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Abstract

The combination of path planning and trajectory optimization considers the motion
planning as an optimization problem, instead, Reactive Motion Generation produces
appropriate actions that fulfill different policies in parallel, which can also deal with
dynamic objects. However, deterministic policies might cause local minima, such as
potential fields methods. Moreover, motion planning of mobile manipulators is required
to take various policies into account. And hence, we propose to apply a novel motion
generation framework, Composable Energy Policies (CEP) in mobile manipulators.
In this thesis, we employ CEP framework in mobile manipulators given a prior map
generated by Rapid Random Search Tree (RRT), and compare different methods to find a
local target. We found our method can perform 2D planning and whole body control well.



Zusammenfassung

Die Kombination von Bahnplanung und Trajektorienoptimierung betrachtet die Bewe-
gungsplanung als Optimierungsproblem, stattdessen erzeugt die reaktive Bewegungsgene-
rierung entsprechende Aktionen, die parallel verschiedene Richtlinien erfüllen, die auch
mit dynamischen Objekten umgehen können. Deterministische Richtlinien können jedoch
lokale Minima verursachen, wie z. B. potenzielle Feldmethoden. Darüber hinaus muss
die Bewegungsplanung mobiler Manipulatoren verschiedene Richtlinien berücksichtigen.
Daher schlagen wir vor, ein neuartiges Framework zur Bewegungserzeugung, Composable
Energy Policies (CEP), in mobilen Manipulatoren anzuwenden.
In dieser Dissertation verwenden wir das CEP-Framework in mobilen Manipulatoren mit
einer vorherigen Karte, die von Rapid Random Search Tree generiert wurde, und verglei-
chen verschiedene Methoden, um ein lokales Ziel zu finden. Wir haben festgestellt, dass
unsere Methode die 2D-Planung und die Ganzkörperkontrolle gut durchführen kann.
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1. Introduction

A mobile manipulator is a robot system which contains a robot arm and a mounted
mobile base. The robot arm is responsible for the manipulation work and the mobile
base performs the navigation mission. Most of the mobile manipulators possess a 6 DOFs
(Degree Of Freedoms) robot arm and a specific gripper for different purposes. Some
mobile manipulators differ from each other in the drive module of the mobile base, which
is differential drive scheme with two motivated wheels or three wheels with nonholonomic
constrains or even universal wheels. In our work we use TIAGo+ (Take It And Go plus one
arm) as the platform, which has a 7 DOFs robot arm and a mobile base with differential
drive.

Figure 1.1.: TIAGo+ mobile manipulator and a simple environment in PyBullet

Thanks to the movable base the mobile manipulators could achieve more complicated tasks
in unstructured and dynamic environments. Due to the limitation of the velocity, mobile
manipulators are suitable for indoor assignments. Therefore, in order to accomplish an
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autonomous mobile manipulator, it includes generality across missions and unknown
scenarios, operations in high dimensional action spaces, eliminating uncertainty in sensing
and actuation, and also integration of localization, perception, prediction, planning and
control.
At the moment mobile manipulation is a subject of major focus on development and
research environments, and mobile manipulators, either autonomous or teleoperated,
are used in many areas, e.g. space exploration, military operations, environment protect,
home-care and health-care. However, within the industrial field the implementation of
mobile manipulators has been limited, although the needs for intelligent and flexible
automation are present. In addition, the necessary technology entities (mobile platforms,
robot manipulators, vision and tooling) are, to a large extent, available off-the-shelf
components [1].

1.1. Related Work

Motion generation methods can be divided into path planning algorithms and Reactive
Motion Generation (RMG) approaches [2]. Distinguished from global path planning
methods which provide complete collision-free and feasible paths under known or partially
known environment, reactive motion generation methods produce more responsive actions
under a dynamic complicated environment based on real-time localization and perception
information [2].
As one popular approach of the reactive motion generation methods, artificial potential
fields methods (APF) [3] require a low computational cost, however, they compute the
action command through combining different deterministic policies, which are usually
responsible for target and obstacles. Although APF can provide a efficient solution,
they ignore the potential relevance between the different policies which would cause
conflicting behaviors when different policies contribution are merely summed. [2] models
an attractor based on potential fields and intuitive physical interpretation. [4] emphasizes
the importance of the real-time perception ability for reactive motion generation. [5]
developed a hybrid strategy based on Circular and Potential Fields to perform collision
avoidance and cooperation work with human.
In our work we frame reactive motion generation as an optimization problem over a product
of expert policies, which not only computes an appropriate action through optimization,
but also takes the dependence between different objectives.
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1.1.1. Motion Planning

As to a robotic system, a fundamental problem is how to plan a path and execute the path
in order to accomplish a specific task. Planning approaches take the current configuration
and desired configuration as input, and return a plan which denotes how to arrive the
goal. Informally speaking, it can also be distinguished into path planning and motion
planning problems. Path planning algorithms compute a set of waypoints as a path from
the start point to the goal point considering object avoidance and sometimes also geo-
metric constraints. Motion planning generates a sequence of vector-based valid motions
based on a given path, meanwhile respecting the movement constraints of the dynamic
model, and follow the path as much as possible.
One of the off-the-shelf approaches dealing with motion planning is trajectory optimiza-
tion of the given path generated by path planning algorithms. [6] CHOMP is an efficient
method for continuous path refinement that utilizes covariant gradient techniques to
promote quality of sampled trajectories, which can be produced by sampling-based al-
gorithms like Probabilistic Roadmap (PRM). Another famous framework is STOMP [7],
which generates trajectories with noises to explore the task space around an initial (pos-
sibly infeasible) trajectory and then updates the trajectories based on user-defined cost
functions which takes smoothness and object avoidance into account. Another practical
methodology is reactive motion generation (RMG). Reactive motion generation can handle
potential dynamic objects better and perform responsive behaviors since the robot can
receive and process the immediate sensor information to obtain a better understanding
for the environment.
Given that, in this thesis we adopt this concept and generate reactive motions for the
mobile manipulator.
The motion control and planning of the mobile manipulator which is equipped with the
robot arm and a mobile platform is a crucial research area, because of the redundant
freedoms of mobile manipulators can help them to accomplish more complicated tasks
under different static or dynamic environments based on mounted sensor information.
Since many robotic missions deal with computing a control action which fulfills multiple
objectives, as a more complicated robotic system, the mobile manipulator should be
capable to achieve a complex task satisfying different goals in parallel, which implies the
manipulation task and navigation task.
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1.1.2. Current Methods and Limitations

To solve this problem for mobile manipulators, different solutions are proposed. [8]
shows that, compared with the mobile platform and the manipulator, the modifications
of the dynamic model and the control algorithms for the mobile manipulators are not
demanding. In [9] one of the traditional approaches is computing the control command
for each joint through dynamic equations of motion based on the concept of operation
space control, and the end-effector can be guided by human robot interactions. [10]
combines an elastic roadmap framework, which translates global work space connectivity
information into a series of potential functions and then performs globally task-consistent
motion for manipulation tasks, with an end-effector-centric control framework which is
built on operation space framework for robot control. [11] leverages force-based operation
space control to accomplish a tricky task, opening a door, by estimating the parameters of
the constraint that the robot is following (i.e. the door radius and position).

