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Abstract

Study on reactive motion generation of mobile robots andmanipulator has a long history. In
past years one of traditional solutions to these issues is to calculate corresponding actions
over a sum of policies for multi-objective tasks. However, these policies are designed
independent from each other and even during optimization also separately updated.
Therefore these solutions may could cause conflicts or unexpected results in some complex
cases. Composable Energy Policies (CEP) provides new insight to improve the performance
in filed of reactive motion generation. Instead of sum of policies, CEP optimize the product
over different policies to compute appropriate actions, which satisfies all tasks. In this
project, we aims focus on the simple applications of CEP for a bimanual robot with 14
DOF along with extra joystick. Besides CEP framework, we also build obstacle map via
depth camera and use them as for the obstacle.



Zusammenfassung

Studien zur reaktiven Bewegungserzeugung von mobilen Robotern und Manipulatoren
haben eine lange Geschichte. Von Post steht eine der traditionellen Lösungen für diese
Probleme darin, die entsprechende Bewegungen des Robots nach einer Summe von
bestimmer Strategies für mehrere verschiedene Aufgaben zu erechnen. Composable Energy
Policies (CEP) liefern neue Lösungen dazu. Anstelle einer Summe von Strategies optimiert
CEP das Produkt über verschiedene Strategies, um geeignete Aktionen des Agents zu
berechnen, die alle Aufgaben gleichzeitig erfüllen. In diesem Projekt konzentrieren wir
uns auf die einfachen Anwendungen von CEP für einen bimanuellen Roboter mit 14
DOF mit einem zusätzlichen Joystick. Neben dem CEP-Framework erstellen wir auch eine
Hinderniskarte über eine Tiefenkamera und verwenden sie mit dieser Hinderniskarte bei
Hindernisvermeidung von Robot.
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1 Introduction

Due to expanding demands for bimanual robot in field of research and commercial appli-
cations, the robot are required to master more and more skill than before and accomplish
more complex task. Nowadays these robots should finish tasks containing different step
or even finish tasks in parallel. Such as fetch a bottle and pour water into cup. This task
consists of a few sequential steps: reach to the bottle, grab bottle, move close to cup
and finally rotate the wrist to pour the water right into cup. Apart from these sequential
objectives, the manipulator should also avoid collision between the arm links themselves
ans the obstacles in the environments.
In our work we use robot Darias from IAS institute of TU Darmstadt as the main ex-

Figure 1.1: Overview of Experiment Platform Robot Darias

periment platform. This robot has two arms and totally 14 rotation joints. Arms are
manufactured by Kuka and equipped with a delicate hand as end effector, which has five
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flexible fingers to accomplish complex task accurately, such as picking and grabbing objects.
Besides the robot itself, this platform also has powerful visual perception components. For
the acquisition of simple information from environment we use the depth camera from
Intel RealSense as the main RGB image-stream with 30 Hz. As for calibration and more
complicated motion capture we use commercial solution from OptiTrack motion capture
system. OptiTrack enable extremely precise motion capture via tracking markers attached
to the targets’ surface.

1.1 Related Work

Currently the use of manipulator in industrial productions and complicated applications’
scenes grows rapidly in the past years. Persistent Growth of applications requires bimanual
robots to learn more and more skills and be able to solve task with multi objectives in
parallel. In our case we mainly focus on the motion generation tasks, such as reach certain
position, and obstacles avoidance problems. In this study filed, there are two kinds of
mainstream theories to solve this problems: path planning method and reactive motion
generation.[1]
Path planning approach aims that: the robot decides a collision-free and optimal global
trajectory from the start to the destination. During the computation will the algorithm
convert various sensors’ feedback into useful perception information and follow specific
criteria defining safety and efficiency. In the planning the robot should based on certain
criteria to compute the required cost time and efficiency to avoid some necessary obstacles.
According to the completeness of perceptions of the environment, the classic path planning
could be divided into global path planning and local path planning.
Compared to the path planning approach, the reactive motion generation method is more
suitable for rapidly changing environment and robot with middle or short ranged sensors,
such as integrated depth camera. Reactive motion generation method requires perception
input with much higher refresh rate aiming for quick response to the dynamic outside
world.
In this work we investigate mainly into the framework suitable for local path planning.
Because bimanual robots face often to dynamically changing environment and the target
pose of the robot arm would also change due to the progress of the whole task. For
example when the robot is supposed to grab a bottle or cup, in order to smooth the action
of robot’s fingers, the robot should response quickly enough to adjust its behaviors.

3



1.1.1 Path Planning

In past decades, path planning for the manipulators and mobile robots is constantly
discussed and improved by researchers. Many researchers optimized existing methods or
proposed new approach to balance the merits and drawbacks of path planning algorithms.
Nowadays there are three mainstream sort of algorithms to solve this problems: graph
search algorithms, like A∗[2], RRT and B∗; bionic approaches as genetic algorithm [3]
along with ant colony algorithm [4] and classical approaches as artificial potential field.
Traditional path Planning approaches [5] [6] aims to compute the whole trajectory from
the start to the goal and ensure that whole path is collision-free. This kind of framework
is often associated with large computation’s burden and lack of flexibility when dealing
with dynamically changing environment.
A* algorithm and other similar algorithms from graph searching approach are most well
known path planning methods and could be easily applied with existing grid map [2].
However, the application of these algorithms are limited due to the huge computation cost,
especially for time-sensitive scenes. To overcome this drawback many optimization-based
approaches were proposed, such as CHOMP (Covariant Hamiltonian Optimization for Mo-
tion Planning) [7], using gradient descending method to generate and optimize path for
robot. Schulman used convex optimization functions to learn from naive straight-forward
initial trajectory. The key of this algorithm is applying penalty to the path with collision
and dynamically changing the penalty coefficients[8].
Path planning methods benefits from its simple form and also suffer from corresponding
relatively large computation cost. Besides path planning approach still proposes trajectory
in long-term sight and could not provide satisfying result in case of dynamic environment.

1.1.2 Reactive Motion Planning

Compared to path planning method, reactive motion planning has much shorter execution
cycles and better adaption to robot with high Degree-of-Freedom and complex sophisti-
cated real-time scenarios [1].
Artificial potential field is one of most popular approaches in field of reactive motion
planning [9] [10] [11]. Artificial potential field method is intuitive and easy to build
corresponding potential field with given map. Compared to classical path planning method
it has little burden on computation. Furthermore the calculations in this approach are
barely euclidean distance, which could be easily vectorized for optimization by many
matrix calculation libraries, such as Numpy and Eigen. However, this approach could
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not ensure the long-term trajectory fulfilling tasks’ requirements and could be stuck in
local minimum cases sometimes. Even though, there are some improved methods, such as
Chanclou’s method, which provides two planner separately for both local and global path
planning.

