Figure 2.2: Illustration of an agent interacting with its environment (from [1]). Each action At executed by the agent in
state St returns a new state St+1 and reward Rt+1 by the environment.

After each action a ∈ A, the agent updates its belief based on observation o ∈ O. Due to the Markov property, updating the
belief state depends only on the previous belief state b, action a and observation o. By solving the POMDP problem, we
can obtain the optimal action in environments with incomplete or uncertain information about the agent’s current state.
POMDPs are essential to model environments, where an agent has to assume imperfect or incomplete state information
due to uncertainties, e.g. environments with probabilistic state transition, where the agent is unable to predict the next
state, but has to maintain a probability distribution over possible states.

2.2 Reinforcement Learning

RL is an area of artificial intelligence, where an agent tries to learn from interactions with its environment. Instead of
defining exactly how to solve a task, the agent has to learn to solve tasks based on reward signals that indicate how good
chosen actions are. For each action taken, the agent obtains a reward and gets to a new state (cf. figure 2.2). Eventually,
the goal is to behave in such a way as to maximize the cumulative reward over time, where performance is usually
measured as the total reward per episode, i.e. from start to either fail or success. In such a manner, the agent learns,
which actions to take depending on its current state. RL is generally unsupervised, i.e. that no labeled data or expert
feedback is required to train an agent or evaluate its performance. Hence, the performance is evaluated by considering
solely the scored reward. The main challenge is to find an adequate representation of the reward signal and to maximize
this reward through the agent’s behavior. The state-action reward system is generally modeled as an MDP, while the
solution to this MDP problem yields the optimal behavior.

2.2.1 Reward and Return

In RL the reward signal provides feedback for the agent, how good it is too choose a certain action given from the current
state. While each action returns a reward r, we usually want to know the cumulative reward, denoted by R, obtained
by following a policy π. A policy is formally described as π(a|s), i.e. the policy maps each state input to a probability
of choosing a possible action from this state [1]. The cumulative reward, or return, in its simplest form is the sum of all
rewards encountered when following a policy:

Rt =
∞
∑

t=0

rt+1 (2.1)

It becomes clear that an infinite sequence of (positive) rewards would also lead to an infinite return. Hence, a discount
factor γ is used in RL similarly to γ introduced in the MDP definition. The cumulative discounted reward is then computed
as follows:

Rt =
∞
∑

t=0

γt rt+1 (2.2)

2.2.2 Value Functions and Policies

The performance of RL agents is evaluated w.r.t. the obtained reward. To evaluate the benefit of being in state s0 over
being in state s1 values can be assigned to these states to indicate their usefulness to achieving some goal, e.g. maximal
rewards. Evaluation can be either performed w.r.t. the state value, i.e. ’how good is it to be in state s0/s1’, or choosing
some action a from state s0/s1. While the value function is denoted by V (s), the action-value function is denoted by
Q(s, a). Each function maps a state, or state-action combination, to some value that measure performance w.r.t. a desired
outcome. Value functions are utilized to evaluate a policy’s quality and iteratively improve this policy to ultimately find
the (near-)optimal policy π∗.
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Value Function

Vπ(s) = E
π
[Rt |st = s] (2.3)

The value function Vπ(s) evaluates how good it is to be in a certain state and following a policy π by considering the
expected return (cf. eq. 2.3). Rt represents the expected reward to be observed when executing π starting from a
time-dependent state st usually until the end of an episode. Note, that the policy π may be stochastic, i.e. there is no
deterministic sequence of actions, in which case a probability distribution needs to be kept over all possible state-action
combinations and their respective expected returns. Furthermore, the transition function may be stochastic as well, i.e.
even when choosing the same action from the same state repeatedly, the agent could still land in different states. If not
explicitly stated, policies and environments will be assumed to be deterministic in the following.

Action-Value Function

In contrast to the value function, which determines how good it is to be in state s and executing policy pi, the action
value function evaluates how good it is to be in state s, execute action a, and then follow policy π:

Qπ(s, a) = E
π
[Rt |st = s, at = a] (2.4)

The action-value function is also called Q-function. One algorithm utilizing the Q-function to improve policies will be
described in the following section.

2.2.3 Q-learning

Q-learning is one approach to solving MDPs in discrete environments. At its core lies the Q-function, which builds upon
the Bellman equation. While, the general goal of RL is to maximize the expected return over a horizon T , MDPs inherit
the markov property, which states that the next state st + 1 depends solely on the current state st . This dependency leads
to the value function based on Bellman’s equation [5]:

Qπ(s, a) = ER(s, a) + γEQπ(s′, a′), (2.5)

where s′ and a′ stand for the state and an action at time step t + 1. Qπ then is the expected return considering the
immediate reward plus the expected return from executing action a′ in s′ based on policy π.

Q∗(s, a) = ER(s, a) + γEmax
a′∈A

Q∗(s′, a′). (2.6)

To improve the Q-function towards optimality, the policy should choose an action that maximizes the expected return,
represented by the Q-function, in the following state, leading to the target for the optimal Q-function in eq. 2.6. The Q-
value for state s and action a depends on the immediate reward R(s, a) and the Q-value that is obtained from choosing an
optimal action in the following state s′. Rewards are propagated one time step per iteration to approximate the expected
return over some horizon, usually from the current state to the end of an episode. Slow reward propagation leads to a
slowly converging Q-function, i.e. that meaningful estimates are impossible in early training. How reward propagation
can be improved to accelerate learning will be addressed in chapter 4.
The Q-function is updated iteratively by using the current Q-value estimate plus the difference between target and current
estimate weighted by some step-size α (see eq. 2.7), where st and st+1 represent the current and next state equal to s
and s′.

Q(st , at)←Q(st , at) +α
�

R(st , at) + γmax
at+1

Q(st+1, at+1)−Q(st , at)
�

(2.7)

Q-learning is an off-policy algorithm, i.e that the value function is optimized during training, while the policy is derived
from the Q-function. One such policy for instance is ε-greedy, where ε is a factor determining with which probability
an action is chosen randomly, while the greedy policy (action that maximizes return) is followed with probability 1− ε.
Traditionally, Q-learning keeps a table of all possible state-action combinations and updates its values iteratively. As this
is intractable for larger states spaces, the Q-function can also be approximated using ANNs as will be explained in 2.4. In
the following an introduction to ANNs is provided for basic understanding.
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x1

x2

output
w1 = 4

w2 = 2

Figure 2.3: Perceptron with 2 inputs and 1 output. The sum of the weights wi multiplied with the inputs x i determines
whether a perceptron is activated (see equation 2.8).

2.3 Deep Learning

In recent times a lot of attention has been given to ANNs. In general, ANNs serve as non-linear function approximators. In
combination with RL, ANNs offer a great opportunity to generalize across different learning tasks due to the possibility of
automatic feature extraction. In this section a basic understanding of how ANNs work is given and selected components
will be explained.

2.3.1 Neurons

Neural networks are comprised of a set of neurons that are connected in some way. Each neuron has one input or several
inputs and one output, while some computation is performed internally. The neuron’s output is computed by a nonlinear
function of the sum of its inputs. Neurons are generally aggregated into layers (see 2.3.3), while the number of layers
describes the depth of a network.
The most basic neuron is a perceptron. Unless explicitly stated, all concepts presented here apply to neurons in general.
A perceptron receives some binary input and concludes in a binary output. Each connection between neurons is called
an edge and has a weight. In the course of training a network, these weights are optimized to find the most suitable
description between input and output of the network. Consider a toy example as illustrated in 2.3. The perceptron
computes the weighted sum of its inputs. Hence, if x1 = 1 and x2 = 0 the perceptron’s output would be computed as
pout = 4 ∗ 1+ 2+ 0 = 4. Now, imagine a threshold on the perceptron’s output, i.e. that only if its output is greater than
this threshold, the final output will be 1, otherwise it’s 0 (cf. eq. 2.8). This process of thresholding a neuron’s output is
called activation function (see 2.3.2), because this function determines when a neuron is activated, i.e. its output is 1.
Sometimes the activation of a neuron is also called firing.

output =

¨

0 i f
∑

j w j x j ≤ threshold

1 i f
∑

j w j x j > threshold
(2.8)

In general the threshold gets replaced by a bias = −threshold. Basically this has the same effect, but now the bias
can be incorporated directly into the computation of the output (cf. eq. 2.9). The greater the bias, the greater the
probability for the network to output a 1. The network not only trains the weights but also the biases to minimize
the error between prediction and correct output. The problem with adjusting these weights and biases is, that a small
correction can lead to a big difference in the predicted outcome. This is undesirable, as intuitively, during the learning
process, small adjustments in the network should lead to a respectively small change in the output.

output =

¨

0 i f
∑

j w j x j + b ≤ 0

1 i f
∑

j w j x j + b > 0
(2.9)

2.3.2 Activation Functions

To conquer the problem of small network adjustments resulting in a big difference in output, ANNs utilize activation
functions with a smoother transition between the output 0 and 1. Generally, instead of just computing the sum of
weighted inputs and comparing the result to some threshold, the weighted sum is passed as input to another function.
More complex functions allow real number outputs instead of the threshold binarization.
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(a) Illustration of a sigmoid activation function.
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(b) Illustration of a rectified linear unit (ReLU) activation function.

Sigmoid Function

One of the most basic activation function is the sigmoid function (see eq. 2.10). The basic computation of a neuron’s
input (cf. eq. 2.9) is the input to this function, while the output is a non-linear transition on the interval [0, 1].

σ(z) =
1

1+ e−z
=

1
1+ exp(−

∑

j w j x j − b)
(2.10)

Rectified Linear Unit

The ReLU activation function is one of the most frequently used activation functions due to its simplicity and robustness.
The output is a simple linear activation that maps all inputs smaller 0 to 0 and preserves all inputs greater or equal to 0
(see eq. 2.11).

ReLU(z) = max(z, 0) (2.11)

2.3.3 Layers

The aforementioned components are combined to make up layers, which is a more abstract representation of a set of
neurons. An ANN architecture is made up of a sequence of layers. Each layer is comprised of a number of neurons (layer
size), one or several weighted edges to neurons of the next layer and some activation function between the layers.

Fully Connected Layer

In a fully-connected layer (FL), or dense layer, each neuron of the current layer has a connection to each neuron of the
next layer, where one neuron’s output is the same for all edges, i.e. all neurons of the following layer receive the same
input from one neuron of the previous layer. Furthermore, the input for each neuron of the next layer is a combination
of all the outputs of the previous layers’ neurons. FLs are among the most basic and widely used layers in deep learning
(DL).