Hierarchical Planning Architecture
Informally speaking, due to the different properties of manipulation and navigation, hi-
erarchical structure is suitable for motion planning of mobile manipulator. Hierarchical
planning architecture separates manipulation and navigation task, and leverages two-level
hierarchy combining a global planner and a local planner, where the global planner gener-
ates an approximate solution and the local planner deals with the dynamic obstacles. [12]
implements a hybrid navigation method which incorporate the Distance Transform Path
Planner as the global planner and the Potential Field navigation method as a local plan-
ner. [13] employ a two-level hierarchy planner on two dimensional navigation task and
three dimensional manipulation task, where for 2D planner D* Lite [14] and polynomial
curve functions are utilized, for 3D planner model predictive and Proportional-Integral-
Differential (PID) control are responsible for the local planning and D* Lite performs the
global planning.
However, it’s still challenging to find a optimal ultimate arm and hand pose and a mobile
platform position because of the two tasks are separated, which results in a loss in rapidity
and efficiency. Instead, the approach we proposed can carry out the two tasks in parallel
and meet different objectives in real-time.

Learning-based approaches
Thanks to the powerful ability of deep learning to extract information from image and
video data, earning-based approaches can process environment information quickly and
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generate appropriate control commands. Using learning-based approaches, the motion
planning for mobile manipulators can be viewed as a whole body control problem, which
can reduce execution time cost and broaden work space size. In [15] Convolutional Neural
Network (CNN) architecture is employed to map raw sensor information to steering com-
mands based on an expert operator. In [16] the arm’s feedback is used to learn a low-level
controller using deep reinforcement learning that drives the base to such a place that
the arm is able to plan a trajectory up to the object, in which Deep Deterministic Policy
Gradient (DDPG) and Proximal Policy Optimisation (PPO) are compared. [17] proposes
an End-to-End deep reinforcement learning architecture which takes 2D LiDAR (Light
Detection And Range) data and target position in end-effector task space and output the
accelerations of the arm and mobile base.
However, learning-based approaches are heavily dependent to the training data. For
deep reinforcement learning architecture it’s hard to guarantee the convergence and
repeatability consistency; as to End-to-End deep learning architecture it’s tricky to find
the cause of potential problems. In contrast, although sensor data is not incorporate into
our framework, our approach can find relatively robust and reactive solutions given a
global prior map information, and we can define the specific objectives explicitly.

Model Predictive Control
Model Predictive Control (MPC) constructs a online optimization problem minimizing the
cost taking the reference and geometric constraints into account over a finite predicted
horizon and then computes the optimal motion. Most MPC controllers relies on a proper
kinematic model. [18] utilizes a MPC controller to generate a safe motion in a partially
unknown and dynamic environment, which also deals with object avoidance and joint
constraints.
However, the weight matrices of the objective functions are required to be fine tuned or
chosen carefully due to its unstable performance. Although the prediction nature brings
some heuristic information which attracts the robot to the desired trajectory or set-points,
this mechanism may cause uncertain behaviors. And hence, MPC will be compared with
CEP in experiment section.

1.2. Overview

Our work is strongly based on the work of [19], which proposed a novel framework
for modular reactive motion generation. Composable Energy Policies (CEP) compute
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an optimal action through optimizing the product of different expert policies which are
specifically designed for different objectives. Moreover, CEP framework realizes to perform
a complex task which requires satisfying multiple objectives in parallel. As to mobile
manipulators, the extended DOFs of mobile base bring about more possibility for various
tasks, and, hence, it’s appropriate to adapt the whole body control of mobile manipulators
to composable energy policies formulation. A relatively simple task like opening a door,
requires the robot to properly approximate the door, grasp the handle and avoid to collide
against the door while additionally, avoiding to reach joint limits or exceed the joint
torques. During this thesis, we develop algorithms to satisfy multi-objective reactive
motion planning in mobile manipulators. We aim to achieve multi-objective planning by
composable energy policies, a novel algorithm that frames multi-objective reactive motion
planning as an inference problem.
Our work can be summarized as:

• Use operation space control to provide guidance for manipulation.
• Utilize a prior map generated by RRT and PD control in navigation task.
• Based on CEP framework perform 2D planning and the whole body control of

TIAGo+.
Chapter 1 begins with the motivation of this thesis, current approaches and their lim-
itations; Chapter 2 introduces necessary basic knowledge of model free policy search,
composable energy policies (CEP), operation space control (OSC), path planning algo-
rithms, potential fields methods and model predictive control (MPC). Chapter 3 describes
our approaches in details. Then chapter 4 demonstrates the experiment results. Last but
not least, in chapter 5 and 6 we discuss about our contribution, and the limitations and
outlook or our approach.
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2. Foundations

2.1. Model-Free Policy Search

Policy search is a subarea in reinforcement learning which concentrates on searching for
good parameters for a given policy parametrization. In robot learning research, there are
model-free policy search and model-based policy search. Model-based policy search solve
this problem by learning a model or simulator of the robot dynamics from the simulation
data. In comparison, model-free policy search learn a optimal policy through sampled
trajectories without a forward dynamic model. Hence, model-free policy search is used
more widely in practice.
Model-free policy search improves the policy directly based on sampled trajectories τ [i],
and the obtained immediate rewards r[i]0 , r[i]1 ,..., r[i]T for the trajectories. Model-free policy
search methods try to update the parameters θ such that trajectories with higher rewards
have higher probability if following the new policy, and, hence, the average return

Jθ = E[R(τ)|θ] =
∫︂

R(θ)πw(θ)dθ (2.1)

increases.
More specifically, model-free policy search is distinguished from three aspects: exploration
strategies, policy evaluation strategies and policy update strategies.