1.2 Overview

Chapter 1 begins with the motivation of this thesis, current approaches and their lim-
itations; Chapter 2 introduces necessary basic knowledge of model free policy search,
composable energy policies (CEP), operation space control (OSC), path planning algo-
rithms, potential fields methods and model predictive control (MPC). Chapter 3 describes
our approaches in details. Then chapter 4 demonstrates the experiment results. Last but
not least, in chapter 5 and 6 we discuss about our contribution, and the limitations and
outlook or our approach.

In this thesis the basic theoretical framework is based on the CEP (composable energy
policies) framework [12] and our work focus mainly on the simple application of CEP
frame with extra joystick for human to control some behavior of robot. CEP provide new
insight to solve sophisticated tasks and complete framework to combine many delicate
techniques into together: operational space control of robot joints, reactive motion plan-
ning, optimization for motion planning and so on. CEP enables the robot to learn from
the motion primitives from subsequent task in parallel and combine the policies of these
relatively independent motion policy into single one by a product of their policies. The
optimization of motion generation is achieved by this single policy. This CEP framework
also provides flexibility to deal with task defined in different action spaces and transfer
them into another action space. For example, end-effector related task like releasing and
grasping is defined at end-effector itself and should be converted into configuration space
for following control, while the obstacle avoidance task for the whole robot arms is defined
at the task space. CEP allows user to define convenient mapping between different space.
The main work of this paper can be summarized as follows:

1 ) Use depth camera to generate obstacle map.

2 ) Use artificial potential filed for obstacle avoidance.

3 ) Applying CEP for control of two robot arms with joystick.
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This thesis has been divided into six parts. Chapter 1 start with the current state of the
related study and presents the motivation of this work. Chapter 2 lists the theoretical
foundations of operational space control(OSC), composable energy policies(CEP), artificial
potential filed(APF) and camera calibration. Chapter 3 explains the concrete step in our
experiment in details. Chapter 4 and Chapter 5 focus on the results of the experiments.
Chapter 6 introduces briefly the oultook for the future work.
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2 Foundations

This section contains three parts: robot control related theoretical foundation, obstacle
avoidance and camera calibration related theory.

2.1 Composable Energy Policies

Composable Energy Policies(CEP) [12] enables a new framework, which could combines
different policies into one single policy with the product of these independent policies.
Compared to CEP, the previous work solve the reactive generation problems by maximizing
the sum of bunch of separate policies, which focus only on their own task and lack of
interaction. Every policy would follow its own criteria to search the optimal actions. This
independence might lead to non-optimal actions or even cause conflicts between different
policies. For example, the attractive force pointing to the destination may lead the end
effector to into local minimum and stay trapped.
For CEP, the optimization process is to search an action which could maximize the product
of few expert policies.

a∗ = argmax
a

∏︂
k

πk (a |s) (2.1)

where πk (a |s) is one of expert policy with given system state.
We start by defining a bunch of independent stochastic policies. Let π1(a|s), ..., πk(a|s) to
be the desired independent stochastic policies, which are constructed in form of Boltzmann
distribution.

πi (a|s) = exp (Ei (a, s))
1

Zi (s)
(2.2)
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with Ei(a, s) : S × A → R is an arbitrarily energy function for this policy and Zi(s) =∫︁
a exp(E(a; s))da is integral of this energy function and functions as factor for normal-
ization. According to energy-based learning [13], Boltzmann equation could be used to
describe arbitrary functions under appropriate parameter. Furthermore, the importance
of different policies could be valued through different weight coefficients. Hence, from
Equation 2.1 and 2.2, we rewrite the formulation as the below:

π(a|s) =
∏︂

k:0→K

πk(a|s)βk ∝ exp(
∑︂
k

βkEk(a; s)) (2.3)

Thanks to Boltzmann equation in exponential form, this product of expert policy could
be converted into the sum of each policy component with logarithmic operation. This
kind of linear form also contributes to acceleration of calculation. Because the each policy
could be designed as independent progress and run in parallel to make the best use of
processor;s potential performance.
As discussed in Chapter 1, for reactive motion planning problem all the policies haven
been assumed to be in the same action-space. For example, for the obstacles avoidance
in global path the policy is defined in joint space, whereas for grasping task for manip-
ulator with hand-shaped end effector in task space. In order to solve this problem, the
mapping between these two space is necessary, namely inverse kinematic Matrix and
pseudo-inverse Jacobian matrix with given joint states of robot. Therefore, it is necessary
to define appropriate mapping functions between different action-states.
Firstly we define an stochastic policy πz(az|sz) in latent space, namely task space, (az|sz) ∈
Z. Next we define the mapping, which transforms the action-states pair from the configu-
ration space (ax|sx) ∈ X to the latent space Z. The corresponding mapping functions
shows like f zx : X → Z. Therefore we can rewrite the Equation 2.2 in the task space

πx(ax|sx) = πz(az|sz)
√︂
det(JTJ) (2.4)

πz(f zx(a
x|sx)) = πz(az|sz)

√︂
det(JTJ) (2.5)

where the J = ∂f z
x (a

x, sx) /∂ax stands for the Jacobian expression of f zx in action ax.
With Equation 2.5, we could transform the Equation into :

πx(ax|sx) = exp(Ez(az, sz))
1

Z(sx)
= exp(Ez(f zx(a

x, sx))
1

Zi(sx)
(2.6)
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with
Z =

∫︁
az exp(E

z(az, sz))daz√︂
det(JTJ)

(2.7)

As the Equation above describes, any action-states pair could be easily transferred from
task space to expected latent space. This mapping functions enable the simple and aligned
representation of policies. Besides we could also calculate corresponding log-probability
of the action with given energy functions.
Compared to other methods, for the converse of action from latent space to the task space,
there is no explicit inverse mapping function for f zx . Instead, the implicit form is listed
below:

ax = arg max
ax

Ez(f zx(a
x, sx)) (2.8)

Given a bunch policies defined in different task space Z1,Z2, ... , ZN . According to all the
conversion above, we could the final policy over the product of independent policies:

πx(ax|sx) = exp(
K∑︂
k=1

βkE
zk(f zkx (ax, sx)))

1

Zi(sx)
(2.9)

The optimization procedure could be summarized as the equation below.

ax
ML = arg max

a

K∏︂
k=0

πk(a
x|sx)βk , βk > 0. (2.10)

where ax presents the current state in task space, βk is the weight coefficient. This opti-
mization problem could be solved with the help fromMaximum Likehood Estimation(MLE)
and cross entropy optimization approach [14].

