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Learning Stable Vector Fields on Lie Groups

Julen Urain

Abstract—Learning robot motions from demonstration requires
models able to specify vector fields for the full robot pose when the
task is defined in operational space. Recent advances in reactive
motion generation have shown that learning adaptive, reactive,
smooth, and stable vector fields is possible. However, these ap-
proaches define vector fields on a flat Euclidean manifold, while
representing vector fields for orientations requires modeling the
dynamics in non-Euclidean manifolds, such as Lie Groups. In this
paper, we present a novel vector field model that can guarantee most
of the properties of previous approaches i.e., stability, smoothness,
and reactivity beyond the Euclidean space. In the experimental
evaluation, we show the performance of our proposed vector field
model to learn stable vector fields for full robot poses as SE(2) and
SE(3) in both simulated and real robotics tasks.

Index Terms—Imitation learning, lie groups, learning from
demonstration, machine learning for robot control, reactive motion
generation.

1. INTRODUCTION

ATA-DRIVEN motion generation methods such as Imita-
D tion Learning (IL) [1], [2] bring the promise of teaching
our robots the desired behavior from a set of demonstrations
without further programming of the robot skill. Similar to the
CNN networks in computer vision, choosing a good represen-
tation of the motion generator might help in the quality of the
robot’s performance, when learning a policy directly from data.
During the last two decades, there has been vast research on
learning policy architectures [3], [4], [5], [6], [7] that guarantee
a set of desirable inductive biases. Popularized as Movement
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Primitive (MP), the community explored a wide set of policy
architectures with inductive biases such as Smoothness [6],
Stability [3], [5] or cyclic performance [4], [8].

Learning Movement Primitives for orientations requires
additional insights in the architecture of the model. There
exist multiple representation forms for the orientation, such as
Euler angles, rotation matrices, or quaternions. Euler angles have
an intuitive representation, but the representation is not unique
and might get stuck in singularities (i.e. gimbal lock). These
properties make Euler angles undesirable for reactive motion
generation [9]. Instead of Euler angles, rotation matrices and
quaternions are preferred representations for reactive motion
generation. Nevertheless, they require special treatment, given
they are not defined in the Euclidean space. Rotation matrices
are represented by the special orthogonal group, SO(3), while
quaternions are represented in the 3-sphere, S*. Thus, in the
context of modeling orientation MP, there has been wide re-
search integrating manifold constraints and MP. In [10], [11],
[12], Dynamic Movement Primitives (DMP) [3] were adapted
to learn orientation DMP, by representing DMP for quater-
nions [10], [11], [12] or rotation matrices [12]. More recently,
orientation MP have been also considered to adapt Kernelized
Movement Primitives (KMP) [13], [14], Task Parameterized
GMM (TP-GMM) [7], [15] and Probabilistic Movement Primi-
tives (ProMP) [6], [16]. Nevertheless, most of the MP are rather
phase dependant or lack stabilitytees.

We propose to learn Stable Vector Field (SVF) [5], [17],
[18] on position and orientations. SVF are a family of dynamic
systems that are autonomous (i.e. don’t have phase dependency,
but only depend on the current state) and are inherently stable in
terms of Lyapunov. In contrast with DMP [10] or KMP [14], SVF
are inherently reactive to disturbances without the require-
ment of any phase adaptation. In contrast with TP-GMM [15],
SVF are inherently stable, generating stable motions beyond
the expert demonstrations. These properties makes SVF ideal for
human-robot interaction or to combine them with other vector
fields as in Riemannian Motion Policies (RMP) [19].

The contribution of this paper are: (1) We introduce a novel
learnable SVF function that can generate stable motions on
Lie Groups. Our proposed function generalizes Euclidean space
diffeomorphism-based SVF [17], [18], [20] to arbitrary smooth
manifolds such as Lie Groups. (2) To learn these SVF, we
propose a neural network architecture that represents diffeo-
morphic functions in robotic-relevant Lie Groups such as SE(2)
and SE(3). (3) Finally, we compare the performance of our
proposed model w.r.t. learning the vector fields for Euler angles
and learning the vector fields in the configuration space of the
robot.
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Fig. 1. Robot pouring trajectories generated by SE(3)-stable vector fields.
Each color represents a trajectory starting from a different initial configuration.
Given the stability properties, all the trajectories end up with the same orientation
and position on the end effector.