Exploration Strategies
The exploration strategies decide the exploration space and therefore influence the algo-
rithm efficiency. Hence, they are crucial to the performance of the policy search algorithms.
Considering the exploration space, policy exploration strategies are distinguished into
exploration in action space and in parameter space. Taking the robot control into account,
in this thesis the trajectories τ [i] are sampled from action space, in which each sample τ [i]

represents the joint actions qj of the robot.
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Exploration in the action space is performed by adding an exploration noise ϵµ directly to
the executed actions:

µt = µ(x, t) + ϵµ (2.2)
The noise is mostly modeled through a Gaussian distribution with a zero mean. Thus, the
exploration space is given as:

πθ(µ|x) = N(µ|µt,Σµ)

with x is the state. And hence, the parameter vector which will be evaluated in the
exploration step is:

θ[i] ∼ πθ(µ|x), i = 1...N (2.3)

Policy Evaluation Strategies
Once the actions are sampled from the exploration space, policy evaluation strategies
are utilized to assess the quality of the samples, which are classified into step-based
evaluation and episode-based evaluation. As to step-based evaluation, at each time step
the state-action pair (x[i]

t ,u
[i]
t ) will be evaluated and then return a evaluation result rt,

then for a whole trajectory τ [i], it contains state-action pairs (x[i]
t ,u

[i]
t ) and their rewards

or costs; in contrast, for episode-based evaluation, the policy parameter θ[i] which is
used along the whole episode will be assessed and a correspondent reward R[i] will be
computed. Due to the higher variance of the returned reward in step-based evaluation
strategy, episode-based evaluation strategy is chosen in this thesis.
Thus, for each trajectory τ [i], the policy parameters θ[i] are sampled and corresponding
rewards R[i] =

∑︁T
t=0 r

[i]
t are calculated, and hence, the whole composed data are:

Deps = {θ[i], R[i]}i=1...N

Policy Update Strategies
Based on the observed data, the initial policy can be improved in a direction of higher
returned rewards. In policy search field, policy update strategies are divided into policy
gradient methods, expectation-maximization based methods, information theoretic meth-
ods, and policy updates which can by derived from the path-integral theory.
Policy gradient (PG) methods leverages gradient ascent in order to maximize the expected
return Jθ. The policy parameter is updated by the gradient ∇θJθ pointing a direction in
which the expected return increases steepest:

θk+1 = θk + α∇θJθ (2.4)
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with α is the learning rate and the policy gradient is given by:

∇θJθ =

∫︂
τ
∇θpθ(τ )R(τ )dτ (2.5)

where trajectories τ [i] are sampled from pθ(τ ). In general, policy gradient methods differ
from the estimation of ∇θJθ.
Expectation maximization (EM) policy search approaches don’t require a learning rate
parameter which needs to be fine tuned to ensure a convergent result.Instead, on account
of the observed data and initial model parameters, new latent data can be inferred, and
then model parameters are updated in order to fulfill the new latent data and previous
observation. As to standard Expectation-Maximization algorithm, the policy update is
carried out through the weighted maximum logarithmic likelihood estimation which has
a closed form solution of the most of the the used policies.
Assuming x = (x[1],x1, ...,x[m] are observed data, z = (z[1], z1, ...,z[m] are unobserved
latent data. For purpose of finding the policy parameter of the samples, the logarithmic
likelihood function of maximization of joint distribution of observed and unobserved data:

θ = arg max
θ

m∑︂
i=1

logP (x[i];θ) = arg max
θ

m∑︂
i=1

log
∑︂
z[i]

P (x[i], z[i];θ) (2.6)

Using Jensen inequality,
log

∑︂
j

λjyj ≥
∑︂
j

λj log yj , λj ≥ 0,
∑︂
j

λj = 1.

the above function can be transformed to
m∑︂
i=1

log
∑︂
z[i]

P (x[i], z[i];θ) =
m∑︂
i=1

log
∑︂
z[i]

Qi(z
[i])

P (x[i], z[i];θ)

Qi(z
[i])

≥
m∑︂
i=1

∑︂
z[i]

Qi(z
[i]) log

P (x[i], z[i];θ)

Qi(z
[i])

where Qi(z
[i]) is a distribution which can be computed when the equal sign of Jensen

inequality holds:

Qi(z
[i]) =

P (x[i], z[i];θ)∑︁
z P (x[i], z[i];θ)

=
P (x[i], z[i];θ)

P (x[i];θ)
= P (z[i]|x[i];θ)

Therefor, in order to compute the model parameters, the logarithmic likelihood needs to
be maximized, and hence the lower bound is required to be maximized firstly:

arg max
θ

m∑︂
i=1

∑︂
z[i]

Qi(z
[i]) log

P (x[i], z[i];θ)

Qi(z
[i])
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with ∑︁
z
θi(zi) = 1.

Thus, the lower bound of logarithmic likelihood which needs to be maximized is:

arg max
θ

m∑︂
i=1

∑︂
z[i]

Qi(z
[i]) logP (x[i], z[i];θ)

This is the maximization step of EM, and the Qi(z
[i]) logP (x[i], z[i];θ) represents the

expectation step of logP (x[i], z[i];θ) based on conditional probability distributionQi(z
[i]).

Based on Expectation-Maximization algorithms, the policy search problem can be formu-
lated as a latent variable inference problem.
In this thesis Reward Weighted Regression (RWR) is used to update the policy which is
easy to use. The policy πω(θ|s) is defined as a Gaussian linear model N(θ|W Tϕ(s),Σθ).
Given the data-setDeps from policy evaluation process and weight parameters d[i] for each
sample (s[i],θ

[i]
), the weighted maximum likelihood estimation is given by:

W = (ϕTDϕ+ λI)−1ϕTDΘ (2.7)

where λ is the ridge factor, ϕ is composed pf the feature vectors of the contexts, D is the
diagonal matrix of weight parameters, Θ is the matrix of parameters vectors θ[i].
The core concept of Information theoretic (IT) methods is trying to stay close to the old
’data’, and not to jump away from the previous policy because it’s dangerous in robot
control. Entropy is a basic definition in information theorem which implies the uncertainty
degree of the information. Information theoretic methods improves the policy and in the
meanwhile, constrains the distance between the previous policy and the newly updated
policy. Such approaches restricts the information loss during the update process, and,
hence, avoids that the new policy prematurely concentrates on local optima of the reward
landscape, which has been used in natural policy gradient algorithms. However, policy
gradient approaches are required to define a learning rate. And hence, to combine the good
properties of policy gradient methods and EM-based methods, the information theoretic
methods were taken up with the Relative Entropy Policy Search (REPS) algorithm to
combine the advantages of both types of algorithms. REPS uses the same information
theoretic bound as the NAC algorithm but simultaneously updates its policy by weighted
maximum likelihood estimates[20].
There also are popular policy search methods in robot learning area using path-integral
theory like Covariance Matrix Adaptation - Evolutionary Strategy (CMA-ES) [21], although
will not be discussed in detail in this thesis.
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2.2. Composable Energy Policies