θt+1 = arg max
θt

Ep(ax|θt)[log(
k∏︂

k=0

)πk(a
k|sx)βk ] ∝ Ep(ax|θt)[βkE

zk(f zkx (ax, sx))]. (2.11)

As the equation above presented, appropriate energy functions are definitely independent
from each other. This character enables the parallelization of processing of these energy
functions. Multiprocessing contributes here largely to cutting off the execution cycle and
enhancing the adaption to the reactive motion generation algorithms. Besides CPU, GPU
could also help to save tons of computational time cost, especially in case with large
dimensional matrix computation.
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CEP for Reactive Motion Generation
In this work one main goal is to integrate reactive motion planning algorithm right into
the CEP frame. For classic robot control joint value and joint speed are often chosen as
the state, while the acceleration of the joint as the action. Therefore the corresponding
mapping between the task space and latent space should be determined.
In this thesis, the whole robot system would be treated as pure second-order dynamic
system. We study only on the behavior of the robot kinematics, while the robot dynamics
would be ignored.

q̈ = g(q, q̇) (2.12)

with q is the joint state, q̇ is the joint velocity and q̈ is the joint acceleration. In common
latent state-action space, namely joint space, the state and action are (q, q̇) and q̈. The
main task of bimanual robot is mainly achieved by changing the pose of the hand-shaped
end effector. Therefore the state from task space is (x, ẋ) and action refers to ẍ.
According to the robot kinematics, we could determine: x = ffw(q). ffw presents the
forward kinematics of the robot. We could get the derivation of this equation.

ẋ = J(q)q̇ (2.13)

ẍ = J(q)q̈+ J̇(q)q̇ ≈ J(q)q̈ (2.14)

where J = ∂x/∂q stands for the Jacobian matrix with given robot pose. In order to
simplify the computation, the acceleration of end effector here equals to the product of
Jacobian matrix and joint acceleration. Because the derivative of Jacobian is too small
and could be ignored.
Theoretically, the action-state pair should be the same as expression above. However, in
our application, the main three tasks is designed based on the joint speed as the action. In
order to save computation sources and avoid extra conversion, the action should be set to
the joint speed a = q̇ and joint speed along with joint value as the state s = (q, q̇).

2.1.1 Lie Group and Lie Algebra

In order to solve estimation problems in robotics, such as modeling of states and estimation
about uncertainties. In the past study researchers developed a manifold, which is smooth
plane of Lie group. Based on the Lie theory, calculus equations can be constructed,
which are mainly used in rotation SO(3) and translation SE(3). In modern robotics, the
application of Lie group and Lie algebra is widely applied especially to solve pose related
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problems [15]. In this work, we mainly focus the application of lie algebra to calculate
required speed from one pose to another in 3D frame. The three-by-three Lie group SO(3)
represents exactly rotation in euclidean space, where SE(3) refers to the six-dimensional
euclidean matrix including the rotation part and translation part.

SO (3) =
{︁
R ∈ R3×3|R×R = I| det (R) = 1

}︁
(2.15)

SE (3) =

⎧⎨⎩T =

⎡⎣R t

0T 1

⎤⎦ ∈ R4×4|R ∈ R3×3 , t ∈ R3

⎫⎬⎭ (2.16)

The Lie algebra se3 and group SE(3) could be converted into each other via via the
exponential and log operations [8]. The conversion se3→ SE3 is exponential; SE3→ se3

islogoperation.se (3) =

⎧⎨⎩ξ =

⎡⎣ ρ

ϕ

⎤⎦ ∈ R6, ρ ∈ R3, ϕ ∈ so (3) , ξ∧ =

⎡⎣ϕ∧ ρ

0H 0

⎤⎦ ∈ R4×4

⎫⎬⎭
(2.17)

where ξ refers to a 6-by-1 spinor containing line speed and angular speed. When two 6D
pose in world frame is given, through Lie algebra we could compute expected speed, with
which one pose could transformed into another.

2.2 Camera Calibration

This section begin with the camera calibration, namely hand-eye calibration problem.
Meanwhile, the transformation of different coordinate systems will be discussed in this
part. The following part focuses mainly on the generation of the octomap for the obstacle
avoidance, which based on the point cloud data collected by the Intel real-sense camera.
Further processing of these point cloud data is intended to eliminate points from robot
arms. Because these points don’t belong to obstacle groups and may cause unexpected
error in obstacle avoidance.
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2.2.1 Perspective Camera Model

The perspective camera model or pinhole camera model [?] is a simple buy widely
applied camera model, which simplifies the projection relationship of lights and also gives
simple but clear mathematical description of the transformation matrix between three
dimensional world coordinate system and two dimensional image plane system. There are
three important coordinate systems, namely world coordinate system, camera coordinate
system and image coordinate system.

2.2.2 Extrinsic and Intrinsic Matrix

The acquisition of extrinsic and intrinsic parameters is a necessary step in camera cali-
bration. Intel SDK Toolbox provides an look-up function to get an default value of this
two parameter matrix. In order to get more precise parameters, a traditional calibration
procedure from [?] would be performed.
As the figure below shown, the intrinsic matrix represents the projection relationship
between the image plane and camera coordinate system. In order to simplify the mathe-
matical equation, a conversion to homogeneous coordinates would be used. The original
two-dimensional image coordinates system would extended to three-dimensional form.
Normally, an additional conversion to pixel coordinate system would be performed , where
its origin point is located at upper-right corner of the image plane. Because pixel coordi-
nate system is widely used in the field of image processing, like OpenCV library. Lately
the acquisition of extrinsic matrix would be based on pixel coordinate system and OpenCV
library built-in functions.