A. Background

A n-manifold M is called smooth if itis locally diffeomorphic
to an Euclidean space R"™ [21]. For each point « € M, there
exist a coordinate chart (U, 1)), were U is an open subset in the
manifold, U C M and ¢ : U — U , is a diffeomorphism from
the subset U to a subset in the Euclidean space U C R™. This
chart allows us to represent a section of the manifold M in a
Euclidean space and do calculus.

For any point in the manifold, © € M, we can attach a
tangent space, T, M that contains all the possible vectors that
are tangential at a. Intuitively, for any possible curve in M
passing through «, the velocity vector of the curve at o will
belong to the tangent space, v € 1 M. Thus, a vector field in
the manifold M is a function that maps any point in the manifold
to a vector in the tangent space,' g : M — T M. The LogMap
is the map that moves a point in the manifold M to the tangent
space, and the ExpMap is the map that moves a point from the
tangent space to the manifold.

A map ® : M — N between smooth manifolds induces a
linear map between their corresponding tangent spaces. For
any point x € M, the differential of ® at « is a linear map,
d®, : TeM, — T@(m)N, from the tangent space at x € M to
the tangent space at ®(x) € N (Fig. 2). The differential, d®,;,
is used to map vectors between tangent spaces. The pullback
operator is the linear operation d®}, : T@(E)N — T M that
maps a vector from T ()N to T M.

B. Related Work

a) Stable Vector Fields: SVF models are powerful motion
generators in robotics given they are robust to perturbations

IThe precise term for M is tangent bundle. The tangent bundle is the disjoint
set of all tangent spaces. The tangent space is defined at a certain point &, T M.
For simplicity, with a slight terminology abuse, in this paper, we use the term
tangent space.
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Fig. 2. In our work, we compute the vector field in M by pulling back the
vector field from the latent manifold \V. Given a point @ € M, we first map it to
the latent manifold y = ®(x) with y € N. Then, we compute the vector in the
latent manifold. Given a vector field g : N' — TN, we compute § € T (z) N
Finally, we apply the pullback linear operator to compute & = d®}, () in the
tangent space of M, & € T M. As we can observe, the diffeomorphic function
@ will deform the space and a trajectory (red line) or a vector field in the manifold
N will be deformed in M.

and generalize the motion generation beyond the demonstrated
trajectories. After the seminal work by Khansari et al. [5],
several works [18], [20], [22], [23], [24] have proposed novel
SVF models covering a wider family of solutions. Our work is
particularly close to diffeomorphism based SVF models [18],
[201], [22], [23]. Specifically, in this paper, we extend the class
of solutions to non-Euclidean manifolds, such as Lie groups.

b) Invertible Neural Networks (INN) in Smooth Manifolds:
Invertible Neural Network (INN) are a family of neural networks
that guarantee to represent bijective functions. The study of
modeling INN for smooth manifolds has been mainly developed
for density estimation. A set of previous works [25], [26],
[27] have proposed INN for specific manifolds, such as Tori or
Sphere manifolds. A more recent work [28] proposes a manifold
agnostic approach, on which Neural ODE [29], [30] are adapted
to manifolds. In [31], INN are proposed for Lie Groups. Similar
to our work, they also exploit the Lie algebra to learn expressive
diffeomorphisms, but the proposed model is limited to density
estimation.

II. PROBLEM STATEMENT

We aim to solve the problem of modeling SVF on Lie
Groups. In particular, we model our SVF by diffeomorphisms.
Diffeomorphism-based SVF represent the vector field in the
observation space as the deformed vector field of a certain
latent space [17], [18], [20], [23]. These models assume there
exist a stable vector field in a latent space g : N — TN
Then, given a parameterized diffeomorphic mapping @, that
maps any point in observation space M to the latent space N/,
® : M — N, we can represent the dynamics in the observation
space

& = dP: 0 god(xm), (1)

in terms of the latent dynamics g and the diffeomorphism .
d®, is the pullback operator that maps a velocity vector from
the latent space to the observation space. Intuitively, as shown in
Fig. 2, the diffeomorphic function ® deforms the space changing
the direction of the vector field in the observation space. The
stability guarantees of diffeomorphism-based SVF have been
previously proven in terms of Lyapunov [17], [18].