Convolutional Layer

When dealing with image inputs it can be helpful to use convolution to reduce the image to a smaller size. The method
of convoluting images by sliding a weighted matrix over an image stems from the area of image processing, where
convolution is used to create e.g. blurriness or reduce the size of an image by combining nearby pixels to one pixel
using a convolutional matrix. While this process leads to information loss, it significantly reduces the state space when
considering each pixel-value combination as a possible state. Hence, convolutional layer (CL) enable ANNs to deal with
high dimensional input data. The matrix weights in CLs are represented as a convolution kernel that is slided over all
pixels in the image to produce a new image of reduced size.
CLs make use of the convolutional process to reduce the size of high dimensional inputs, while automatically extracting
features by learning the kernel weights in the network. Utilizing these properties in DRL enables an agent to generalize
across vastly different tasks using the same network architecture.
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Figure 2.5: Architecture of a typical CNN1. Features are extracted from the input image using a series of convolutional
and pooling layers (here subsampling). At the end a fully connected layer generates scalar outputs.
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(a) Illustration of the squared error loss function, where all inputs
are scaled quadratically (see equation 2.12).
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(b) Illustration of the Huber loss function with δ = 1, i.e. all values
greater δ are scaled linearly (see equation 2.13).

Figure 2.6: Comparison of different loss functions.

Pooling Layer

Pooling layers work very similar to convolutional layers. The main difference is that in contrast to CLs, where a new pixel
value is determined by a weighted combination of the original pixels, pooling just takes the minimal or maximum value
in the kernel area as output. Pooling layers are used to eliminate redundant information. Even though pooling leads
to significant data loss, it helps to prevent pitfalls like overfitting and improves the computational performance through
data reduction.
A typical CNN utilizes a series of convolutional layers followed by pooling layers for automatic feature extraction as
illustrated in figure 2.5.

2.3.4 Loss Functions

Instead of minimizing the the loss in terms of difference between target value and prediction, ANNs utilize loss functions.
A loss function takes in the loss and transforms it in some way to handle different magnitudes of losses.

Mean Squared Error

Taking the mean squared error (MSE) of a loss means that each loss in a mini-batch is first squared and then the average
over the whole mini-batch is computed. How the MSE is computed can be seen in 2.12, where the input to this function
is a mini-batch of losses (difference between target and prediction) of size N . Sometimes also the sum of losses is used
dropping the division by the number of samples. MSE has the property of amplifying large losses, while losses smaller 1
are diminished, i.e. large errors are punished more severely. Squaring the loss also has the effect of eliminating negative
losses, as only the distance between target and prediction matters. To avoid exploding losses the squared loss is usually
divided by 2.

LMSE(loss) =
1
N

N
∑

n=0

loss2
n (2.12)

1 Image created by Aphex34, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=45679374
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Huber Loss

Huber loss offers a smooth approach to squared errors, as it squares errors smaller than or equal to some δ (usually 1.0),
while treating errors larger δ linearly (see eq. 2.13). Scaling larger errors linearly avoids exploding losses and prevents
optimizations from being dominated by outliers in sample data. An illustration of the behavior of Huber loss compared
to squared error can be seen in 2.6.

Lhuber(loss) =

¨

1
2 loss2 f or|loss| ≤ δ
δ(|loss| − 1

2δ), otherwise
(2.13)

2.3.5 Optimizers

The parameters of an ANN are updated based on the update rules of an optimizer. While the target determines in
which direction the parameters are updated, the optimizer determines how the gradient is computed. There is a vast
number of optimizers readily available with common machine learning libraries. The optimizers most frequently used in
combination with DQN are explained here.

RMSProp

Root Mean Square Propagation (RMSProp) was never officially published, but only introduced in the 6 lecture of an
online course by Geoffrey Hinton [6]. Still, RMSProp is widely used by Deepmind for their DQN algorithms (e.g. [2, 7]).
RMSProp differs from normal gradient descent in the way that it divides the learning rate for each weight by "a running
average of the magnitudes of recent gradients for that weight" [6]. RMSProp is an extension of rprop, which only
considers the signs of a sequence of gradients and increases/decreases the step size when encountering a sequence of
gradients with equal/different signs [8]. Hinton mentions that rprop can not be effectively combined with mini-batches
and, hence, introduces RMSProp, which keeps a moving average of the squared gradients for each weight (cf. eq. 2.14)
[6]. Each gradient is then divided by

p

MeanSquare(w, t).

MeanSquare(w, t) = 0.9 ·MeanSquare(w, t − 1) + 0.1
�

∂ E
∂ w(t)

�2

(2.14)

Adam

Adam [9] combines the advantages of two optimization methods, namely Adaptive Gradient Algorithm (AdaGrad) [10]
and RMSProp.
Like RMSProp, Adam is an adaptive learning rate method, i.e. the learning rate is calculated individually for each
parameter instead of using a general learning rate for updates as in basic gradient descent methods. Adam utilizes two
moment vectors to adapt the learning rate accordingly, where the first moment of the gradient is the mean as already
seen in RMSProp and the second moment the uncentered variance. Kingma et al. describe the ratio between these two
moments as signal-to-noise ratio, where the signal is represented by the moving average (eq. 2.15a) and the noise by the
variance (eq. 2.15b) [9]. The smaller the signal-to-noise ratio the closer the adapted learning rate will be to zero.

mt = β1 ·mt−1 + (1− β1) · gt (2.15a)

vt = β2 · vt−1 + (1− β2) · g2
t (2.15b)
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2.3.6 Common Issues with Artificial Neural Networks

Catastrophic Forgetting

The key to tackling catastrophic forgetting is retaining already learned knowledge. Neural networks tend to forget already
attained knowledge once a totally new task is introduced, because old knowledge is overwritten to maximize performance
on a new task. Deepmind proposes a solution called Elastic Weight Consolidation (EWC), where connections to tasks
grow stronger depending on their importance [11]. Once a new task is learned, these connections to old tasks are not
eliminated but only degenerated slowly, where tasks with strong connections stay in the memory. In the Atari setting,
the agent is able to learn several games in a row, while an agent without continual learning forgets formerly acquired
knowledge as soon as a new game is learned.

Co-adaptation

Neurons in a neural network may learn to detect the same features. This is not intended, as the capability of a neural
network can only be maximized, if neurons do not learn the same tasks. Furthermore, co-adaptation may lead to
overfitting, because neurons are highly dependent on each other, i.e. bad inputs are propagated to other neurons. One
approach to tackling co-adaptation of neurons is to use dropout in hidden layers [12]. In this case neurons are randomly
omitted during the training process, which should decrease dependent learning between neurons.

2.4 Deep Reinforcement Learning

Instead of calculating the value function in RL exactly using a tabular approach, it is possible to use an ANN to approx-
imate the value function. This is especially useful, as inputs can be directly passed to the network, without worrying
about the feature representation. Furthermore, it is computationally infeasible to find exact solutions for value functions
in large state spaces. Using tabular approaches to compute optimal value functions only works for smaller state spaces,
as it requires too much memory and does not generalize across states. Approximating value functions using ANNs gained
popularity in recent years, as it opened new ways for RL to deal with high-dimensional inputs (cf. [2], [13]). However,
DRL also suffers from many issues that make learning generally unstable, e.g. high variance or overestimation. Efforts
have been made to conquer these challenges and some proposed solutions are described in chapter 3.

2.4.1 Deep Q-Network

It has been shown by Mnih et al. [2] that feature representations can be learned implicitly by ANNs, which eliminates the
need to define features by hand. Hence, the same input representation can be used for fundamentally different learning
tasks, while the network automatically learns, which features are most important to solving this task.
In general, a neural network is trained to optimize the value function. In the case of Q-learning this means that
Q(s, a,θ ) ≈ Q∗(s, a), where Q∗ is the optimal value function and θ are the parameters of the neural network used to
approximate the optimal value function. The loss is defined as the squared difference between the target, which in the
case of Q-learning is given by equation 2.6, and the network’s current Q-value prediction of taking action a from state s.

L(w) = E[(r + γ ∗max
a′

Q(s′, a′,θ )
︸ ︷︷ ︸

target

−Q(s, a,θ ))2]. (2.16)

While traditionally the squared difference is used as loss function, other loss functions have been proven to stabilize
learning. The Huber loss for instance scales the loss between 0 and δ (usually set to 1) quadratically, while scaling the
loss greater δ linearly. Scaling greater differences linearly avoids exploding loss functions and, hence, stabilizes learning.
The Q-learning gradient to the DQN loss is:

∂ L
∂ w

L(w) = E
�

(r + γ ∗max
a′

Q(s′, a′,θ )−Q(s, a,θ ))
∂Q(s, a,θ )
∂ θ

�

.

In its simplest form, gradient descent is used to adjust the function approximation in the direction of the error term.
Mnih et al. use the RMSProp optimizer for network updates (see sec. 2.3.5).
The DQN algorithm proposed by Mnih et al. has been evaluated on a variety of Atari games (arcade learning environment
(ALE)) and proved to generalize training on games offering fundamentally different challenges using the same network
and hyperparameters.
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Figure 2.7: ANN architecture used by Mnih et al. in [2] (from [2]).

DQN as proposed by Mnih et al. [2] introduces some modifications to the basic Q-learning algorithm to stabilize learning.
The usage of a deep CNN avoids overfitting problems of iteratively updated Q-functions.
Increased stability during training DQN is achieved through two primary modifications:

1. Experience replay randomizes over the data by occasionally sampling experiences from already seen data and
updating the Q-function accordingly. Each experience is a tuple of current state, action, next state, and obtained
reward. Sampling from replay memory breaks correlation between data, which is usually a problem when learning
online from sequences of states. Experience replay makes the training data sort of independently and identically
distributed (i.i.d.)

2. The Q-function is adjusted towards a target function Qθ−(s, a), where θ− are periodically updated parameters
taken from the learned Q-function. A periodically updated target network leads to decreased oscillation of the
action-values during training, because the function used to compute the targets (current objective) stays fixed
over a period of timesteps.

The network architecture used by Mnih et al. is illustrated in figure 2.7. The input image coming from the ALE is scaled
to 84x84 and the last 4 frames are always stacked to include information about moving objects. Each hidden layer is
followed by a ReLU.