We start by defining intrinsic matrix ,which describes the transform between the pixel
coordinate and image plane. This matrix only relates to the camera itself instead of the
pose of the camera. For example important camera parameters like principal point offset,
focal length and so on. As the equation shown above, this 3-by-3 matrix K is the expected
intrinsic matrix.⎛⎜⎜⎜⎝

u

v

1

⎞⎟⎟⎟⎠ =
1

Zc

⎛⎜⎜⎜⎝
fx 0 cx

0 fy cy

0 0 1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

Xc

Yc

Zc

⎞⎟⎟⎟⎠ =
1

Zc
K

⎛⎜⎜⎜⎝
Xc

Yc

Zc

⎞⎟⎟⎟⎠ (2.18)
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Figure 2.1: RRT tree serves as a prior map. The green point is the start point, the blue
point is the end point, and the red line denoted the path.

where K is the expected intrinsic matrix, Zc is the depth of objective position in the
camera frame; u, v is the coordinates in pixel plane; XcYcZc is the coordinates in camera
frame; cx, cy is the principal point offset; fxfy is the x-axis and y-axis focal length of the
camera in pixels.

The extrinsic matrix describe the projective relationship between the three-dimensional
camera coordinate and world coordinate system. Two parameter identify uniquely this
transformation : rotation matrix and translation vector. Translation vector refers the vector
between the origins of the two frames and rotation matrix makes axes of two frames,
namely camera coordinates system and world coordinates system into alignment [16].⎛⎜⎜⎜⎝

Xc

Yc

Zc

⎞⎟⎟⎟⎠ =

⎛⎝R T

0T 1

⎞⎠
⎛⎜⎜⎜⎝

Xw

Yw

Zw

⎞⎟⎟⎟⎠ (2.19)

Given the skew part in intrinsic matrix is zero, When we combine the equation 2.19 and
2.18, we could get a simple but clear expression of projective relationship between pixel
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coordinate system and world coordinate system. With help of this transformation, we
could get any points’ pose in world frame. In Chapter 3 we would introduce the details
about how to acquire these two important camera matrices in our experiment setup and
their usage in generation of map for obstacle avoidance.

2.3 Artificial Potential Fields

Artificial Potential Fields is published by Khati in 1986 and a widely used method for
real time path planing and obstacle avoidance problems in field of mobile robots and
manipulators[17]. In artificial potential fields the end-effector or mobile robot is moving
inside of field of force: the target position for the end-effector would be treated as attractive
pole, whereas the surface of all obstacles as repulsive field to the robot arm links. These
two filed sum to be the final artificial potential field.
The force applied on the end-effector equals gradient of field at current position. In

Figure 2.2: Combination of the Repulsive Force and Attractive Force

general, the manipulator will move towards the target position. When it get close to the
obstacles, the repulsive force would be dominating and push the manipulator away from
the obstacles. For every point, the force applied on the end-effector equals to the sum of
attractive force and repulsive force. Therefore, the key of artificial potential field is how
to generate appropriate attractive and repulsive field in three-dimensional real world.
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2.3.1 Attractive Force

Attractive field generates corresponding attractive force, which leads the robot to expected
target position. We define this attractive force function as a function of distance between
the end-effector and target position. When the distance increases, the gravity potential
also grows up. When the distance decreases, the potential also drops. Normally there is a
simple and popular attractive field meetings our needs: quadratic potential fields, as the
equation below shows.

Uatt (q) =

⎧⎨⎩
1
2ζd

2 (q, qgoal) d (q, qgoal) ⩽ d∗goal

d∗goalζd (q, qgoal)−
1
2ζ

(︂
d∗goal

)︂2
d (q, qgoal) > d∗goal

(2.20)

where dgoal is an threshold, ζ is scale factor; q, qgoal is the current robot position and target
position.
As the equations above and below shown, this attractive field and force are both piecewise
function based on the distance. When the distance is smaller than the threshold, the
attractive force is linear to the distance. When the end-effector get closer to the target,
the attractive force would decrease and robot’s movement would also be slowed down.
Hence, it could be easier for the robot to adjust its pose and get more change to reach the
target. Meanwhile, when the distance gets larger than the threshold ,in order to avoid too
large attractive force, the quadratic shaped potential would be modified as linear form.

∇Uatt (q) =

⎧⎨⎩ζ (q − qgoal) d (q, qgoal) ⩽ d∗goal
d∗goalζd(q,qgoal)

d(q,qgoal)
d (q, qgoal) > d∗goal

(2.21)

For the real time path planing, the attractive field and force should be updated the same
time. These two functions are both only related to the target position and current robot
state. Once the controller gives the desired robot’s pose, the attractive field part should be
calculated.

2.3.2 Repulsive Force

Different from attractive field, repulsive field strongly relates to current environment
information, such the three-dimensional coordinates of the obstacle’s surface. Based on
processed environment’s info, such camera data along with the depth data, we should
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generate corresponding repulsive filed for the obstacle avoidance. When the robot runs
close to the obstacles’ surface, the repulsive forces would push the target away from the
obstacles. In contrast, when the robot is far enough from the obstacles, the repulsive
should keep in zero in order to simply the calculation, especially, in case like real-time
path planing problem, the generation of potential field should be simple enough and time-
saving in order to response timely to complex and dynamically changing environments.
Similar to Equation 2.20 and 2.21, let repulsive field and force also functions of the
distance between the robot and obstacle.

Urep (q) =

⎧⎨⎩1
2η

(︂
1

D(q) −
1
Q∗

)︂2
, D (q) ⩽ Q∗

0, D (q) > Q∗
(2.22)

∇Urep (q) =

{︄
η
(︂

1
q∗ −

1
D(q)

)︂
1

D2(q)
∇D (q) , D (q) ⩽ Q∗

0, D (q) > Q∗
(2.23)

Where D (q) is the distance between between the robot and obstacle, Q∗ is the threshold.
When robot keeps away from the obstacles, the repulsive force would be deactivated.
When the robot moves closer, the repulsive would increase rapidly in order to avoid colli-
sion.
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3 Visual processing

This section describes two parts: camera calibration of Intel RealSense depth camera and
generation of obstacles map in form of octree. Camera calibration includes acquisition of
the extrinsic and intrinsic parameters . As for the obstacles map it contains the necessary
step about post processing of point clouds.

Figure 3.1: Five Coordinate Systems In Camera Calibration

3.1 Camera Calibration

As the mentioned in Chapter 2, the main goal of camera calibration in this work is to get
intrinsic and extrinsic matrix for the Intel RealSense depth camera. To accomplish these
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tasks, in our case there are two sets of hardware in function: OptiTrack camera system
and Intel RealSense depth camera.

3.1.1 Hardware Setup

In this work, there are two sets of camera systems: OptiTrack motion capture System
and Intel RealSense depth camera. As in section 2.2.2 mentioned, the OptiTrack is only
used for early stage camera calibration, where as the Intel RealSense camera is used for
generation of obstacle maps.