Reactive motion generation problems are usually solved through computing actions as a
summation of policies. However, sometimes these policies are independent from each other,
therefore it’s not rigorous when there are contradictory behaviours between them. Avoiding
this intractable problem, Composable Energy Policies (CEP), a novel framework for modular
reactive motion generation CEP [19], it calculates the actions by the optimization over
product of different policies instead of summation. Hence, in CEP framework reactive
motion generation problems are transformed to an optimization problem over a product
of expert policies:

a∗ = arg max
a

∏︂
πk(a|s) (2.8)

To solve this problem, firstly assume a set of stochastic policies π1(a|s), ... , πk(a|s)modeled
by Boltzmann distribution:

πi(a|s) = exp(Ei(a, s))
1

Zi(s)
(2.9)

withEi(a, s) : S×A⇒ R is a arbitrarily represented energy function,Zi(s) =
∫︁
a exp(E(a; s))da

is a normalization parameter. Additionally, for different importance policies are assigned
with different weight. Therefore, the computation of the product of different policies can
be represented by:

π(a|s) =
∏︂

k:0→K

πk(a|s)βk ∝ exp(
∑︂
k

βkEk(a; s)) (2.10)

Normally every energy function is defined in the same state-action space, however, for
most robot arm control and mobile manipulators tasks, it’s worth considering various
objectives in different space in order to achieve a more complicated work. For example,
as to 7-DOFs robot arm, object avoidance should be guaranteed in each joint and the end-
effector should reach a certain target pose; moreover, considering mobile manipulators,
it’s required that mobile base should perform object avoidance and arrive at a certain
region so that the robot could carry out manipulation work.
Hence, a set of policies πz(az|sz) in different state-action latent spaces (sz,az) ∈ Z and
corresponding deterministic mappings f zx : X ⇒ Z that transform the state-actions from a
certain task space into another space.
Therefore rewriting the policy function modeled by Boltzmann distribution:

πx(ax|sx) = exp(Ez(az, sz))
1

Zi(sx)
= exp(Ez(f zx(a

x, sx))
1

Zi(sx)
(2.11)
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with
Z =

∫︁
az exp(E

z(az, sz))daz√︁
det(JTJ)

(2.12)

with J = ∂f zz (a
x, sx)/∂ax is the Jacobian of f zz (ax, sx) in the action ax.

Also, CEP assumes an implicit function instead of an explicit function:

ax = arg max
ax

Ez(f zx(a
x, sx)) (2.13)

To sum up, assuming a set a policies defined in different task spaces Z1, ..., ZK , the final
policy could be composed together:

πx(ax|sx) = exp(
K∑︂
k=1

βkE
zk(f zkx (ax, sx)))

1

Zi(sx)
(2.14)

Then, the optimal actions are computed through Maximum Likelihood Estimation over
the product of expert policies. Given the current state sx,

axML = arg max
a

K∏︂
k=0

πk(a
x|sx)βk , βk > 0. (2.15)

This problem can be solved by Cross Entropy optimization. A sampling model p(a|θ) is
defined beforehand and the parameters of the model can be iteratively calculated:

θt+1 = arg max
θt

Ep(ax|θt)[log(
k∏︂

k=0

)πk(a
k|sx)βk ] ∝ Ep(ax|θt)[βkE

zk(f zkx (ax, sx))]. (2.16)

Each energy component is linearly independent, thus, based on different objectives various
energy categories can be constructed.
CEP for Reactive Motion Generation
In order to adapt Composable Energy Policy framework in robot motion generation, state-
action spaces (sx,ax) of robot control and potential latent spaces (Z1, ..., ZK) need to
be determined. Therefore, corresponding mappings between common spaces and latent
spaces can be decided by robot kinematics.
Considering the robot motion is generated through a second-order dynamic system

q̈ = g(q, q̇) (2.17)
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with q is the joint state, q̇ is the joint velocity and q̈ is the joint acceleration. In common
state-action space, in other word, the joint space, the state and action are:

(q, q̇), q̈. (2.18)
Meanwhile, in the configuration space of end-effector, in which state-action pair is repre-
sented by:

(x, ẋ), ẍ (2.19)
respectively. Hence, on account of robot kinematics, the transformation mappings can be
modeled by:

x = fkin(q) (2.20)

ẋ = J(q)q̇ (2.21)

ẍ = J(q)q̈+ J̇(q)q̇ ≈ J(q)q̈ (2.22)
where fkin is the forward kinematics function which transforms joint state into configura-
tion state, J = ∂x/∂q is the Jacobian matrix given forward kinematic relation.

2.3. Operation Space Control

Operational space control (or task space control) centers on how to resolve redundancy
and how to produce appropriate motor commands in configuration space such that both
end-effector and DOFs (Degree Of Freedoms) achieve a prescribed level of impedance [22].
In [22] there are eight operational space controllers in three different categories: velocity-
based control, acceleration-based control and force-based control. In general, the motor
commands can only be enforced in joint space, while in most cases the target behaviors
of the robot arm are employed in task space to perform a complicated task. Therefore,
by defining the position and orientation of the end-effector, operation space control can
derive the corresponding instructions in joint space. And hence, more specifically, given
desired pose xdes and velocity ẋdes in task space of the end-effector, the force commands
u in joint space should be computed.
Jacobian matrix J represents the transformation between different spaces, for instance,
between different joints. Assuming the force in end-effector F x and the corresponding
Jacobian Jee are known, and, hence,

u = JT
ee(q)F x (2.23)
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According to Newton’s second law,

F x = Mxee(q)ẍdes (2.24)

where Mxee is the inertia matrix in operational space and ẍdes is the desired acceleration
in task space. Thus, the control signal gives

u = JT
ee(q)Mxee(q)ẍdes (2.25)

Through incorporating the inertia into the control signal, the inertia can be ignored, but
in order to cancel out the inertia of the system in operational space, more transformation
need to be performed.
Firstly, taking end-effector pose x in task space and joint value q into account, Jacobian
matrix establishes their transformation

ẋ = Jee(q)q̇ (2.26)

Taking the time derivative,
ẍ = J̇ee(q)q̇ + Jee(q)q̈ (2.27)