2.4.2 Exploration-Exploitation Trade-Off

One of the main challenges in RL is finding a trade-off between exploration and exploitation. While exploration intends
to find new states that may lead to high rewards in the long run, exploitation tries to maximize the immediate reward.
In practice this means that the agent choses actions that lead to lower rewards, but could lead to potentially interesting
states, with the intention to explore the state space. Finding the right balance between exploitation and exploration can
be difficult, because the ultimate objective is to maximize the cumulative reward, which makes agents naturally greedily.
Especially environments with sparse returns, i.e. returns are only given rarely, it can be difficult for the agent to determine
which actions lead to positive returns. First, it is difficult for the agent to make a connection between an action and
obtained rewards, if action and effect lie to far apart. Second, an agent may not even get into states with positive
rewards, if the state space is not sufficiently explored and rewards are sparse. One naive exploration strategy is ε-greedy,
where an action is chosen randomly with probability ε. ε is usually annealed during the training process, with the
intent of forcing the agent to explore (randomly) at the beginning and acting greedily after the state space is sufficiently
explored. In sparse reward environments this approach may never lead to states with a reward and, hence, makes it
impossible for the agent to learn useful trajectories. More sophisticated exploration approaches will be discussed in
chapter 3.
The objective of this thesis is to evaluate directed approaches to exploration by limiting the search space to meaningful
states. As the state space is too vast to be explored completely, the agent needs some directive to explore promising areas.
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Using value bounds to limit the search space may lead to faster exploration, especially in early stages of training, where
agents usually act almost only randomly.
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3 Related Work
In this chapter work related to DQN, value bound optimization and possible approaches at exploration are presented.
First, several promising approaches building on DQN are explained in section 3.1. Possible methods to utilize value
bounds in combination with POMDPs and DRL are explored in section 3.2. In section 3.3 different approaches tackling
exploration in RL and DRL are introduced. Section 3.4 focuses on works specifically related to OT and BDQN.

3.1 DQN Variants

3.1.1 Double DQN

Hasselt et al. show that DQN, and DRL algorithms in general, have problems with overestimating action values [7].
Overestimation may not incur a negative effect under certain conditions, for instance, if the overestimation is distributed
uniformly, i.e. all actions are overestimated by the same amount. However, as shown by Hasselt et al. empirically
overestimation can lead to worse policies. To decrease overestimation Double DQN adapts the idea of evaluating and
choosing an action on different parameters as proposed in [14]. As DQN already uses two sets of parameters, one for
the online network and one for the target network, double DQN simply uses the online network parameter θt to choose
the optimal policy while evaluating its value using the more consistent target network parameter θ−t . The resulting
modification to calculate Y for updating θt+1 is:

Y DoubleDQN
t ≡ rt+1 + γQ(st+1, argmax

a
Q(st+1, a;θt),θ

−
t ).

Eventually double DQN minimizes overestimation compared to DQN and achieves better results in selecting optimal
policies.

3.1.2 Bootstrapped DQN

BDQN is a DQN algorithm that modifies the original network configuration by using several network heads, where each
head approximates a different Q-function. The main goal of this approach is to improve exploration by initializing
each episode with a randomly selected head and following its policy. The approach is bootstrapped in the sense that
it uses samples from the replay memory to train several network heads, while each head is trained on a subsample of
the sampled data using a random mask sampled from some distribution. Each head is initialized randomly and trained
against its own target network inducing diversity besides the bootstrapped subsamples. For more information on BDQN
see chapter 4.

3.1.3 Asynchronous Methods for Deep Reinforcement Learning

Mnih et al. propose an approach that eliminates the need for experience replay [15], which is intended to minimize the
correlation between data in time, by using several actor-learners with different exploration strategies. Multiple actor-
learners each have their own copy of the same environment to interact with but optimize the same parameters. Updates
to the online network parameters are made in parallel by using the experiences of all actor-learners. This approach
is applied to several learning algorithms, namely Sarsa, Q-learning, and a form of actor-critic, while the asynchronous
advantage actor-critic (A3C) proved to achieve the best results. Furthermore, A3C modifies the objective function by an
entropy regularization term for improved exploration:

∇θ ′ logπ(at |st ;θ
′)(Rt − V (st ;θv )) + β∇θ ′H(π(st ;θ

′)),

where H is the entropy and the hyperparameter β defines the influence of the entropy regularization term.
The different exploration strategies are all ε-greedy, while the ε is periodically sampled from some distribution. Each
actor-learner runs in a different thread on a multi-core CPU, instead of the usual approach to train a Q-network on GPU
as in [2]. According to Mnih et al. results inferior to [2] and [7] are achieved on much shorter training time and less
computing power.
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Figure 3.1: Updating the piecewise linear value bounds at belief b (from [3]).

3.1.4 Observe and Look Further: Achieving Consistent Performance on Atari

Several of the main challenges in Reinforcement Learning, especially Q-learning, include fast reward propagation, effi-
cient exploration, and variance in reward signals. To address the issue of variance in reward signals, reward clipping is
introduced in [2]. However, this approach has some obvious downfalls as it introduces information loss. If rewards are
clipped to [−1,1], no difference is made between different magnitudes of rewards outside of the clipping bounds. In the
Atari game BOWLING for instance, hitting one pin or all of them would result in the same reward signal for the learning
algorithm. In [16], reward clipping is substituted by a function that reduces the scale of the action-value function to
minimize information loss and still stabilize training.
The planning horizon in Q-learning is mainly defined by its discount factor, where a value closer to 1 results in a larger
horizon. Hence, in [16] the discount factor of the Q-function is set to 0.999, while it is 0.99 in e.g. [2, 7]. According to
Pohlen et al. the aforementioned modifications lead to significant performance increases. Especially on the Atari game
MONTEZUMA’S REVENGE, which requires sophisticated exploration to be solved, rewards could be significantly increased.
However, it should be noted that some increase in performance in [16] can be attributed to the use of imitation learning
based on expert demonstrations.

3.1.5 Rainbow

Hessel et al. combine some of the most notable extensions to the Q-function and analyze their combined performance on
Atari games [17]. By combining prioritized double DQN (DDQN), experience replay, dueling network multi-step learning,
distributional RL and noisy nets, performance on Atari games is improved drastically. Furthermore, instead of RMSProp,
Adam is used to optimize the network parameters, as it is less sensitive to the choice of learning rate according to Hessel
et al [17].

3.2 Optimizing Value Functions using Value Bounds

3.2.1 HSVI - Heuristic Search Value Iteration

Heuristic Search Value Iteration (HSVI) introduced by Smith et al. in [3] maintains lower and upper bounds to approx-
imate the optimal value function in POMDPs. The idea behind this algorithm is to navigate through the search space
by selecting the next action based on the current upper value bound. In contrast to an exhaustive search, the effective
search space is therefore limited to a subset of the true search space. Hence, HSVI focuses on the beliefs that are most
probable to be reached while traversing the POMDP - this is called a point-based method.
Smith et al. show that, although the update of the value function bounds is governed by the highest lower and upper
bound of all possible actions, only selecting the next action with the greatest upper bound leads to convergence. The
search space is explored as long as the excess is positive. Excess is the difference between the current width of the
value bounds interval and the approximation accuracy we want to achieve. The interval function for the current belief b
contains the upper V and lower bound V , while its width is defined as wid th(V̂ (b)) = V − V . Figure 3.1 illustrates how
piecewise linear value bounds are updated at belief b, while V∗ represents the optimal value function to be determined.
V is initialized using the blind policy method, i.e. that all value functions for always selecting the same action are
computed [18]. The lower bound is given as the highest value out of all blind policy value functions. V is initialized
using the solution of the underlying MDP problem. The optimal value function of this MDP is equal to the upper bound
[19].
The tolerance of approximating the optimal solution is determined by parameter εγ−t , where ε is the convergence
tolerance of the algorithm and γ the discount factor over time. Therefore, the requirements on uncertainty are looser in
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deeper nodes, as the former term becomes larger with greater t. Although HSVI shows convergence on larger POMDPs,
the computation of the upper bounds, which is needed to choose actions heuristically, creates major overhead.

3.2.2 FSVI - Forward Search Value Iteration for POMDPS

Another point-based method for POMDP solving is FSVI [20]. Eliminating the need for an upper bound to approximate
the optimal value function, this algorithm converges significantly faster than HSVI. By traversing the underlying MDP,
which can be solved easier than the POMDP itself, and the belief space together, this algorithm navigates towards rewards
or goal points. When such a goal point is reached, a backup in reversed order is performed to update only the value
of states in the given trajectory. A goal point can also be defined as a certain amount of reward or number of actions
executed. Note, that the current MDP state s of the agent is only available during simulation while it is not during
policy execution. The authors point out the limited exploration of the algorithm which is required when executing long
sequences of actions to obtain rewards. ε-greedy exploration is proposed to solve this problem, however, this strategy
may not lead to meaningful trajectories before the algorithm converges.

3.2.3 Optimality Tightening

To address the problem of time complexity in DQN, He et al. use value bounds to achieve faster convergence and, thus,
faster learning [21]. To enforce upper and lower bounds a penalty method is used that extends the basic DQN loss
function (eq. 2.16) by an additional penalty term. This penalty term includes the priorly computed value bounds and a
penalty coefficient λ that scales the influence of the value bounds on the loss function.
To compute the value bounds preceding and succeeding states in relation to the current state are utilized. These state
sequences are readily provided by the replay memory. Through empirical evaluation, it is shown that this approach
significantly outperforms the original DQN and DDQN on most games in the ALE while training for a fraction of the
frames DQN was trained for. A more detailed explanation on OT is provided in section 4.1.

3.3 Intrinsic Motivation and Count-based Exploration

Count-based exploration approaches use the state-visitation count information to direct exploration in potentially un-
explored states. This approach follows the optimistic idea that less visited states are potentially informative, i.e. the
fewer times a state has been visited during exploration, the more there is still to be learned from this state. States that
have been visited rarely get assigned a higher priority to be visited in the future by adding a bonus to their actual value.
There are several issues that prevent a simple, effective implementation in DRL, of which some have been tackled by the
following papers.

3.3.1 #Exploration: A Study of Count-Based Exploration for Deep Reinforcement Learning

Tang et al. present an exploration approach that combines classical state visitation counts with state hashing [22]. To
deal with continuous state spaces and achieve generalization over similar states, Tang et al. use a hash function, namely
SimHash, that projects the input state onto a vector of binary values. Generalization is especially essential because of
sparse reward feedback and a typical one-time encounter of states in RL.
Tang et al. learn the hash function using an autoencoder, while the state is binarized by rounding the sigmoid function
output to the nearest binary value. Therefore, state visitation counts are not counted for each state, but for each possible
binary state representation of dimension k, where k defines the granularity, or degree of generalization, of the hash
function. This generalization resolves the problem for visitation counts of continuous state spaces. The total reward is
then calculated as follows:

r+(s) =
β

p

n(φ(s))
.