OptiTrack is a mature and complete motion capture solution to acquire object’s three-
dimensional coordinate via camera and markers[18]. In our case, OptiTrack motion
capture system is applied to acquire the transform matrix between world frame and
camera frame. The Intel depth camera with marker mounted on its surface, the center
of markers is placed as close enough to the center of depth optical axis. Under this
circumstance, the OptiTrack system knows the pose of the Intel depth camera in world
coordinates system.

In this work, the depth camera is manufactured by Intel RealSense with model D435i,
which offers both RGB image and depth point cloud data. Intel provides complete devel-
opment SDK toolbox and various user-friendly post-processing algorithms like to ensure
images and depth information with good quality and stability. For example ,spatial Edge-
Preserving filter aims at increasing smoothness of images and temporal filter is intended
to stable the depth data. This camera is fixed on the head of the robot and receives a top
view from above.
Besides two fixed camera system, we also need a 2-D flat calibration chessboard for
acquisition both intrinsic and extrinsic matrix for Intel RealSense Camera. Chessboard
calibration is a widely used method in computer vision [19]. Many mainstream image
processing libraries like OpenCV offer chessboard pattern for print and also convenient
functions to calculate related camera matrix.
We define 5 different coordinates system for following processing, namely : world frame,
robot frame, camera frame, OptiTrack frame and chessboard frame, as the figure shown
below.
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Figure 3.2: Five Coordinate Systems In Camera Calibration

3.1.2 Intrinsic Matrix Acquisition

The traditional camera calibration method, such as methods from Zhang [20] and Tsai
[21], are extensively discussed topics in field of computer vision. These two method both
require extra calibration marker or pattern. In this work, we use the method from Zhang
and printed chessboard pattern with 9-by-7 grids from the OpenCV library.
The basic workflow is shown as follow:

1 ) Print chessboard pattern and attach it to a flat surface, like piece of carton.

2 ) Move the surface and take at least 10 snapshots of chessboard grid from different
angles.

3 ) Detect all critical features points, namely 4 corner points of the grid.

4 ) Choose at least 4 pair data of the corner points’ pixel coordinates and calculate
homography matrix with help from OpenCV functions.

5 ) Take pictures from different angles as input and calculate corresponding scale factor,
distortion coefficients and intrinsic matrix of the camera with help of nonlinear
algorithm like Levenberg-Marquardt.

Usually in pinhole camera model, the radial distortion and tangential distortion should
be taken into consideration. Under frame of OpenCV, there are totally five distortion
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parameters for use: k1, k2, k3 for the radial distortion and p1, p2 for the tangential distortion.
Before the calculation of the intrinsic matrix, we should calculate the corrected coordinates
of the image and undistort the snapshots.

Figure 3.3: Snapshots of the Calibration Pattern From Different Poses

After OpenCV function processed the input pictures of the chessboard, the results are:
fx = 921.563, fy = 921.750, cx = 642.073, cy = 343.416. The Intel RealSense SDK
offer function to look up default value of the intrinsic parameters: fx = 920.788, fy =
920.285, cx = 639.458, cy = 343.739. Compared to the default value by Intel official
documentation, the calculated camera parameters are quit close to them. In order to
simply the programming, in following sections the intrinsic parameters would be the same
with the value we calculated. In our case, this matrix represents the transform relationship
between the camera frame and pixel frame.

3.1.3 Extrinsic Matrix Acquisition

In this work, expected extrinsic matrix defines the transform relationship between the
camera frame and world frame. As the figure below illustrated, based on the transform
chain the desired the extrinsic matrix could be determined directly. The frame chessboard
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pattern nested serves as the bridge between world frame along with OptiTrack and camera.

Figure 3.4: Transform Chain Inside Five Coordinate Systems

The transform relationship between these frames is shown as equation below.

worldTcamera ·camera Tchess =
world Topt ·opt Tchess (3.1)

where worldTopt is transform matrix between the world and OptiTrack. It is already known,
the OptiTrack system is mounted; optTchess known, when the OptiTrack system recognises
it via capture markers attached to the surface of the chessboard; chessTcamera is identical
to the intrinsic matrix we get.
The desiredmatrix worldTcamera could not directly determined by the Equation 3.1. Because
the origin point of the chessboard coordinate system in two transform chain could not
be the same point on the chessboard plane. The origin point of chessboard in sight of
OptiTrack is in the center of three tracking markers, whereas the origin point by camera
is always of upper left corner point of the image. When the pose of chessboard plane
changes, the selected corner point may be different from the last time. For example when
the board rotates 90 degrees clockwise, the original lower left corner point would be
picked up.
During the data collection, it is quite hard to ensure these two origin point to be the same
one. For the sake of simplicity, as the Figure 3.6 presents, an extra marker for locating
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the origin of the chessboard frame. Therefore, there are two cheeseboard frames in our
case: frame based on the center of OptiTrack markers detonated by chess1 and frame
based on the OpenCV calibration functions detonated by chess2 chess1. Can be observed
in Figure 3.6, the transform between thees two frames is constant with help from extra
circle markers.

Figure 3.5: Two Coordinate Systems on the Chessboard Plane

As summarized in Chapter 2, this is a typical AX = XB problem, but slightly different
from the traditional hand-eye calibration problem. The solution to thisAX = XB problem
is the same with two step method from Tsai [21], by solving the rotation matrix first and
translation vector later.

chess1_1Tchess2_1 =
chess1_1 Tworld

worldTcamera
cameraTchess2_1 (3.2)

chess1_2Tchess2_2 =
chess1_2 Tworld

worldTcamera
cameraTchess2_2 (3.3)

The Equation 3.3 and 3.2 represent two snapshot of the chessboard. We could combine
these two equations into together and determine the formulation in form of AX = XB
problems, as the equations below describe. The desired transform matrix worldTcamera.
Based on the method from Tsai-Lenz [21], the rotation part from the 4-by-4 transform
matrix would be solved first with help from Rodrigues parameters. Later on the translation
part could easily determined.
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A =
(︂
chess1_2Tworld

)︂−1
·chess1_1 Tworld (3.4)

B =camera Tchess2_2 ·
(︁
cameraTchess2_1

)︁−1 (3.5)
X =world Tcamera (3.6)

In summary, the basic workflow to acquire extrinsic matrix is as the figure below illustrated:

Figure 3.6: Workflow for the Extrinsic Matrix’s Acquisition

Since the required two camera matrices is known, the data-stream from camera could
be efficiently and correctly converted into correct coordinates in world frame. So far the
most important pre-processing is accomplished.