For a robot dynamics system,

u = M(q)q̈ +C(q, q̇) + g(q) (2.28)

where C(q, q̇) is a function representing the Coriolis and centrifugal effect, g(q) defines
the effect of gravity in joint space. By substituting q̈ and ignoring gravity, therefore, gives

ẍ = J̇ee(q)q̇ + Jee(q)M
−1(u−C(q, q̇)) (2.29)

Through substituting u with the control signal it gives,

ẍ = J̇ee(q)q̇ + Jee(q)M
−1(JT

ee(q)Mxee(q)ẍdes −C(q, q̇)) (2.30)

After rearranging and simplification of modeling,

ẍ = Jee(q)M
−1(q)JT

ee(q)Mxee(q)ẍdes (2.31)

In order to set the dynamics ẍ to be equal to the desired value ẍdes, it’s required to choose
Mxee(q) carefully:

Mxee(q) = [Jee(q)M
−1(q)JT

ee(q)]
−1 (2.32)
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Therefore, it’s the inertial matrix which is required in control signal. In reality, to input
motor commands, ẍdes can be decided by Proportional-Differential (PD) control, and,
hence,

ẍdes = kp(x− xdes) + kv(ẋ− ẋdes) (2.33)
In conclusion, the control signal is given by

u = JT
ee(q)Mxee(q)kp(x− xdes) + kv(ẋ− ẋdes) (2.34)

By setting the desired pose x and velocity ẋ the control commands can be computed.

2.4. Path Planning

Path planning is a very crucial task for mobile manipulators. Based on the localization
system and user-specified target position, path planning algorithms aim at finding a
appropriate path which fulfills several special objectives from the start point to the goal
point. Generally, popular path planning algorithms are divided into search-based methods,
sample-based methods.

Search-based Methods
One of the representative search-based algorithms is Dijkstra approach which can compute
the shortest path because it only considers the adjacent vertices. The Greedy Best-First-
Search performs actions according to the estimation of the distance from the goal point,
which also called heuristic information. It brings about a faster search than Dijkstra [23],
however, it can not guarantee a shortest path. Taking the optimality and efficiency into
account, A* [24] takes advantage of these two concepts, using a heuristic function which
contains the computation of already-explored vertices and the estimation of the distance
from the target to guide the planning process, and different variants modify the approach
of the estimation of distance so as to improve the efficiency and optimality.

Sampling-based Methods
Arguably, the most influential sampling-based path planning algorithms include Probabilis-
tic RoadMaps (PRMs) and Rapidly-exploring Random Trees (RRTs) [25]. PRMs approach
constructs a graph connected by feasible and collision-free straight lines through sampling
in state space. It has been proved that PRMs not only performs well in high-dimensional
state spaces [26], but also posses probability completeness and the rate of failing decays to
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zero exponentially with the number of sampling increases [27]. However, PRMs requires
to perceive a prior environment which may cost too much computationally. Compared to
PRMs, incremental sampling-based algorithm RRTs presents its online planning ability
and its rapidity. The RRT algorithm also has been proved to be probabilistically complete
[28], with an exponential rate of decay for the probability of failure [29]. As RRTs could
explore the partially know or unknown environment as much as possible when a low goal
sample rate is set and appropriate control input is defined, and hence, in this this RRTs is
utilized to provide a prior map in order to adapt to CEP framework.
Based on a partially known or unknown environment, setting the start vertex xstart, maxi-
mum iteration number K and time step ∆t, RRTs can return a graph which contains a
feasible path connecting start vertex and goal vertex. Referring to 1 to get a more clear
view.
GenerateRRT(xstart, K, ∆t)
Initialize xstart, xend, u, K, ∆t;
τ .init(xinit);
for iteration=1,2,..., K do

xrand ⇐ RandomState();
xnear ⇐ NearestNeighbor(τ ,xrand);
u⇐ SelectInput(xnear,xrand);
xnew = NewState(xnear,u,∆);
τ .addV ertex(xnew);
τ .addEdge(xnear,xnew,u);

end
Return τ ;

Algorithm 1: RRT

2.5. Potential Fields Methods

Motion planning is carried out as a iterative problem. In comparison, potential fields
methods solve the path planning problem by constructing a global artificial potential
energy field which guides the robot to move from the high energy region to the lower
region. Potential fields methods are suitable for overcoming unknown dynamic scenario
and being applied to real-time tasks because of its elegance[30].
By means of the concept of electronic potential field, thinking of the robot and the obstacles
as positively charged particles, and modeling the goal point as a negatively charged particle,
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according to the potential functions, the whole planning space can be represented as a
artificial potential fields. In general, the potential field is established by

U(q) = Uatt(q) +U rep(q) (2.35)

where Uatt(q) determines the attractive potential which drives the robot to move to the
goal and U rep(q) defines the repulsive potential which pushes away the robot from the
obstacles. As for attractive potential Uatt(q), its definition is given as:

Uatt(q) =

⎧⎨⎩ 1
2ξd

2(q, qgoal), d(q, qgoal) ≥ d∗goal

d∗goalξd(q, qgoal)−
1
2ξ(d

∗
goal)

2, d(q, qgoal) < d∗goal

Where d∗goal is predefined threshold for defining the boundary for different potentials,
d(q, qgoal) computes the distance between the current configuration qgoal and goal con-
figuration qgoal, and ξ is a scale factor which needs to be fine tuned. When the current
distance d(q, qgoal) is bigger than d∗goal, the attractive potential is high enough to provide a
attractive force; Otherwise, when the robot is getting closer to the goal point, the attractive
potential is lower and comes to zero at the goal position. And hence, its derivative is given
as:

∆Uatt(q) =

⎧⎨⎩ ξd(q, qgoal), d(q, qgoal) ≥ d∗goal
d∗goalξ(q,qgoal)

d(q,qgoal)
, d(q, qgoal) < d∗goal

In contrast, repulsive potential function implements constraints to drive the robot away,

U rep(q) =

⎧⎨⎩ 1
2η(

1
D(q) −

1
Q∗ )2, D(q) ≤ Q∗

0, D(q) > Q∗

where D(q) stands for the distance between the current robot position and the obstacles,
Q∗ is the threshold value, η is a scale factor. Therefor, its derivative is given by

U rep(q) =

⎧⎨⎩ η( 1
D(q) −

1
Q∗ )

1
D2(q)

∇D(q), D(q) ≤ Q∗

0, D(q) > Q∗

And hence, the resultant force which is applied to the robot is the negative gradient of the
combination of attractive potential and repulsive potential:

F (q) = −∇U(q) (2.36)
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2.6. Model Predictive Control