β represents the bonus coefficient, while n()̇ is the state visitation count table which is initialized with zeros. Each
time a state is visited, the binary representation in the table, resulting from the hash function φ(s), is increased by one.
Therefore, the bonus reward gets smaller for frequently visited similar states, encouraging the agent to visit less explored
states.
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3.3.2 VIME: Variational Information Maximizing Exploration

In contrast to random exploration heuristics like ε-greedy, VIME directs exploration in the search space by exploring
states that result in maximum information gain, which leads to better efficiency [23]. Maximizing information gain is
here defined as taking actions that result in large updates to the dynamic model distribution represented by a Bayesian
neural network.
To quantify surprise in the model a weighted intrinsic reward for exploring a state is added to the regular reward signal
provided by the environment. The hyperparameter representing the weight determines how curious the algorithm is.
Intrinsic reward is based on the variation between the posterior distribution after executing action at ending in state
st+1 and before (measured by Kullback-Leibler divergence), while the posterior considers the history of taken actions and
visited states ξt up to the current state st . As calculating the posterior p(θ |ξ) is intractable an approximation is used.
However, this approach is unsuitable for model-free learning, as it relies on learning a dynamic model and comparing its
distribution over time.

3.3.3 Unifying Count-Based Exploration and Intrinsic Motivation

Following a similar approach as Houthooft et al. [23], the algorithm proposed by Bellemare et al. [24] uses intrinsic
motivation to direct exploration efficiently. A measure coined prediction gain relates pseudo count and information gain.
First, a probability distribution pn(s) before and p′n(s) after observing an occurrence of state s over the state space Ξ is
defined. The distributions are based on the pseudo-count function N̂n(s), the number of occurrences of state s in a given
sequence, and a pseudo-count total n̂, the total number of states in a given sequence:

pn(x) =
N̂n(s)

n̂
p′n(x) =

N̂n(s) + 1
n̂+ 1

.

Prediction gain is then calculated by taking the difference of the logarithmic distributions:

PGn(x) := log p′n(s)− log pn(s).

Whenever p is learning-positive, prediction gain is nonnegative.
By applying prediction gain as exploration bonus, Bellemare et al. achieve significant performance enhancements in
combination with DQN [2] compared to the original DQN algorithm. Especially in the Atari game MONTEZUMA’S REVENGE,
exploration could be heavily improved.

3.4 OT and BDQN Related Work

3.4.1 Episodic Backward Updates

In a similar fashion as in [21], Lee et al. utilize consecutive sequences of states to update the value function [25]. In
this setting, a whole episode is sampled from the replay memory to update the network. Lee et al. mention the problem
of correlation between successive states, however, they later show empirically that this issue is not predominant. The
primary contributions are a temporary target table storing Q-values for the currently sampled sequence and a β factor
that weighs target values against target Q-values from this table. The algorithm starts at the end of a sequence and uses
backpropagation to update the target values sequentially. The vector of target values for this sequence is then used to
update the network.
The main advantage of episodic backward updates (EBU) is a fast reward propagation, which is especially important in
environments with sparse reward signals. An evaluation on 49 games of the ALE shows promising results. Lee et al.
show that when training for only 10M frames, EBU significantly outperforms basic DQN, some extensions of DQN and
even OT.
It should be mentioned, that the OT reference values used by Lee et al. do not coincide with the originally reported results
in [21]. This discrepancy may be attributed to Lee et al. performing their own experiments, using the code published by
He at al. (https://github.com/ShibiHe/Q-Optimality-Tightening), to obtain reference values for OT.

3.4.2 UCB Exploration via Q-Ensembles

Chen et al. present two algorithms, both of which build upon the idea of BDQN [26]. The first algorithm coined Ensemble
Voting basically just shows the benefits of BDQN by implementing one network with several heads as output. However,
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instead of choosing one head at random per episode, the best action is chosen by majority vote, i.e. the greedy action
suggested by most heads will be taken as the best action. Empirical results show that this algorithm already performs
better on the ALE than the original BDQN.
The second algorithm combines BDQN with an upper confidence bound (UCB) calculation. Given the output of K heads
of the neural network, the UCB is calculated by adding the empirical standard deviation σ̃(st , a) of {Qk(st , a)}Kk=1 to the
empirical mean µ̃(st , a) of {Qk(st , a)}Kk=1. The action that maximizes the following equation is considered the best action:

at ∈ argmax
a

µ̃(st , a) +λ · σ̃(st , a),

where λ is a hyperparameter determining the weight of the standard deviation. Similar to Ensemble Voting, all heads
are used to compute the best action. One of the main ideas of BDQN is to increase exploration by selecting heads at
random and use the selected strategy for the whole episode. Although this approach works well in early learning, its
late performance does not significantly improve over vanilla DQN. UCB Exploration shows better late results as well as a
steeper learning curve.
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4 Bootstrapped Optimality Tightened DQN
In the first part of this chapter, a thorough explanation of OT and BDQN is provided as this work mainly builds upon
the idea of using value bounds in the context of bootstrapped DQN. In section 4.3 the main contribution of this work is
described in detail.
The base algorithm for all modifications is DQN, which is a Q-learning algorithm based on neural network approxima-
tions. OT uses information about state sequences to calculate value bounds which are then enforced by modifying the
basic DQN loss function by a penalty term. The bounds can be calculated exactly by using immediate reward informa-
tion from the replay memory, i.e. information about past interactions with the environment. BDQN on the other hand
utilizes the bootstrap principle to maximize the sample efficiency from replay memory by training a network with several
outputs, where each head is trained on the same data but initialized randomly and trained against a distinct target net-
work. Both approaches have shown to improve the performance of a DQN agent significantly, especially in spare reward
environments which require sophisticated exploration to find useful states.
OT is a way to propagate rewards faster, which is helpful when using DQN, where the accuracy of approximations relies
on reward propagation. Reward propagation in DQN is inherently slow in DQN due to iterative improvements of the
Q-function. Finding useful states in sparse reward environments is still difficult as exploration relies solely on ε-greedy.
Especially if OT directs exploration into unfruitful areas of the state space, it is difficult to find useful policies. Using
BDQN several Q-functions can be approximated, which increases the probability of DQN actually finding fruitful areas in
the state space. BDQN in combination with OT could therefore resolve the issue of OT running into dead end areas of the
state space. On the other hand, all network heads may learn similar policies, if random initialization does not introduce
enough diversity into the learning process. In this case, the network would simply overfit a suboptimal solution, if most
network heads learn the same suboptimal policy. In another scenario, one network head learning a good policy may not
dominate over several network heads learning a worse policy, as at the start of each episode the policy of one head is
selected at random, i.e. the probability of choosing a ’good’ head would still be low. Currently there is no evaluation of a
network heads learned policy in DQN, as value functions are optimized directly without evaluating learned policies.
Still, using OT in combination with BDQN should lead to more accurate predictions, i.e. faster learning and less oscil-
lation, compared to solely using BDQN. Eventually, more consistent pedictions should also lead to smaller confidence
intervals. However, BDQN may introduce more oscillation into the learning process than just using OT, due to different
policies being selected potentially each episode. The degree of difference between the policies hereby determines the
oscillation. The expectation of a combined approach is that higher rewards should be obtained faster, but policies may
still converge to a suboptimal solution in some cases, where a majority of the heads learn suboptimal policies.

4.1 Optimality Tightening

The main contribution of He et al. is a DQN-agent that explores more efficiently by using value bounds to optimize the
value function. These value bounds are calculated based on a sequence of surrounding observations given a current state.
The bounds are enforced by a penalty function that extends the basic DQN loss function 2.16.
Value bounds are natural restrictions to a function, i.e. that values taken on by this function should not exceed the given
bounds. Lower and upper bounds to a function give restrictions in both directions. The main idea is to limit the actual
search space, by categorically excluding unreasonable values, and increase the estimation precision. One way to calculate
these bounds in combination with DQN is proposed in [21].
Value bounds in OT are calculated by making use of the Markovian principle, which says that the next state solely
depends on the current state, not all preceding states. This principle is also reflected in the Q-function, where updates
to the Q-function are based on the Bellman equation, an iterative approach that optimizes w.r.t. current and next state
information. Using this iterative update, reward information is propagated through sequences of states. The problem of
Q-learning is that rewards are propagated slowly (one timestep per iteration). To tackle this issue, He et al. propose fast
reward propagation by tightening constraints on the value function.

Q∗(s j , a j) = r j + γmax
a

Q∗(s j+1, a) = r j + γmax
a

�

r j+1 + γmax
a′

�

r j+2 + γmax
ã

Q∗(s j+3, ã)
�

�

(4.1)
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According to He et al., due to the update rule of the Q-function, equation 4.1 holds for the optimal Q-function. This
sequence is arbitrarily extendable until the end of an episode has been reached. Using reward information over longer
sequences leads to faster reward propagation for each iterative function update.

Q∗(s j , a j) = r j + γmax
a

Q∗(s j+1, a)≥ · · · ≥
k
∑

i=0

γi r j+i + γ
k+1Q∗(s j+k+1, a) = L∗j,k. (4.2)

According to He et al., the lower bound for the current state s j can be calculated by considering reward information over
a sequence of transitions of length kot as in equation 4.2. In this equation, j is the position of the current sample in the
replay memory, which is required to determine state sequences, and kot is the currently considered range limited by the
maximally considered range Kot . The tightest lower bound is then Lmax

j = maxkot∈{1,...,Kot } L j,kot
, which is the maximal

value of L j,kot
considering all possible transition lengths 1≤ kot ≤ Kot starting from sample position j.

U∗j,kot
= γ−kot−1Q∗(s j−kot−1, a j−k−1)−

kot
∑

i=0

γi−k−1r j−kot−1+i ≥Q∗(s j , a j) (4.3)

In a similar way, the upper bound is calculated using the backward sequence (see eq. 4.3). In contrast to the lower
bound, which calculates Q-values based on optimal action selection using the current network parameters, the Q-values
for the upper bound are determined by the action sampled from memory. As the optimal Q-function Q∗ is unknown, He
at al. suggest to use Q-function given by the target network, which uses the delayed online network parameters θ−, to
compute the upper and lower bounds. Hence, the same network parameter are used to compute the value bounds for
OT and the target for the DQN loss.

min
θ

∑

(s j ,a j ,r j ,s j+1)∈B

�

(Q(s j , a j;θt)− yt)
2 +λ(Lmax

j −Q(s j , a j;θt))
2
+ +λ(Q(s j , a j;θt)− Umin

j )2+

�

, (4.4)

He at al. suggest to solve the constraint optimization problem, given by the value bounds, by extending the DQN loss
function with a penalty term as in equation 4.4. The first part of the equation is the basic DQN loss function, while the
latter two terms determine the penalties inflicted by breaking the lower and upper bounds. In case no bound is violated,
the penalty terms will be zero due to a rectifier function (+) that zeros all values lying within the region determined by
the lower and upper bound. The λ penalty coefficient determines how strong bound violations are penalized. He at al.
set this parameter to a constant value, but they also propose a scenario, where λ could annealed over time.
Agent interactions with the environment are stored as experiences in a replay memory D. To update the parameters θ of
the ANN, minibatches of experiences B are sampled from replay memory, which is called experience replay (cf. algorithm
1). The main difference between basic DQN and OT DQN is, that instead of calculating the gradients based solely on the
difference between target and prediction (eq. 2.16), the loss function is extended by a bound penalty (eq. 4.4).