3.2 Obstacles Map

In this section we presents the workflow about the generation of obstacle maps. As
detailed in Chapter 2, the ultimate goal of the visual processing is to acquire the obstacle
map, which is an octomap presenting all discrete points on the surface of the obstacles.
Meanwhile, the points from the robot arm links should also be eliminated from the obstacle
map. The basic workflow is illustrated in the figure below.
As in last section discussed, the camera parameters are right now given, any points

from point cloud in camera coordinate system could be transferred into world frame.
The input from camera could be precisely converted into data-stream in form of point
cloud. The Intel RealSense SDK offers demo to launch corresponding ROS node to publish
environment’s point cloud. In order to achieve objectives above, the following sections
will focus on three tasks:
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Figure 3.7: Workflow of Generation of Obstacle Map

1 ) Generation of robot links’ point clouds.

2 ) Message Synchronization

3 ) Post-processing of Point Clouds

3.2.1 Point Clouds from Robot’s Link

The final goal of visual processing in this work is an obstacle map but without points from
the robot’s links. As Figure 3.8 illustrated, the input is the geometry mesh files of the 14
robot’s arm links.

Figure 3.8: Workflow of Generation of the point clouds from the Robots’ links

With help from open-sourced software CloudCompare, it could convert the geometry file
in STL format into point cloud format. When the CloudCompare receives the STL, we
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need to sub-sample the surfaces of the arm links. The density of the desired sample point
cloud could be manually set with default value 10000 points. For the sake of efficiency
and saving run-time memory, after experiments, this value could be reduced to 1000 and
the final point clouds’ density still meets our end.
Beside the point clouds of 14 different links the processor still needs transform matrix
between the links and world frame. These transform could be directly exported in robot
forward kinematics. In this work, the forward kinematics is based on the open-sourced
robot kinematics library Pinocchio. This light-weighted library supports c++ and python
and provides powerful built-in functions to calculate the robot’s states efficiently, such as
Jacobian matrix and transformation between different frames.
The robot’s controller would persistently publish 14 joints’ state via ROS message. The
corresponding ROS node subscribes this joint states’ publisher and pushes these data into
queue array of robot kinematics functions. The Pinocchio library receives thees joints’
value and calculate corresponding Jacobian matrices and 14 desired transform matrices
between joints’ reference frames and world frame.
According the workflow displayed in Figure 3.8, we have already collect desired point cloud
of each arm link. Finally we should merge these 14 links’ point cloud into united one and
eliminate redundant points. The goal could achieved with help from PCL built-in function
for point clouds’ basic set operations. The Point Cloud Library (PCL) is an open-sourced
and powerful library for the two- and three-dimensional point clouds’ processing. Apart
from the "AND" set operation, this library offers a bunch of useful and user-friendly func-
tions, which would also be used in the following section, such as KD-Tree, filters and octree.

3.2.2 ROS Message Synchronization

This section explains the problem in ROS message synchronization and discusses the
concrete steps to solve these issues.
In this work, the Intel RealSense camera publishes the point cloud of environment at 30Hz,
whereas the robot states’ publisher runes at least 1000Hz. These difference could cause
unexpected delay in two point clouds. In our case, only one ROS node runs to process
and generate obstacle map. This node subscribes two ROS publisher and pushes these
data into queue at first. Later it would follow the rule "last in, first out" to select newest
data from the queue and afterwards publishes processed obstacle map. The advantage of
only ROS node is obvious, compared two separate ROS node: saving run-time memory
and reducing time cost by intercommunication between two ROS nodes.
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Figure 3.9: Difference by Publisher’s Frequency

As the figure above reveals, we assume that two topic run at 1Hz and 8Hz to simplify the
illustration. Can be observed in Figure above that, the callback functions of two subscriber
is triggered at beginning. The processing time by joint states’ publisher is close to zero,
where point cloud node publisher needs t2, around 6 seconds, to process the incoming
data. However, the upcoming joint states is with timestamp about 6 seconds later, when
the point cloud publisher finish the processing. This difference brings also time difference
between robot arm’s point cloud and point cloud from depth camera. Hence, the following
set operations around these two point clouds would definitely lead to errors.
One of the most intuitive solutions is to move the callback function of the robot states’
subscriber inside the callback of point cloud subscriber. Only when the point cloud’s
callback is triggered, then the robot states’ callback would be triggered.
Another ROS built in function for message filter could also help to solve this problem.
According the ROS message filters’ documentation, we should define two subscriber with
type messagef ilters :: subscriber, build an extra TimeSynchronizer and also define a joint
callback function via boost :: bind.
Two way described above provide simple solution to this problem. A perfect aligned
data queue is barely impossible in this case due to the unpredictable size of upcoming
point clouds. These two method could bring satisfying enough results. Once the two
point clouds are aligned closed enough, the following post-processing of point cloud and
conversion could also continue.
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3.2.3 Post-processing of Point Clouds

This section describes the detailed procedure in post-processing of obstacle point cloud
and concrete step by set operations for these point clouds.
As the Fig 3.10 illustrated, before acquiring final obstacle map, there are a bunch of
sequential processing parts in the workflow. These processing operations could be divided
into 3 type based on their aims: down-sampling function, set operation function and
octomap conversion maps.

Figure 3.10: Workflow for Post-processing of Point Clouds

Firstly, we introduce the voxel grid down-sampling. Voxel is a type of three-dimensional
occupancy grid map with fixed resolution and leaf size. When one voxel grid is occupied,
namely inside this voxel there is at least one point, the corresponding value would be
true. With given 0.02 leaf size, the down-sampled point cloud could be compressed quit a
lot. Thanks to voxel grid down-sampling, the original point cloud size is reduced from
50,000 points to around 1800 grids. This modification contributes greatly to accelerating
the post-processing of these point clouds.

As the Fig 3.11 illustrated, before the "AND" operation for two point clouds, there are
still a few critical steps to take: transformation to world frame and pass-through filter
for the environment’s point cloud. Another huge advantage of placing voxel grid process
before applying the transformation is to save great deal of time in processing. Based on
the experiments we made, the processing time with voxel grid operation is about 8 ms,
whereas around 181ms without this step. We obtain quite satisfying result through this
simple pre-processing.
Before from transformation, the environment’s point cloud requires an extra pass-through
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Figure 3.11: Detailed Processing Steps for Two Point Clouds

filtering. Because in the testing scenes, all the target objects and obstacles are above the
table’s surface. Meanwhile the depth camera collects data in top view and points from the
ground would also be saved into data-stream. In order to eliminate these useless points,
the pass-through filter would delete all points with value in z axis less than 0.5meter. The
output is illustrated as the figure below.