Model Predictive control (MPC), also called dynamic matrix control or receding horizon
control, is widely used in some industries, typically for systems with slow dynamics. Given
a dynamics controlled system and current state of the robot, at each time step MPC
computes a optimal input action by means of solving a planning problem which minimizes
a user defined cost function and meanwhile satisfies some constraints over a sequence of
predicted actions in finite horizon.
MPC framework is widely used in robot control and also different extensions are added to
improve the performance and adapt to various tasks. In [31] an inverse dynamics feedback
linearization and a data-driven error model are integrated into a model predictive model
to enhance the trajectory tracking precision in robot manipulation. A tricky challenge in
MPC formulation is the construct of a control model. For robot manipulation, it can be
simply based on a dynamic model of the robot arm. [32] linearizes a nonlinear dynamic
model of the robot by using a feedback linearization control and a MPC controller is
leveraged to control a twp-link robot arm. Moreover, the dynamic model can also be
made using neural network. IN [33], a dynamic model which is formed by multi-layer
neural network is incorporated into MPC controller, which is extended to solve model-
based reinforcement learning tasks. As to mobile robot, it’s well know that a mobile
robot with nonholonomic constraints cannot be feedback stabilized through continuously
differentiable, time invariant control law [34]. Thus MPC controller could tackle these
constraints. [34] and [35] employed aMPC controller in amobile robot with nonholonomic
contraints base and differential drive respectively, and the optimization problem in MPC
is solve by quadratic programming(QP).
Informally speaking, composable energy policies framework focuses on the next action
through optimizing the summed reward of next step based on different energy components,
in which specific constraints and objectives are define. However, model predictive control
finds the optimal action of the next step via optimizing the reward sum of a sequence of
the predicted actions over a finite horizon and in the meanwhile the calculation needs
to meet some constraints. And hence, in [5] CEP and MPC will be used to control the
mobile base and the whole robot body and their performance will be compared.
As for model predictive control, let state and input trajectories are x(τ) and u(τ), at each
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time step t, the optimization planning problem is:

minimize
t=T∑︂
τ=t

l(x(τ), u(τ)),

wrt. u(t) ∈ U , x(τ) ∈ X , τ = t, ..., t+ T ;

x(τ + 1) = A(x(τ)) +Bu(τ),

τ = t, ..., t+ T − 1, x(t+ T ) = 0.

where A ∈ Rn×n and B ∈ Rn×m are dynamics and input matrices, X and U are the set of
the states and input actions, x(τ), x(τ+1), ...x(τ+T ) ∈ Rn and u(τ), u(τ+1), ...u(τ+T ) ∈
Rm represent corresponding states and actions. And hence, the final solution is only one
input action u∼(t), and then the input sequence of actions can be computed step by step
for the whole task.
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3. Our Approach

Basically, our approach is based on Composable Energy Policies (CEP) and model-free
policy search (PS). On the one hand, CEP approach computes the optimal action by
maximizing the product over the different expert policies which implies corresponding
purposes. On the other hand, model-free policy search can find the approximately optimal
expert policy through updating the previous policy based on the evaluation of the sampled
trajectories.
Then the way to evaluate the samples should be customized for different goals, e.g. for
manipulation task and navigation task. As the initial policy π is modeled by multivariate
Gaussian distribution of 10 dimensional action, which represents the joint accelerations
a ∈ R10, the sampled action in joint space can be directly evaluated. And hence, the
sampled action in joint space ax should be mapped into the task space where the mapped
action az can be assessed depending on specific objectives. Therefore, the action in joint
space az is mapped into end-effector task space for manipulation and also planar space
for navigation, and hence, the mapped action in task spaces should be compared with
desired action in the corresponding task space so that the reward r can be calculated. The
desired action in different task spaces can be produced in various way. In our case, as to
manipulation task in end-effector task space, the target action can be computed through
Operation Space Control (OSC) and PD control; for navigation task in planar space, the
target action is also derived from PD control, and the local target point is based on a prior
map. Consequently, in our work, the logarithmic probability of the mapped action over a
multivariate Gaussian distribution serves as the reward, and hence, each sample action in
joint space has a scale reward. Thus, for each iteration in policy search a batch of action
can be sampled and evaluated to speed up the iterative process. The following formulated
this whole process in details.
As previous statement, at each time step the planning problem which is required to solve
is

a∗ = arg max
a

∏︂
πk(a|s) (3.1)
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where πk(a|s) represents different expert policies, and a∗ denotes the final action which
is extracted from the resulted policy. For instance, if the expert policy is modeled by
Gaussian distribution, then CEP computes a resultant distribution that fulfills two existing
expert policies in parallel. And hence, model-free policy search is employed to find the
expert policies.

Figure 3.1.: The first two imgages are expert policies modeled by Gaussian distribution,
then CEP computes a resultant distribution that fulfills two existing expert
policies, which is the last image

Exploration Strategy
The first step of model-free policy search is defining the exploration strategy. In our
work Reward Weighted Regression (RWR) is employed, and, hence, the exploration is
performed through a multivariate Gaussian noise ϵa in action space

ϵa ∼ N (0,Σa) (3.2)

And hence, the exploration space A ∈ Rn is modeled by the combination of the current
action at and a multivariate Gaussian noise ϵa in action space ax

θa = at + ϵa, (3.3)

where θa ∈ Rn denotes a sample or a vector parameter, and θ
[i]
a (i = 1, 2, ...K) implies

K samples at one time. For each sample θa, the first three joint accelerations belong to
mobile base, the other seven joint values pertains to the 7-DOFs robot arm. As the figure
of a simplified TIAGo+ model below, mobile base has two continuous joints which control
the forward velocity, and one rotational joint controlling the orientation; the 7-DOFs are
divided into one prismatic joint for the parallel gripper and six revolute joints realizing
high agility.
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Figure 3.2.: TIAGo+ mobile manipulator with one robot arm and a mobile base

Policy Evaluation
Once the sample action θa is generated, it should be mapped and then evaluated in
different latent spaces Z ∈ Rn, so that the corresponding reward can be computed. As
for the three joint actions responsible for the planning of mobile base, we replace the
original three joints with two prismatic joints and one revolute joint ux,uy,ur which
are mounted on the center of the mobile base hypothetically, since for the navigation
part the thesis merely aims to develop an reactive approach for whole body control of
mobile manipulators, and, hence, this simplified assumption using holonomic constraints
to replace nonholonomic constraints is an alternative. As to the other seven arm joints,
only the final position of the end-effector will be considered, as the orientation of the end-
effector is to hard be learned, and, hence, a fixed orientation is set for better convergence.
Thus, formulating the final pose and orientation via homogeneorous matrix A, the final is
given by
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A =