Output: Parameters θ of a Q-function
Initialize θ randomly, set θ− = θ
for each episode do

Initialize s1
for step t = 1, ... until end of episode do

Choose action at according to ε-greedy strategy
Observe reward rt and next state st+1
Store the tuple (st ; at ; rt ; ·; st+1) in replay memory D
Sample a minibatch of tuples B = {(s j; a j; r j; R j; s j+1)} from replay memory D
Update θ with one gradient step of cost function given in Eq. 4.4
Reset θ− = θ every C steps

Algorithm 1: Optimality Tightening

He at al. also incorporate the discounted cumulative return R of an episode into the lower bound calculation. However,
it is not stated how R is used in this calculation and, thus, its usage is disregarded in this work.
Compared to DQN some additional hyperparameters have to be defined for OT DQN. He at al. suggest hyperparameter
values that were coarsely tuned on a subset of Atari games. In experiments performed by He et al. the penalty coefficient
is set to λ = 4, while the maximally considered transition length for calculating the bounds is set to Kot = 4. The same
constant penalty coefficient is used to weight the lower and upper bound penalties. The possibility of annealing the
penalty coefficient over time is mentioned by He et al. but not evaluated.
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Figure 4.1: Abstract network architecture for bootstrapped DQN using one main network and several heads that each
output a different Q-function (from [4]).

4.2 Bootstrapped DQN

Osband et al. suggest a DQN architecture that incorporates several heads to approximate different Q-functions. According
to the Osband et al. using different Q-functions should deliver a more sophisticated approach at exploration than simply
relying on ε-greedy policies, while maximizing the sample efficiency through bootstrapping.
Bootstrapping tries to maximize the efficiency of a dataset by generating (bootstrapping) new data from its samples.
Osband et al. apply this principle to DQN by first generating data through interactions with an environment and then
using subsets of this data to train different network outputs. The agent uses one shared framework, i.e. one environment
to interact with and one dataset, in the form of experiences, that is saved in a replay memory. Furthermore, the agent
uses a shared network, as illustrated in figure 4.1), which is split into different network heads. Each head approximates
a different Q-function depending on the data it is trained on.
While the shared network is trained on all of the data sampled from replay memory, each head is trained on a subset
of the sampled data. To determine which head is trained on which part of the data a Bernoulli mask w1, ..., wK Ber(p)
is sampled for each generated experience. Here, K stands for the number of heads and p is the parametrization of the
Bernoulli distribution, where p = 0.5 equals double-or-nothing bootstrap and p = 1 is ensemble with no bootstrapping
(cf. [4]). The number of iterations required by the algorithm increases with decreasing p, as more iterations are needed
to train the network if the subset differs for each head. Osband et al. noticed during experiments that the choice of p
does not significantly affect the performance of the agent. Therefore, Osband et al. choose p = 1 for their experiments
to improve computational efficiency. Setting p = 1 basically reduces BDQN to an ensemble method, where all heads are
trained on all the data sampled from replay memory. Osband et al. mention that training all heads on all samples also
increases the sample efficiency, because no samples are disregarded in network updates.
Interestingly, even without bootstrapping the resulting Q-functions differ enough to induce diversity in exploration.
Osband et al. give two reasons to explain this phenomenon.

1. All heads are randomly initialized introducing some randomness among the heads from the start.

2. Each head is updated towards its own randomly initialized target network.

Sparse reward environments are difficult to solve in DRL, because even when receiving rewards, it is difficult to find the
causing action(s). To make exploration deeper Osband et al. propose to use the different network heads by selecting one
head at random per episode and following its policy for the whole episode, i.e. until the agent reaches a terminal state
or exceeds some step limit (see algorithm 2).

4.3 Bootstrapped Optimality Tightening

This section explains BOT, the main contribution of this work, in detail. The proposed method combines value bound
tightening from OT with a bootstrap network as in BDQN to potentially unite the benefits of both approaches.
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Input: Value function networks Q with Kb outputs {Qkb
}Kb

kb=1. Masking distribution M.
Let D be a replay memory storing experience for training.
for each episode do

Obtain initial state from environment s0
Pick a value function to act using kb ∼ Uniform{1, ..., Kb}
for step t = 1, ... until end of episode do

Pick an action according to at ∈ argmaxa Qkb(st ,a)
Receive state st+1 and reward rt from environment, having taken action at
Sample bootstrap mask mt ∼ M
Add (st , at , rt+1, st+1, mt) to replay memory D

Algorithm 2: Bootstrapped DQN

4.3.1 Theory

BDQN tackles the problem of deep exploration and employs a more sophisticated exploration strategy than relying simply
on ε-greedy for exploration. OT on the other hand uses value bound penalties to encourage fast reward propagation. By
combining OT and BDQN a diverse, deep and fast exploration should be achieved.
In general, OT and BDQN are readily combinable. As in BDQN, a network using several heads to approximate different
Q-function is implemented. Each of these heads is trained against its own target network. Instead of using the basic Q-
function as in BDQN, the extended Q-function 4.4 proposed by He et al. will be used to update the network parameters.
One immediate downside to this approach is a significant increase in computational requirements, as value bounds have
to be calculated explicitly for each network head.

min
θkb

∑

(s j ,a j ,r j ,s j+1)∈B

�

(Qkb
(s j , a j;θt,kb

)− y j,kb
)2 +λ(Lmax

j −Qkb
(s j , a j;θt,kb

))2+ +λ(Qkb
(s j , a j;θt,kb

)− Umin
j )2+

�

. (4.5)

The OT loss function given by eq. 4.4 is modified as shown in eq. 4.5 to accommodate the usage of several network
heads. The loss is calculated for each head kb based on the output of this head Qkb

against a target y j,kb
based on the

head’s own target network prediction. The parameters of each head are then updated by one gradient step using the
designated optimization method. The upper and lower bounds are calculated by querying the periodically updated target
network as in [21]. Note, that j is the position of a sample in the replay memory, which is needed to determine preceding
and succeeding states within an episode to calculate the value bounds. The index j can be understood as the center
within a sequence of states, where the center state s j is used to calculate the predicted Q-value of the online network,
while the target Q-value is calculated based on reward r j and state s j+1. Value bounds are always calculated w.r.t. the
center state s j .

y j,kb
← r j + γmax

a
Qkb
(s j+1, argmax

a
Qkb
(s j+1, a;θt),θ

−) (4.6)

BDQN uses double DQN to calculate its targets, while He et al. mention that double DQN could result in further perfor-
mance improvements, but it is not actually used for OT experiments in the paper. As double DQN has proven to solve
overestimation problems, it will be used in this work unless stated otherwise. Furthermore, double DQN should lead
to more accurate value bounds, which is essential to OT’s bound tightening approach. The individual target for each is
calculated as in equation 4.6. For double DQN the online network is used for optimal action selection, while the target
network is used to calculate the q-value.
Initially, Osband et al. describe BDQN as a bootstrap method that trains each head on different data. However, in the
Atari experiments performed by Osband et al. no bootstrapping is used and BDQN is reduced to an ensemble method
instead. Based on the observations of Osband et al., each head is trained on all minibatch samples, i.e. data will be
shared fully amongst all heads, in BOT. However, the use of an individual λ value for each head will be investigated. The
idea is that better uncertainty estimates can be made through the use of different penalty weights, as this method should
lead to a more diverse exploration. Furthermore, λ might be less sensitive to the choice of parameter value as it covers a
wider range of values. A more detailed description of this approach is given in 4.3.2.
Similarly to OT and BDQN a minibatch of experiences is sampled periodically from the replay memory (see algorithm
3). Value bounds for the sampled experiences are then calculated for all network heads using the respective Q-value
output of each head. The online network parameters are updated with one gradient step using equation 4.5. Figure 4.2
illustrates schematically how value bounds are incorporated into the DQN architecture. According to He et al. gradients
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Input: Value function networks Q with K outputs {Qkb
}Kb

kb=1.
Let D be a replay memory storing experience for training.
foreach episode do

Obtain initial state from environment s0
Pick a value function to act using kb ∼ Uniform{1, ..., Kb}
for step t = 1, ... until end of episode do

Pick an action according to at ∈ argmaxa Qkb
(st , a) or randomly based on ε

Receive state st+1 and reward rt from environment, having taken action at
Add (st , at , rt+1, st+1) to replay memory D
if Update network then

sample a minibatch of tuples B = {(s j; a j; r j; s j+1)} from replay memory D
foreach Network head Qkb

do
Calculate lower and upper bounds for head Qkb

using Eq. 4.2 and 4.3 respectively
Update parameters θkb

of head Qkb
with one gradient step of cost function given in Eq. 4.5

Algorithm 3: Bootstrapped Optimality Tightening

are rescaled after applying value bounds to maintain the gradient magnitude compared to the DQN version [21]. In
chapter 5 the performance of methods with and without gradient rescaling is evaluated.

4.3.2 Implementation

The implementation of BOT is based on the DDQN algorithm with OT and BDQN as extensions. The ANN required to
approximate the K different Q-functions is implemented using the open source machine learning library TensorFlow. The
Gym toolkit is used as evaluation platform.
As suggested by He et al. in [21] λ is annealed over time, similarly to the decaying random exploration factor ε. Enforcing
higher penalties for violating bounds while the state space is less explored should lead to more accurate Q-functions in
early training due to faster reward propagation. Especially in early training Q-value estimates are usually unreliable, as
the state space is insufficiently explored. With increased exploration of the state space, the penalties should be lower
to loosen the bounds once the Q-function is able to make more accurate estimates and the state space is sufficiently
explored. The penalty weight will be annealed linearly from λstar t to λend during training. The exact lambda values and
their annealing length will be discussed in 5, as these values differ depending on the environment that is evaluated on.
Concerning the BDQN part of the implementation, the number of network heads is set to K = 10 as Osband et al. suggest
that more than 10 heads do not lead to a significant performance increase and thus would only result in increased
computational requirements [4]. In the Atari evaluation in section 5.2 only 5 heads are used due to the required training
time. While Osband et al. mention that either K different neural networks or one neural network with K outputs can be
used to approximate the different Q-functions, they use one network with K heads. The BOT implementation also makes
use of one network with K different outputs.
Using different heads for calculating the value bounds opens up some opportunities for a more diverse exploration. The
effect of using different OT penalty weights λ1:K for different heads is investigated as a modified version of BOT, namely
PM-BOT, in chapter 5. The penalty weights could be assigned at random for instance, however, this could introduce
too much randomness into the learning process and may lead to unstable results. One possible approach is to assign
the penalty weights based on an equally spaced interval between λmin and λmax . More precisely, based on the penalty
coefficients used for BOT, the λ range for PM-BOT is defined as [0,λmax −λmax/Kb] with a step size of λmax/Kb.