Figure 3.12: Processed Two Point Cloud from Environment and Robot Links
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The following part is the key step in the whole post-processing of point clouds. This step
contain two parts:

1 ) Get Intersection Point Cloud of Environment’s and Robot Link’s Point Cloud.

2 ) Subtract the Intersected Point Cloud from the Environment’s Point Cloud.

To achieve the first task, the general idea is iterate all the points in the robot link’s point
cloud and later compare them to the enforcement’s point cloud to extract overlapped
points. In our case, the down-sampled point cloud of 14 robot links contains more than
14,000 points. The time cost to iterate all these points is unacceptable, especially in our
time-sensitive application.

Figure 3.13: Final Obstacle OCtomap

Alternatively, we choose to use KD-Tree with radiusSearch function to find overlapped
points in this two point clouds. Firstly, we define the criteria to determine whether two
points are overlapped. IN general, if euclidean distance between two points is smaller
than a given threshold, these two points would be treated as overlapped points. The
comparison process could be achieved by nearest neighbour search. The complete steps is
as displayed in the algorithm below.
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Input: point cloud from environment Penv with size nenv

point cloud from robot arm Parm with size narm

Output: final point cloud Pfinal

Initialize KD-tree Ktree from Parm ;
Initialize empty point cloud Pcommon fro intersection part ;
for i = 1 to narm do

psearch ← Parm[i] ;
use Ktree to do the nearest neighbour search for psearch ;
search result saved as poverlap ;
if poverlap not null then

push poverlap into Pcommon ;
delete psearch from Parm;

save the size of Pcommon as ncommon ;
for i = 1 to ncommon do

psearch ← Pcommon[i] ;
delete psearch from point cloud Penv ;

reshape the Penv and save as required final point cloud Pfinal

Algorithm 1: Set Operations by Two Point Clouds

After acquisition of the common part by two point clouds, we should delete points in
intersection group from the environment’s point cloud. When every point from the robot
arm link is removed, the ultimate goal of this section is basically achieved. The rest
conversion task could be directly accomplished by PCL functions, which takes point cloud
as input and returns octomap with given leaf size. For example, assuming that there is
no obstacles block infra ray from the depth camera, the final obstacles map in form of
octomap should looks like the Figure 3.13.
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4 Leaves for motion generation

This section begins with the brief introduction of task, which the CEP algorithm should
achieve under this paper. As explained in detail in Chapter [?], CEP could combine few
independent motion policies into one single policy via the product of these expert policies
to solve multi-task problems. In stead of extremely sophisticated task with fingers, such as
grasping and releasing, this work focus more on the interaction with the human-controlled
joystick and the importance of these policies would change with the distance between the
end effector and the target position.

In our case, there three different policies in function:

1 ) Task Go-To when the end-effector is far away from the target.

2 ) Task Joystick

3 ) Task Go-To when the end-effector is far close to the target.

For simplification the first task is denoted as task Go-To Far, where as the third task as
task Go-To Close. The rest task for joystick’s control would be denoted as task Joystick.
In this paper, the ultimate goal for the CEP application is fulfilling three requirements
described as followed:

1 ) When the end effector is far away from the target, the Task Joystick control com-
pletely the motion of robot arm.

2 ) When the end effector is not quite far from the target, the Task Joystick and Task
Go-To Far control the motion of one robot arm together.

3 ) When the end effector is close enough to the target, the Task Go-To dominates the
control of robot arm.
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The weight coefficients of these three tasks are functions of distance between the target
and end-effector. Key of this CEP application is to design these three distance functions
appropriately.

4.1 Leaf for Task Go-To Far

As the last section explained, CEP allows deeper structure in latent space. Therefore the
mapping between different action-state space has a tree-shaped structure, just like the
figure below illustrated. The root of this mapping tree is the common space, namely
configuration space for all joints.
For the task Go-To Far, the action-state pair (az2 , sz2) is defined in task space for the end
effector. In order to explain the mapping relationship clearly, we start with the root of
the tree: configuration space. In our case, the control of two robot arm is running in two
different progress. Because the cooperation between two arms are quite complicated and
hard to define corresponding mapping functions. Through the robot kinematics, we could
transform the configure space (az, sz) into the task space (az1 , sz1). Once the controller
received the joint state from the broadcaster, the controller could compute the current
pose of each joint in world frame. The sequential mapping is one of the pick up map. In
order to control the behavior of the end effector, we only need the last row of data from
the task space (az1 , sz1).

4.2 Leaf for Task Joystick

In this work, we use joystick for the manipulation of two robot arms via a joystick from
Xbox.

Task Joystick takes charge of the motion of end effector in x, y axis, when the end effector
is not so closed to the target. Adding joystick related policy into the CEP system is aiming
for more freedom for the user. For example, the user could manually set an appropriate
path for the robot at the beginning. Lately the robot might learn from the previous path
set by the user. It contributes to accelerate the learning progress, especially dealing with
sophisticated environment. Without the joystick, the robot might need much more time
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Figure 4.1: Mapping Tree from the Configuration Space

for the policy searching and optimization of the actions. By contrast, the guide from the
user could be easily passed to the robot motion planner.
The mapping relationship for the Task Joystick is the same as the Task Go-To Far, both
two policy interests only in behavior of end effector.

4.3 Leaf for Task Go-To Close

Task Go-To Close is designed for the task with demand for high accuracy, such as com-
plicated motion primitives grasping and releasing. In this work Task Go-To only focuses
on the accurate motion of the robot’ hand. Especially when the hand is quite close to
the target, the controller requires smooth, safe and quick response to the environment
to avoid unexpected errors like hitting on the target. By contrasts, Task Go-To Far and
Task Joystick are designed for the rough motion control, whereas Task Go-To Close for the
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Figure 4.2: The Projection of Buttons with Different Functions

delicate and sophisticated tasks.

4.4 Key parameters for Three Leaves

This section introduce the four main key parameters for these leaves: distance threshold,
the scale factor for the joystick’s input, the PD speed controller for the Task Go-To Far and
Close and the variable weight coefficient for these three leaves.