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 sx

0 1 0 sy

0 0 1 sx

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
where (sx, sy, sz) denotes the used-defined final end-effector position.
Let ax ∈ R10 denote one sampled action in joint space, in which (ux,uy,ur) are three
mobile base joints and (u1,u2, ...,u7) are seven robot arm joints:

ax = [ux,uy,ur,u1,u2,u3,u4,u5,u6,u7]

Note: In order to explicitly define the objective in individual latent space respectively,
let ux

b = (ux,uy,ur) and ux
a = (u1,u2, ...,u7) for better formulation, which will be

explained in next paragraph. The subscript b and a denote the part of controlling mobile
base and robot arm respectively, the superscript implies the corresponding task space,
here x represents in joint space.
Primarily, the original sampled action ax is mapped through Selection_Map in order
to set the objective in end-effector task space and planar space respectively, which is
represented by ux

b = Selection_Map_B(ax) and ux
a = Selection_Map_A(ax). The following

is the transformation between joint space to different latent spaces. Through forward
kinematics the seven joint values can be mapped into end-effector task space:

ue
a = ForwardKinematics_Map(ux

a)

As the holonomic constraints of two prismatic joints and one revolute joint, the transfor-
mation between joint space and planar space is simplily perform by a identity matrix:

ue
b = Identity_Map(ux

a)

Then the mapped action in latent spaces can be evaluated according to the desired values.
Let µe

a and µe
b denote the desired action in end-effector task space and planar space

respectively. Through Operation Space Control (OSC) and PD controller, µe
a is derived

from
µe
a = JT

ee(q)Mxee(q)(kp(x− xdes) + kv(ẋ− ẋdes)) (3.4)
where xdes is set as a valid and feasible position of the end-effector and ẋdes as zero. µe

b is
also computed by PD control, given as

µe
b = Kp(Xdes −Xcur) +Kv(Vdes − Vcur) (3.5)
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where Xdes ∈ R2 is the local desired position in planar space and Vdes is set as zero.
Two different methods to generate a local target in planar space Xdes is developed given
a prior map with tree structure, i.e. Cascade_Control and Tracking_Father. Both ways
require a prior map that provides heuristic information, which in our approach is gener-
ated by Rapid Random Search Tree (RRT) due to its exploration ability for the environment.

Cascade_Control It refers to the concept of LQR trees [] and Dynamic Window Approach
[] as it finds the local target depending on an imaginary circle centering on the geometric
center of the robot as the boundary and changes the local target continuously until the
robot reaches the goal.
Given current position, end position and a RRT tree prior map, Cascade_control function
returns a local target Nlocal. To regulate the movement, it’s required to set the boundary
of the dynamic circle as β and the reaching target threshold as ∆d. For each planning
step, the distances d between the current position Ncur of mobile base and the all of the
nodes of the RRT tree τ should be computed and stored using a priority queue dist_queue
in which each pair contains a node N and its distance d and all of the pairs are sorted
by increasing distances and also a hash map dist_map in which same data are stored for
further quick search. Firstly, to compute current distance from the destination dend and
compare dend with ∆d, if dend ≤ β then Nlocal is found as Nend; otherwise, to make use of
the prior map for further planning. Popping out the node Nson with closest distance dson
from current position Ncur from dist_queue and computing the distance dcur from goal
Nend. In the case that the closest node is outside the circle boundary β, then the local
target Nlocal is founded. Otherwise, to iteratively track the father node Nfat of Nson until
the node Nfat is outside the circle boundary or Nfat is close enough to the goal Nend. The
whole logistic process can be found 2
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Data: Ncur, Nend, τ
Result: Nlocal

Initialization ∆d, β;
dend = CalDist(Ncur, Nend);
if dend ≤ β then

Nlocal ← Nend ;
return Nlocal ;

end
dist_map, dist_queue← DistMap(Ncur, τ ) ;
Nson, dson = dist_queue.pop() ;
dend = CalDist(Nson, Nend) ;
if dson ≥ β then

Nlocal ← Nson ;
end
while dson ≤ β do

Nfat ← FindFather(Nson, τ );
dfat = CalDist(Nfat, Nend) ;
dcur = CheckMap(dist_map,Nfat) ;
if dfat ≥ ∆d then

Nlocal ← Nfat;
return Nlocal ;

else
if dfat ≤ β then
Nlocal ← Nfat;
return Nlocal ;
else
Nfat ← FindFather(Nclost, τ );
dson ← dfat ;
Nson ← Nfat ;

end
end

Algorithm 2: Cascade Control
Tracking Father This method takes full advantage of the father-son structure without
extra tedious calculation. Given current position Ncur, target position Nend and prior map
τ , firstly judging whether Ncur approaches Nend enough or not. If not, extracting the
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closest node Nson and its distance dson from dist_queue. Next, in a for-loop, tracking the
father node Nfat and calculate its distance dcur from goal Nend. Only in the case that
Nfat is close enough to the end point Nend, in which Nfat is regard as the local target
Nlocal, otherwise repeatedly tracking the father nodes along the RRT tree τ for K times,
and K is given by

K =
Ntree

Ntree −Ntraverse
(3.6)

where Ntree denotes the number of nodes of the entire RRT tree, Ntraverse is the number
of nodes if tracking the current position Ncur until the end point Ncur, and, hence, as
the robot moves to the goal,Ntraverse is decreasing and then parameterK is smaller as well.

Data: Ncur, Nend, τ
Result: Nlocal

Initialization ∆d;
dend = CalDist(Ncur, Nend);
if dend ≤ ∆d then

Nlocal ← Nend ;
return Nlocal ;

end
dist_map, dist_queue← DistMap(Ncur, τ ) ;
Nson, dson = dist_queue.pop() ;
for iteration=1,2,..., K do

Nfat ← FindFather(Nson, τ );
dcur = CalDist(Nfat, Nend) ;
if dcur ≥ ∆d then

Nlocal ← Nfat;
return Nlocal ;

end
Nson ← Nfat ;

end
Algorithm 3: Tracking Father

Next, using the logarithmic probability of the mapped actions in latent space over the
multivariate Gaussian distributions, whose mean values are the desired actions in latent
space, i.e. µe

a and µe
b. And hence, by defining two multivariate Gaussian distribution

N(µe
a,Σa) and N(µe

b,Σb), the reward Re
a and Re

b are computed by
rea = log(ue

a|N(µe
a,Σa)) (3.7)
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reb = log(ue
b|N(µe

b,Σb)) (3.8)

Therefore, the resultant reward is the weighted sum of these two rewards

R[i] = αar
e
a + αbr

e
b (3.9)

And hence, for N samples in batch computation, the whole dataset is

Dep = {a[i]x , R[i]}i=1...N

Policy Update
After the data set Dep is generated, the new mean value at+1 can be updated based on
previous at and Dep through Reward Weighted Regression (RWR), and choose the the
action a∗ with highest reward.

a∗ = arg max
a

(Dep) (3.10)
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4. Experiments

This section demonstrates two kinds of experiments, 2D planning and whole body control
via Composable Energy Policies (CEP). Informally speaking, we try to answer these two
questions:

• Whichmethod to find the local target is better in CEP,CascadeControl or TrackingFather?
• How is the performance of CEP in whole body control for mobile manipulators?