4.3.3 Network Architecture

For the Atari evaluation, the neural network structure to approximate the Q-functions is the same as in [4], which is
basically the same as in [21] with the modification that the network is split into several heads after the convolutional
layers. Both network architectures are based on the original DQN architecture suggested by Minh et al. in [2]. Depending
on the environment that is evaluated on different network architectures are used. Atari games utilize convolutional
layers with raw pixel images as input. The Gym toolkit offers a series of environments that can be used to evaluate RL
algorithms. Most of these algorithms have a state space represented by a scalar or a vector of scalar, i.e. a different
network architecture has to be used for compatibility.
The BOT network architecture for Atari games is similar to the architecture proposed by Osband et al. in [4], which is
similar to the model used in [2]. The network consists of 3 CL, followed by 2 FL:
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Q-targets Calculate DQN-loss
Add bound
penalties

Value bounds

Rescale gradients
and update net-
work parameters

Network (Head)

Figure 4.2: Illustration of how value bounds are incorporated into the DQN architecture. First, the basic loss between the
target and Q-value prediction is calculated. The penalties for breaking value bounds are then added to the
basic loss. After the penalties have been applied, gradients are rescaled, i.e. if one bound is broken the final
error will be divided by 2 and in case of two broken bounds by 3.

• CL 1 (hidden): 32 filters of size 8x8, stride 4x4; Receives pixel image as input

• CL 2 (hidden): 64 filters of size 4x4, stride 2x2

• CL 3 (hidden): 64 filters of size 3x3, stride 1x1

• FL 1 (hidden): 512 neurons; Receives flattened input from CL 3

• FL 2: Outputs one value for each action available in the environment (no activation function)

Except for the output layer, all layers are followed by a ReLU activation function. The network is split into K heads after
the convolutional part, where each head receives the same input. Each head consists of two FL, where the last layer
in each head approximates one Q-function. The weights in all layers are initialized randomly using the Xavier uniform
initializer, where samples are drawn from a uniform distribution within a limit that considers the number of units in a
layer. The biases in all layers are initialized to 0.1.
For evaluation on classic control environments a different network architecture is used:

• FL 1 (hidden): Receives input in the form of a scalar vector

• FL 2 (hidden)

• FL 3: Outputs one value for each action available in the environment (no activation function)

The number of neurons per layer depends on the environment (see chapter 5 for details). Initialization is performed
similarly to the Atari architecture and each layer (except for the output layer) is followed by a ReLU activation function.
The network is split into K heads after the first FL, i.e. each head consists of the same number of layers as in the Atari
setting.
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5 Experiments
In this chapter experiments are conducted on a diverse set of environments using the BOT and PM-BOT algorithm
introduced in chapter 4. The performance of both algorithms is compared against the baselines DQN, BDQN and OT. All
experiments are performed in environments provided by OpenAI’s Gym (https://gym.openai.com/). Gym is a toolkit for
evaluating the performance of RL algorithms.

5.1 Evaluation on Classic Control, Toy Text and Box2D Environments

Eventually, evaluation is performed in the ALE. However, due to the required training time on Atari games, first evalua-
tions are performed on simpler environments to verify the algorithms sanity.
As BOT is based on DQN, it can only deal with discrete action spaces. Possible environments satisfying this requirement
are CARTPOLE-V1, LUNARLANDER-V2, FROZENLAKE-V0, FROZENLAKE8X8-V0 and TAXI-V2, which are included in Gym’s classic
control, Box2D and toy text suites. The environments are chosen based on their diverse objectives and partially for their
requirements on exploration.

5.1.1 Environment Objectives

In the following, a brief explanation on the environments used for the first evaluation is provided.

CartPole-v1

CARTPOLE-V1 is the more complex variant of the CARTPOLE-V0 environment. The only difference is that the pole has to
be balanced over a longer time. In the following all environments are referred to by their names without the version
appendix.
CARTPOLE is one of the more straightforward RL tasks. A pole is attached to a cart, while the cart is movable in horizontal
direction on a rail. The pole starts in upright position and the goal is to balance it as long as possible. This can be
achieved by moving the cart along the rail to balance the pole. Should the pole be in a position, where it is impossible to
stabilize it again, the episode will be terminated. The agent can perform two different actions: apply force to move cart
left/right. The environment provided by gym is based on the cart-pole problem described in [27].

LunarLander-v2

In LUNARLANDER a spaceship has to be landed on the moon. The goal is to land between two flags on the ground. To
achieve this the lander has to touch the ground softly, i.e. at low speed. While the flags are always at the same position,
the landscape is initialized randomly at the start of each episode. The lander can be steered using thrusters at the sides
and the bottom. Each time the main thruster, i.e. bottom thruster, is fired a small negative reward signal is returned. If
the lander gets closer to the landing pad a positive reward signal is received and a negative one if it moves away from

CARTPOLE-V1 LUNARLANDER-V2 FROZENLAKE-V0 TAXI-V2

Figure 5.1: Illustration of the environments used in the first experiment.

24



Environment Hidden Layer Size Learning Rate θ− Update Frequency Pre-train Steps ε Annealing Steps

FROZENLAKE [64, 32] 0.001 10 200 1000

FROZENLAKE8X8 [128, 64] 0.001 10 200 10000

CARTPOLE [64, 32] 0.001 100 200 10000

LUNARLANDER [256, 128] 0.005 500 500 20000

TAXI [64, 32] 0.001 100 2000 50000

Table 5.1: DQN specific hyperparameter values for experiments conducted in control and toy environments of the Gym
toolkit. Parameters were tuned coarsely using the DQN algorithm.

it. Getting the lander save to ground will issue a large positive reward signal, crashing it a large negative reward signal.
There is no timestep limit. Each episode ends with a crash or safe landing.
The main challenge in this environment is to train the lander to land in as few episodes as possible. This environment is
especially suitable for evaluating exploration, because the agent has no information about the orientation of the lander.
However, the lander can only be safely landed on its legs. Hence, a sufficient deep exploration is needed to connect firing
thrusters to actually landing on the landing pad. Furthermore, the agent has the option to do nothing, which would
probably give a positive reward, because it gets closer to the landing pad. Firing the main thruster on the other hand
gives a negative reward signal at first, but is essential to get the lander safely to ground in the long run.

FrozenLake

Both FROZENLAKE and FROZENLAKE8X8 basically present the same challenge. The agent has to cross a frozen lake and
reach the goal which is always at the same position. Each position on the field is either safe (S), frozen (F), hole(H) or
the goal (G). The agent starts on the safe position in the top left corner and has to find a safe path to the goal in the
bottom right corner of the grid. Walking onto a hole makes the agent plummet to its death. Frozen parts are safe, but
have a certain probability of the agent being stuck on the previous position, instead of transporting the agent to the next
position. Due to this circumstance, the agent has to learn how to deal with uncertainty, as transitions between states are
non-deterministic. The only difference between FROZENLAKE and FROZENLAKE8X8 is the size of the lake which is either 16
positions (4x4 grid) or 64 positions (8x8 grid) with the latter one resulting in a larger state space.

Taxi

Exploration is crucial to solve the TAXI environment, where the agent has to pick up passengers and transport them from
one location to another. Rewards are received for successful drop-offs, which means that the agent has to establish some
meaningful relationship between picking up passengers and dropping them off somewhere else with a possibly long
sequence of moving actions in between. Furthermore, the agent receives a negative reward of -1 for every timestep and
-10 for illegal drop-offs or pick-ups. The agent has 6 actions to chose from: move north/east/south/west, pick-up, and
drop-off.

5.1.2 Experimental Setup

To evaluate the performance of the different algorithms, the reward obtained per episode during training is documented.
As rewards per episode show a high variance, the average over the last 100 episodes is taken as measure of performance.
DQN is also evaluated and serves as a baseline. However, the proposed algorithm BOT should ideally also perform better
than OT and BDQN.
A neural network with two hidden layers, as described in section 4.3.3, is utilized to approximate the Q-function in this
experiment. The input to this network is a state space in vector form and a scalar action. The network outputs a Q-value
approximating the Q-function for each state-action combination.
An overview of all DQN specific hyperparameter values used in the different environments is presented in table 5.1,
while further hyperparameter values related to BDQN, OT and BOT are displayed in table 5.2. All algorithms use the
Adam optimizer with environment-dependent learning rate and an epsilon (Adam) value of 10−8 to update the network
parameters. The random exploration ε-value is linearly annealed from 1.0 to 0.01 over a varying number of steps. For
each network update a batch size of 128 is used in all experiments. The number of environment steps between updating
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Environment λ Annealing Steps λmax λmin Kot (OT Range) Kb (Network Heads)

FROZENLAKE 20000 2.0 0.8 4 10

FROZENLAKE8X8 20000 2.0 0.8 4 10

CARTPOLE 10000 2.0 0.8 4 10

LUNARLANDER 50000 2.0 0.8 4 10

TAXI 50000 2.0 0.8 4 10

Table 5.2: DQN variant hyperparameter values for experiments conducted in control and toy environments of the Gym
toolkit. Parameters were tuned coarsely using the BDQN, OT and BOT algorithms.

the delayed target network parameters θ− with the online network parameters θ varies depending on the environment.
The maximum size of the replay memory is limited to 105 experiences for all environments, while the discount factor γ
to compute the target values is set to 0.99.

5.1.3 Results

The performance of all algorithms in a first evaluation is visualized in figure 5.2. Performance is evaluated by considering
the mean reward over the last 100 episodes as given by equation 5.1, where Rt is the total reward for episode t. OT, PM-
BOT and BOT show solid performance in most environments. Considering its performance BOT and PM-BOT is usually
between OT and BDQN. Both algorithms show strong early performance in CARTPOLE, but fail to converge to an optimal
solution (as all other algorithms). While BDQN diverges in LUNARLANDER and CARTPOLE, which results in an inability to
solve these tasks properly, it performs well in the FROZENLAKE and TAXI environments. OT performs well in most tasks, but
shows deficits in performance in both FROZENLAKE8X8 and TAXI. BOT shows solid overall performance, but has problems
to converge to an optimal solutions.