Joystick Input as Speed
The action for this leaf is the speed of the end effector qẋ = αx, qẏ = αy. where the x, y is
the value from stick ranging from -1 to 1, α is corresponding scale factor. Considering
the safety of the operation, this value could be set to 0.01 to ensure a smooth and not so
quick motion of the end effector.

Task Go-To Speed Controller
As explained in Chapter 2, according to Lie algebra, with two given 6D pose(start pose
and target pose), we could compute the desired 6D speed spinor (translation and rotation
speed) via log operation from SE(3) to the space se(3).

xdeṡ = (1− β)ẋ+ βρ (4.1)
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where ρ is the linear speed part of the ξ, β stands for the damping coefficient, xdeṡ presents
the desired linear speed in task space and ẋ is the speed in last timestamp.
Due to the ignorance of angular speed of the ξ during the Lie algebra calculation, the
speed of the end effector may be not smooth enough. The damping factor β is applied
here to smooth the speed of end effector. This value could be set to 0.3 after experiments.

Variable Weight Coefficient
As mentioned in the beginning of this chapter, the weight of each leaf is a function of
distance between between the end effector and target. Here this distance will be denoted
by dee for the sake of simplicity. For example, when dee is bigger than 80 cm, the weight
of Task Go-To Far will be set to zero. As for the middle and small range, the weight of

Figure 4.3: Mapping Tree from the Configuration Space

leaves would be function to this distance dee. There are two methods for this issue as the
figure above shown: change the variance in the Gaussian distribution or set it to a simple
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slope function. We choose the second one as the solution due to its simplicity and reduced
the number of variables in optimization progress.
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5 Experiments

This section begins with the brief introduction of set up of the experiments. Later three
different motion task primitives will be discussed in detail and corresponding the combi-
nation of these tasks will also be introduced. Another topic about obstacle avoidance will
be analyzed in followed section.

5.1 Experiment Setup

Due to complexity of real robot’s control, the experiments will all be conducted in the
simulation environment. Because the algorithm in this thesis contains much uncertainty
due to the policy search strategy and random initialization of action distribution. This
uncertainty might caused unexpected errors or even failures causing harm to human and
surrounded equipment. Before long-term validation for the robustness and safety any
algorithms should be conducted in simulation.
The simulation environments for the robot dynamics is the PyBullet, which provides conve-
nient interface for the robot control and building of the test scenes. Furthermore PyBullet
offers also user-friendly GUI interface and give clear display about critical information,
such as joints’ state or speed of the end effector.
As for the simulation for the obstacle avoidance, some environment data would be pre-
collected via depth camera. These image stream will be replayed during the simulation as
the off-line data. In our case, all the required data along with necessary transform tree
would be recorded via ROSBag function and lately replayed by the ROSBag node during
simulation. For some a bit more complicated scenes with multi obstacles, we will use tools
like PyBullt for quick start-up to build the scene. For example in our work, the single ball
scene is collected from the real world, whereas the a wall of obstacles are built via software.
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5.2 Tests for the CEP control

In this work, the test for the CEP control focuses on if the robot whether act as designed
when the distance between the end effector and target pose changes. As described in
Chapter 4, when the distance dee is larger enough, in our case this value was set to 80cm,
the action computed from Task Go-To Far policy would no impact on the final action of
the robot’s arm. When the robot’s hand is close enough to the target, even though there

Figure 5.1: Task Go-To Close With large Weight Coefficient

are input from the joystick, the end effector only followed the instruction of Task Go-To
Close. The robot’s hand moved smoothly to the target with decreasing velocity. When the
distance dee is in the middle range, the Task Go-To Far drove the end effector slowly in
the z axis. Meanwhile the input from joystick’s stick button still functions.

As the Fig. 5.2 illustrated, when the distance dee is small, the corresponding leaf rank
highest among three policies. CEP optimizes the motion planning problem as a sum of
bunch of Gaussian distribution here. The action with high probability is more likely to
fulfill all the assigned task in parallel, whereas lower probability may fail few tasks or
even cause unexpected errors.
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Figure 5.2: Sum of Three Leaves

5.3 Tests for obstacle avoidance

For the obstacle avoidance alone. for both single obstacles and multi obstacle avoidance,
the artificial potential filed method works well.

Figure 5.3: The progress of Obstacle Avoidance With Single Sphere
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As the Fig. 5.3 shows, the sphere-shaped obstacles is placed at the middle between the
start and goal. The robot arm moved around the obstacle and kept as closed as possible
to the original straight line trajectory.
As the Fig. 5.4 illustrated, for multi obstacles, the artificial potential field method also

Figure 5.4: Sum of Three Leaves

functions well. APF methods yields satisfying results while dealing with large numbers of
obstacles. Because the calculation of the distance could be easily vectorized and lots of
matrix calculation library has official optimization for these operations.
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6 Discussion

In this thesis, we achieve the application of CEP with three policies Task Go-to Far Task
Joystick and Task Go-To Close. The controller could based on the current state of the end
effector and the distance to the target change its own behaviors. When the distance is far
enough, the user have the freedom to control partial motion of the robot arms. When the
distance is close enough, corresponding algorithms will take over the control and interact
with the environment with much higher frequency than human.
Apart from the application of CEP, we also designed and achieved complete processing
of converting the depth image data into obstacles map in form of octree. We also found
appropriate method to eliminate point cloud from robot’s links. Moreover, in this thesis
we also increase the computation efficiency via various post-processing techniques for
point clouds, such as simplification via voxel grid and pass-through filters. In order to
speed up the comparison between two point cloud, we applied KD-Tree for it.
As for the obstacle avoidance, we combine the artificial potential filed method with the
obstacle maps. We could generate the potential filed based on the grid in the obstacle
maps without extra object segmentation procedures.
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7 Outlook

As for the visual processing part, more modification on the point clouds could be made
to accelerate the computation. For example, like object-based segmentation. When
certain range of points clouds could be recognized as a object, we could use simple
geometry such as cylinder, box and sphere as approximation of this object. In this way
the burden by processing the point cloud could be reduced, such as the set operation,
searching and comparison. Further more, the obstacle map could also be updated with
large resolution. Besides the depth information, image processing technique could also
contributes to the object segmentation. As for the CEP policy, it is possible to combine
two arm into one progress, namely from 7 DoF planning problem converted into one 14
DoF planning problem. This integration could help to solve the conflicts of these two
arms. Instead of using obstacle avoidance techniques, these problem can be directly solved
from the perspective of algorithms. Another advantage of this integration is saving of
communication cost between different progress.
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