4.1. Environment

In order to observe the planning performance more clearly, firstly the algorithms are
implemented using Matlibplot tools, in which the influence of dynamics of robot system
can be ignored. Once the algorithms are debugged successfully and perform well, we
employ these algorithms in PyBullet. As the purpose of the experiments is only testing the
feasibilty of the algorithms, and hence, in Matlibplot and Pybullet, the environment is
simple with only one static box object. Moreover, the start point and end point are defined
by the user instead of using localization algorithms and sensor information.
A prior map is generated through Rapid Random Search Tree (RRT), and, hence, this
prior map is stored as a tree structure to provide guidance for reactive motion generation.

4.2. 2D planning via CEP

As to Composable Energy Policies framework (CEP), two different methods chosing the
local target CascadeControl and TrackingFather are used. We set the experiment pa-
rameter as follows: optimization steps as 5, sample number as 1000. For CascadeControl,
the radius of the cascade circle is defined as the same radius as the mobile base, i.e
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Figure 4.1.: RRT tree serves as a prior map. The green point is the start point, the blue
point is the end point, and the red line denoted the path.

β = 0.15m, this parameter influences the smoothness and the ability to avoid objects.
TrackingFather, the threshold to check whether the end point can be chosen as local
target is defined as ∆d = 0.15.
Therefore, firstly to compare the differentmethods to identify a local target,CascadeControl
and TrackingFather.
Based on the experiments, referring to 4.4 and 4.5, 4.8 and 4.9 as well, we find the robot
has two different paths to reach the end point given a RRT tree which provides potential
path to the goal. Besides, CascadeControl and TrackingFather can both guide the robot
to the end point and achieve object avoidance, as the distance from end point decreases
to zero. Comparing two different methods it’s obvious that TrackingFather results in a
more smooth path and needs less iteration times to converge.

4.3. Whole Body Control via CEP

As for whole body control of mobile manipulators, we only concern about a 7-DOFs robot
arm and a 3-DOFs mobile base. In order to evaluate the algorithm’s performance on
whole body control better, we ran 10000 times experiments. As for the combination of
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Figure 4.2.: Position 1 of Cascade control Figure 4.3.: Position 2 of Cascade control

Figure 4.4.: Path 1 of Cascade control Figure 4.5.: Path 2 of Cascade control
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Figure 4.6.: Position 1 of Tracking father Figure 4.7.: Position 2 of Tracking father

Figure 4.8.: Path 1 of Tracking father Figure 4.9.: Path 2 of Tracking father
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two different energy components via CEP framework, we set the weights of two different
rewards as βa = 0.5 and βb = 0.5.
According to the figure 4.10 demonstrating the convergence process of the position (x, y, x)
of the end-effector and the distance from the target point, it’s easily to figure out that CEP
can realize a satisfied performance in target arrival, although the final error of distance
still exits about 0.03cm, CEP can fulfill a fundamental application in motion planning of
mobile manipulators. The reason that the position x and y can converge more accurate
than z is that we set a higher variance for z which is more relevant with TaskGoto energy
component and set a lower variance for PathP lan energy component.
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Figure 4.10.: Whole Body Control with CEP framework. Position x, y and z can be conver-
gent, although position z still needs to be improved. The absolute distance
from goal point is less than 0.03cm.
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5. Discussion

In this thesis, we achieve two dimensional planning and whole body control based on
a novel framework, Composable Energy Policies (CEP), for modular reactive motion
generation, which can avoid local minima better than potential field methods and define
specific objectives in different latent spaces explicitly. Besides, we also compare two
different methods to get a local target with CEP. Moreover, we also found the difference
between CEP and MPC, as CEP concentrate on the immediate motion planning or in other
words, in short prediction and control horizon, in comparison, MPC compute actions in
a control horizon based on a finite prediction horizon according to a specific objective
function.
As for one of the importance parts in this thesis is choosing a local target for mobile
base. Rapid Random Search Tree (RRT) is employed to provide a prior map as it has a
good exploration of the whole environment. We use two methods , CascadeControl and
TrackingFather, to find the local target, and both can achieve target arrival and object
avoidance smoothly.
Moreover, for whole body control of mobile manipulators, we accomplish it based on CEP
framework, and it can reach the defined end point and avoid the static objects.
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6. Outlook

Although we achieve 2D planning and whole body control using Composable Energy Poli-
cies framework, to accomplish better performance and be applicable to a more complicated
situation, some modifications can be made further:

• Using different approaches to generate a prior map providing motion guidance,
which can achieve target arrival and object avoidance

• As Composable Energy Policies can combine different policies smoothly, in order to
deal with dynamic object and environment, for each time step more than one node
can be treated as potential local target, and, hence, the robot has various choice
when it encounters objects suddenly.

• As we a holonomic base to replace the real nonholonomic basic, and hence, a more
realistic bicycle model should be implemented in 2D planning part further.
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A. Some Appendix

Observation Space q ∈ R10, denotes position of joints.
Action Space Continues space, a ∈ [−0.5, 0.5]3 for 2D planning and a ∈

[−0.5, 0.5]10 for whole body control
Check Done Check if the robot arrives at the end point without collision.
Dynamics State transformation is based on Euler discretization dq =

dq + ddq ∗∆t, q = q + dq ∗∆t.
reset Initial the position of the robot randomly in a valid region

Table A.1.: Environment Setup.
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CEP Parameters
trial number 100
samples N 1000
time step ∆t 0.005
optimization steps 20
episode horizon 100
variance of TaskGoto 10
variance of PathPlan 1.
βa 0.5
βb 0.5

RWR Parameters
temperature β 0.1

Table A.2.: Algorithm parameters.
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