R̄T =
1

T − t

T
∑

t=max(0,t−100)

Rt (5.1)

Task specific optimization of the number of heads may lead to better results with all bootstrapping methods, as this
parameter was not tuned during evaluation. Furthermore, it should be noted that the rewards documented here where
observed during training, which means that no ensemble policy was used to choose actions while training with boot-
strapping algorithms. To evaluate the true performance of the bootstrapping algorithms, actions need to be chosen based
on a majority vote between all network head predictions, as is done when evaluating on Atari environments.
Osband et al. suggest that agents focusing on exploration, i.e. gaining high rewards as fast as possible, should actually
be evaluated using the cumulative episode reward [4], i.e. the sum of rewards over all past episodes. The performance
of all agents considering the cumulative reward can be seen in figure 5.3. The cumulative reward is computed by adding
up the 100 episode mean rewards (cf. 5.2) of all preceding episodes up until the current episode as in eq. 5.2. Using
cumulative reward as a measure of performance, the advantage of OT variants over vanilla DQN becomes more obvious.
As can be seen, early performance of OT variants is usually better than with other methods. In FROZENLAKE8X8 BDQN
performs best, while all methods show no significant performance difference in FROZENLAKE.

CRT =
T
∑

t=0

R̄t (5.2)

He et al. actually scale the gradient after applying the value bound penalty to be comparable to the gradient without
penalty [21]. As scaling the gradients could stabilize training and help in converging to an optimal solution, the results
with rescaled gradients can be seen in 5.4.
Rescaling the gradient leads to better results, especially in early training, in LUNARLANDER for all OT based methods.
However, OT and BOT have problems solving the TAXI environment, while PM-BOT finds an optimal solution in TAXI and
shows among the best performance in almost all environments. glsbot and PM-BOT still fail to converge to an optimal
solution in LUNARLANDER. Considering the cumulative reward PM-BOT shows either best performance or close to best
performance making it the best method overall when evaluating obtained rewards in the set of environments presented
here.
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Figure 5.2: The results shown here are obtained using OT variants without gradient rescaling after applying penalty
bounds. It shows the mean total episode reward over the last 100 episodes during training given by equa-
tion 5.1. Each experiment (environment/algorithm) was run ten times with different random seeds. The
results shown here are the averages over these ten experiments. The shaded are around the curves displays
the confidence interval with a confidence level of 95 %.
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Figure 5.3: The results shown here are obtained using OT variants without gradient rescaling after applying penalty
bounds. It shows the cumulative reward obtained when summing up the mean rewards from figure 5.2
until the current episode as described in equation 5.2. Each experiment (environment/algorithm) was run ten
times with different random seeds. The results shown here are the averages over these ten experiments.
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Figure 5.4: The results shown here are obtained using OT variants with gradient rescaling after applying penalty bounds.
It shows the mean total episode reward over the last 100 episodes during training given by equation 5.1. Each
experiment (environment/algorithm) was run ten times with different random seeds. The results shown here
are the averages over these ten experiments. The shaded area around the curves displays the confidence
interval with a confidence level of 95 %.
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The confidence interval with a confidence level of 95 % is plotted as a shaded area around the mean rewards in figure
5.2 and 5.4. 10 random seed runs are used to compute the confidence intervals. The width of the interval visualizes over
which area 95 % percent of the rewards are distributed, i.e. the smaller the interval the more consistent are the results for
a number of random seed runs. Also, the interval indicates how prone the experiments are to different choices of random
seeds. As can be seen in figure 5.2 and 5.4 the confidence intervals show no significant difference between different
methods in CARTPOLE and LUNARLANDER. However, in FROZENLAKE8X8 and TAXI the confidence intervals for PM-BOT and
BOT are significantly smaller compared to OT, which shows the benefit of using BDQN in some settings.
BOT and PM-BOT show strong early performance but then plateau on a suboptimal solution in CARTPOLE and LUNARLAN-
DER. Looking at the time around which the curves level out, it seems the performance stops once the penalty coefficient
λ is annealed. The assumption is, that there is a correlation between a degrading λ and the stagnant learning curve. Fur-
thermore, the issue of leveling out performance seems to occur with all bootstrapped based methods. To investigate the
issue of performance drops with bootstrap methods in later training, BOT and PM-BOT are changed to output only one
Q-function once λ is annealed, reducing it to regular OT in later training. However, as is shown in figure 5.6, reducing
the bootstrap heads in BOT and PM-BOT does not significantly increase obtained rewards in CARTPOLE and LUNARLANDER,
while the performance in FROZENLAKE8X8 is significantly worse compared to the results reported in figure 5.4. For this
experiment all OT methods use gradient rescaling as in the experiments reported in figure 5.4. It may be crucial to find
the right moment in training to reduce bootstrap methods to one head, which could not be investigated any further due
to time constraints and will be left to future work. More fine tuning on the λ parameter and the annealing length for
λ could lead to better results in general. Eventually, it would be better to choose λ based on the the current learning
situation and environment, i.e. the value of λ should be adjusted based on the agent’s performance.

Evaluation

The mean Q-value estimates during training are calculated by taking the mean over all predicted Q-values per episode
following the current policy π (see eq. 5.3), where T in this context is the length of an episode. As can be seen in figure
5.7, BOT and PM-BOT generally give smoother Q-value estimates with less sudden changes. In CARTPOLE for instance,
BDQN and DQN show a strong rise in Q-value estimates around episode 200, which then decreases again in later episodes
for DQN, while BDQN overestimates the Q-value throughout training. All OT based methods show a smoother increase in
Q-value estimates in CARTPOLE. Surprisingly OT shows better performance without gradient rescaling in FROZENLAKE8X8,
while the Q-value estimates suggest significantly less overestimation with gradient rescaling.

Q̄π =
1
T

T
∑

t=0

Qπ (5.3)

Overall OT variants show a smoother learning curve, which is reflected in the Q-value estimations, where values are
generally lower with less sudden jumps compared to DQN and BDQN.
A t-test is performed to test how statistically significant the proposed methods are compared to the best observed results.
A (two-sided) t-test basically tests how much the average value differs between two independent samples. The null
hypothesis states that two independent samples have identical average values. The hypothesis is then either rejected or
not rejected based on a predefined threshold (usually 5%). Whenever the outcome of a t-test, which is represented by
the p-value, is higher than this threshold the null hypothesis can not be rejected, i.e. there seems to be no statistical
significant difference between two samples. If the p-value is smaller than the threshold the null hypothesis is rejected,
i.e. there is a statistical significant difference between two samples.
The results from section 5.1.3 are used as input for the t-test. The first sample input to the t-test is the maximum observed
mean reward for each environment considering all methods (eq. 5.4a), while the second input is the maximum mean
reward per method (eq. 5.4b). The t-test is performed for the OT variants without rescaling the gradient after applying
penalty bounds and with rescaling (see table 5.3 for results). Although no null hypothesis is rejected, it can be seen that
all OT based methods have the highest similarity to the best reported results due to a higher p-value. OT has a higher
p-value than PM-BOT without gradient rescaling, but PM-BOT reports the highest p-value with gradient rescaling. The
same behavior can be observed between BOT and OT in the opposite direction. When considering both cases, with and
without gradient rescaling, PM-BOT shows the highest similarity to the best reported results on average.

Rmax(env ) = max(R̄env ,all−methods) (5.4a)

Rmax ,method(env , method) = max(R̄env ,method) (5.4b)
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Figure 5.5: The results shown here are obtained using OT variants with gradient rescaling after applying penalty bounds.
It shows the cumulative reward obtained when summing up the mean rewards from figure 5.4 until the cur-
rent episode as described in equation 5.2. Each experiment (environment/algorithm) was run ten times with
different random seeds. The results shown here are the averages over these ten experiments.
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Figure 5.6: The results shown here are obtained using OT variants with gradient rescaling, where for BOT and PM-BOT
the number of approximated Q-functions is reduced to 1 once λ is annealed to λmin. It shows the mean total
episode reward over the last 100 episodes during training given by equation 5.1. Each experiment (environ-
ment/algorithm) was run ten times with different random seeds. The results shown here are the averages over
these ten experiments.
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Figure 5.7: Mean predicted Q-values for all methods without gradient rescaling (top) and with gradient rescaling (bottom)
after applying bound penalties during training. These values are calculated by taking the mean over all Q-
value predictions (see equation 5.3) for actually chosen actions per episode. Again, the mean is taken over ten
experiments with different random seeds.

DQN BDQN OT BOT PM-BOT

OT Methods without Gradient Rescaling 62.0 % (+) 77.1 % (+) 90.4 % (+) 93.1 % (+) 87.0 % (+)

OT Methods with Gradient Rescaling 57.1 % (+) 72.6 % (+) 82.3 % (+) 80.1 % (+) 93.1 % (+)

Table 5.3: This table shows the p-values (in percent) for t-tests between the best mean reward of each method against
the best observed mean reward overall. The t-test uses the mean rewards for OT methods without gradient
rescaling (figure 5.2) and the mean rewards for OT methods with gradient rescaling (figure 5.4) as input data.
A threshold of 5 % is assumed to test the statistical significance between two samples. ’-’ means the null
hypothesis is rejected, ’+’ means the null hypothesis can not be rejected.
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5.1.4 Preliminary Discussion

The proposed algorithms BOT and PM-BOT show solid overall performance in a first evaluation. Although OT obtains
higher final rewards in LUNARLANDER, it has problems to solve FROZENLAKE8X8 and TAXI. As is reflected in the performance,
BOT and PM-BOT successfully combine the benefits of OT and BDQN as they overcome issues the base algorithms have
with solving some of the environments.

5.2 Evaluation on Atari Games

The ALE provides a number of games which offer a vast amount of different tasks to solve. Developing one agent to
perform well on many of these games, given the same hyperparameters and network structure, has been a challenging
task and still offers lots of room for improvement. Deepmind has laid a foundation and fueled competition among
researches to set new baselines in this domain when they achieved human-level performance on Atari using a DQN agent
[2].
OpenAI’s Gym provides a wrapper for the ALE, which makes it easier to interact with the environments. Furthermore,
OpenAI provides an additional wrapper for Atari to emulate the configuration used by Deepmind, which is used for
evaluation here.

5.2.1 Exploration Challenge

Rewards in Atari games are usually sparse, i.e. there are long sequences of actions without a reward other than 0,
due to the nature of the game objectives, where rewards are only given when following a long sequence of adequate
actions. This inevitably leads to a challenge of correlating actions to rewards, especially in Q-learning, where rewards
are propagated slowly. One of the most challenging games for instance is MONTEZUMA’S REVENGE, where positive rewards
are only returned after a series of dependent quests have been solved.
Atari games are a good testbed to evaluate an agent’s ability to explore. While the basic DQN agent relies primarily on
ε-greedy exploration, many attempts have been made to develop a more sophisticated exploration strategy. The proposed
algorithms focus on fast reward propagation and a diverse exploration through multiple network heads, which should
make them suitable to tackle exploration problems in the ALE.

5.2.2 Experimental Setup

Machado et al. summarize the most common evaluation procedures on the ALE [28]. The evaluation presented here
follows the evaluation and training procedure of [2] as is done by [21] and [4] as well. The Atari wrapper provided by
OpenAI offers some functionality to emulate the desired behavior:

• Rescale inputs: Images (states) observed in Atari games are rescaled to size 84x84, which is required to feed the
inputs to the convolutional network (equal width and height) and cuts unnecessary information at the top and
bottom of the screen. The images are also converted to gray-scale.

• Stacked frames: The last 4 frames in an observation sequence are stacked to include motion information. The
stacked state sequence is fed to the network as input.

• Frameskip: The agent actually only observes every k-th frame, while skipping frames in between by repeating the
last executed action k times.

• Episodic life: Loosing a life marks the termination of an episode. While the game is not actually reset on life loss,
this information is saved in the replay buffer to let the agent know that loosing lives is bad. The Q-value returned
by the network will be set to 0 once the agent transitions into a terminal state.

• Fire to reset: Some environments require the agent to additionally execute an action to start a new episode.

• 30 no-op start: Each episode starts with a random number (between 0 and 30) of ’none’ operations to randomize
the start state. 30 no-op also helps to generalize, as Atari games itself are otherwise deterministic.

Furthermore, all pixel values are normalized from [0,255] to [0,1] before being fed to the network. The scale of the
reward signal returned by different environments in the ALE can differ by magnitudes. A naive approach to deal with
vastly different magnitudes of rewards is to clip them to [−1, 1] as is done by many agents [2, 21, 7]. Although clipping
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Learning Rate θ− Update Frequency Pre-train Steps ε Annealing Steps γ

0.000065 10000 25000 250000 0.99

λ Annealing Steps λmax λmin Kot Kb

500000 8.0 0.0 4 5

Table 5.4: List of hyperparameter values for the Atari experiment.

rewards leads to information loss, as no difference between different scales of rewards outside these bounds is made, it
has proven to stabilize learning. Note, that there is a difference between agent steps and actual environment frames due
to the frameskip. While the training time is measured in environment frames (frame skip · agent steps), parameters are
assigned w.r.t. agent steps.

Agent Parameters

The convolutional network architecture is described in 4.3.3. Instead of 10 heads, as in the first experiment, only 5
network heads will be used in this experiment to reduce the computational time. Each head increases the computation
time significantly, because value bounds need to be calculated explicitly for each head. The hyperparameter values for
all environments are the same, as is common when evaluating on the ALE. A list of hyperparameter values for this
experiment is given in table 5.4. Instead of using the RMSProp optimizer as in [2], the Adam optimizer with the same
learning rate will be used as was done in the Rainbow implementation by Deepmind [17]. The agent follows an ε-greedy
policy with linear annealing from 1.0 to 0.01. The size of the replay memory is limited to 1M experiences. Huber loss is
used as loss function similarly to [2].
To save on training time 8 frames will be skipped between each agent interaction with the environment, while [2] skips
only 4 frames. During evaluation on Atari games it was observed that when using OT based algorithms in combination
with a frame skip of 8, the performance does not decrease significantly and in some environments even higher rewards
are obtained. One possible explanation for this behavior is that with a higher frame skip, the frames delivered to the
algorithm for training are further apart and, hence, stacked frames may contain more information. Note, however, that
a higher frame skip also leads to more information loss in between observable frames, because certain behaviors are lost
in skipped frames. As OT makes use of state sequences to calculate value bounds, this increase in information of stacked
frames may lead to more accurate value bounds. Furthermore, a higher frame skip drastically decreases computational
costs considering training time in terms of environment frames, as network parameters are updated every n agent steps
and every agent step skips 8 frames instead of 4. Therefore, around double the frames can be observed in the same
training time.

5.2.3 Results

The results reported here follow the common 30 no-op evaluation procedure introduced by Deepmind in [2]. An agent’s
performance is evaluated after each epoch by playing for 30 episodes with a maximum length of 18000 environment
frames per episode, which corresponds to 2250 agent steps in the case of 8 skipped frames between agent interactions.
ε is set to 0.05 during evaluation and for all bootstrap methods the action predicted by most heads is chosen as best
action. There are no experiences saved to the replay memory during evaluation. Similarly to [21] the agent is trained for
250000 environment frames per epoch, which corresponds to 31250 agent steps due to a frame skip of 8. Due to limited
time, the computation limit of one day on the cluster computer and the extensive computation costs of OT methods, the
agent is only trained for 4M environment frames, or 16 epochs, in total. The results are reported here for completeness,
but it’s difficult to make them comparable to the results reported in [21, 4] due to vastly different training lengths.
The results in figure 5.8 show that BOT performs best on average among the evaluated methods. PM-BOT does not
learn a useful policy in Breakout and DOUBLEDUNK, while it performs best in FROSTBITE. Only 8 environments were
evaluated due to time constraints, while evaluation in the ALE is usually performed on 49 games. In VIDEOPINBALL and
CHOPPERCOMMAND none of the evaluated methods performs well. Due to the vast difference in objectives between Atari
games, it is difficult to find one method that performs well in all environments.
Table 5.5 shows the results in terms of best no-op evaluation over all epochs and both random seeds. These values are
usually used for comparison when evaluating on the ALE. However, due to the small amount of frames used for training,
it is difficult to make the results comparable to results reported in [2, 4, 21].
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Figure 5.8: 30 no-op evaluation results for selected Atari games. Evaluation is performed after each epoch by running the
agent for 30 episodes and documenting the average over all episode rewards. The reported results are the
average over 2 random seed runs.

OT (4M) BOT (4M) PM-BOT (4M) DQN (200M) BDQN (200M) OT (10M)

ATLANTIS 65543.33 74283.33 62896.67 85641 994500 316766.67

BREAKOUT 22.03 27.73 3.47 401.2 855 229.79

CHOPPERCOMMAND 946.67 836.67 773.33 6687 4100.0 6360

DOUBLEDUNK -20 -15.2 -21.6 -18.1 3 -10.07

FROSTBITE 590 841.33 1335.67 328.3 2181.4 3974.11

KRULL 6144.87 7315.97 6748.77 3805 8627.9 9461.1

QBERT 2225 3869.17 3677.5 10596 15092.7 12355

VIDEOPINBALL 11189.97 21523.23 11516.77 42684 811610 74873.2

Table 5.5: Maximal 30 no-op scores for selected Atari games (highest score per epoch observed during evaluation). The
scores on the right hand side of the table are the officially reported results from the corresponding papers. The
scores on the left hand side are results obtained using the implementation of this thesis (2 random seed runs).
The number of environment frames used for training are given in parenthesis.
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5.2.4 Preliminary Discussion

The ALE offers many environments with vastly different objectives. The two proposed methods BOT and PM-BOT are
compared against OT, which these methods build on. Among the compared methods BOT shows the most stable per-
formance on the evaluated Atari games. The evaluation on the ALE offers some challenges, including extremely long
training times, which limits possible evaluations that can be performed in the scope of this thesis.
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6 Discussion
In this thesis methods to improve exploration in DRL have been explored. Value bounds can be used in combination
with DRL for fast reward propagation and, thus, faster learning, especially in early training. He et al. have shown
that even complex environments in the ALE can be solved in feasible time [21]. Based on the method proposed by He
at al., which uses value bounds in combination with DQN, an extension was developed to combine value bounds with
bootstrapped DQN. While OT focuses on fast reward propagation, BDQN induces more diversity into the exploration
strategy by approximating multiple value functions.
It has been shown that the proposed methods perform well in several RL environments in early training, while struggling
to converge to an optimal solution in some cases. BOT and PM-BOT can overcome some of the downfalls of OT and
BDQN. While OT and BDQN perform well on a selection of environments, BOT and PM-BOT perform well on most
environments. However, as has been shown in evaluations, the proposed methods have problems to converge to an
optimal solution in several cases. The issue of an almost abrupt stop in learning was investigated but could not be
resolved. Cumulative rewards were documented and show promising results, which is primarily attributable to a strong
early performance of the proposed methods, although a suboptimal performance in later stages still persists. Concerning
the consistent performance w.r.t. different random seed runs, it has been shown that BOT and PM-BOT either show
around the same or better consistency depending on the environment.
Evaluation on the ALE posed a challenge due to time constraints and the extensive computation time required to solve
these environments. Calculating the value bounds exactly already requires a lot more computational resources than DQN,
as the network needs to be queried for Q-values for all state sequences required to calculate the bounds. Calculating the
bounds for all network heads when combined with BDQN results in an even higher required computation time. Hence,
BOT and PM-BOT were evaluated on significantly fewer frames as common for ALE experiments. In this small experiment
BOT performed better than OT, while PM-BOT had stability issues in several environments.
While the early performance of the proposed methods is mostly better than with other evaluated methods, BOT and
PM-BOT still have problems converging to an optimal solution in some environments. In the scope of this thesis it was
not possible to find the cause of this issue. Hence, investigating converge problems of the proposed methods will be left
to possible future work.
This thesis laid a foundation for a possible combination of value bounded optimization with bootstrapped DQN. The
proposed method was implemented and evaluated w.r.t. its performance in several environments. It has been shown,
that a combination offers potential benefits in terms of early learning, but also has stability issues in later training, which
need to be resolved to achieve good performance consistently.

6.1 Outlook

The proposed methods still pose several issues to be solved. The problem of time complexity may be tackled by calculating
value bounds exactly in early training and approximate them using for instance a neural network once bounds can be
approximated with sufficient precision. Value bounds are especially important in early training and significantly improve
performance in this stage. Hence, it is maybe sufficient to use value bounds only in early training, while reducing the
algorithm to basic DQN or BDQN once the penalty coefficient is annealed.
A more sophisticated approach at determining the penalty coefficient could be used. When adjusting the value of the
penalty weight based on the agent’s Q-value estimates, or some other measure, performance may increase further. Es-
pecially in Atari games, where hyperparameters are consistent across all environment, an adaptive penalty weight may
lead to substantially better results.
The issue of early converge to an suboptimal policy was investigated, but could not be resolved. Reducing BOT and
PM-BOT to agents with one Q-function output may resolve the issue of an early plateau in performance, but it is not
directly obvious when the method should be reduced to a normal OT method. Developing a more sophisticated approach
to reducing the number of heads during training will be left to future work.
Several methods that use value bounds for optimality tightening were investigated, but only one of them was readily
combinable with DRL. It would be interesting to investigate, how other optimality tightening approaches could be com-
bined with DRL. Furthermore, value bound tightening could be combined with an algorithm for continuous environments
(actor-critic) like for instance the A3C algorithm.
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