Previous diffeomorphism-based SVF are limited to Euclidean
spaces, without representing motion policies in the orientation.
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Fig.3. A visual representation of the ® function for 1-sphere (S1). The points
in ST are split into two groups. For the points in Uy, the diffeomorphism is
composed by first, mapping the points to the first-cover UM by the LogMap,
then applying a bounded Euclidean diffeomorphism between U ‘M and UN and
mapping the points back to the manifold, by the ExpMap. For the points not
belonging to Uy, we simply apply the identity map. If fg is the identity map
close to the boundaries — and 7; the map is diffeomorphic for the whole S*.
We add a few markers to represent the space deformation along the mappings.

Euclidean SVF assumes (i) that ® : R™ — R"™ defines a bijective
mapping between Euclidean spaces, (ii) in Euclidean spaces, the
tangent space and the manifold are in the same space, and then,
the latent dynamics are g : R” — R" and, (iii) given ® defines
a mapping between Euclidean spaces, the pullback operator is
represented by the Jacobian pseudoinverse of ®, d®}, = J II).

In our work, given we are required to model the SVF on
Lie Groups, we need to (i) model a ® function that is bijective
between Lie Groups, (ii) investigate how to model stable latent
dynamics for Lie Groups and (iii) investigate how to model the
pullback operator given the diffeomorphism ®.

III. STABLE VECTOR FIELDS ON LIE GROUPS

As introduced in Section II, modelling diffeomorphism-based
SVF on Lie Groups requires additional insights in the modelling
of the three main elements ®, g and d®*. In the following,
we introduce our proposed models to represent each of these
elements and we add a control block diagram on Fig. 4 to provide
intuition on how to use the proposed SVF in practice.

A. Diffeomorphic Mapping ®

We introduce our proposed function to learn diffeomorphisms
between Lie Groups, ® : M — N. Both M and A are mani-
folds for the same Lie group, with M representing the Lie group
in the observation space and V, the Lie group in the latent space.
A simple example of ® is given by the rotation function. Given
X e M=S50(3)andY € N = SO(3), the rotation function
Y = &(X) = RX, applies a linear diffeomorphic mapping
between M and N.

Nevertheless, representing nonlinear diffeomorphic map-
pings for Lie groups is challenging. In our work, we propose to
exploit the tangent space to learn these mappings. In contrast
with the manifold, the tangent space is a Euclidean space,
making it easier to model nonlinear diffeomorphic functions.

The topology of the Lie groups and their Lie algebra are not
the same. Then, it is impossible to define a single diffeomorphic
function ® that maps all the points in the group to the Lie algebra.
To make proper use of the Lie algebra and still guarantee the
diffeomorphism for the whole Lie group, we propose to model
the diffeomorphism by parts. We visualize an example of the
proposed function in Fig. 3. The points in the Lie Group are
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split into two sets. We consider a coordinate chart Uy, C M
that defines a set of almost all the points in the Lie group. Then,
we group all the points not belonging to the set U, in a different
set, x € M © Uyp,. For example, in the example on Fig. 3, we
group all the points except the antipodal point in U and put the
antipodal point in the set M & Uyy. The points in the set Uy
are mapped to a set in the latent manifold, Uy C N The points
in the set M © U, are mapped to the latent space set N’ © Uyy.
Given that M and A\ are represented in the same Lie Group,
the sets in the observation space and the latent space are also the
same.

B (x) = ExpMap o fg o LogMap(z) ifx € Uy
= if £ € MO Unm.
(2)

For any element in the coordinate chart « € Uy, we de-
fine the map from Upns to Uy, through the tangent space,
® : ExpMap o fy o LogMap. The function first maps a point
in the Lie group to the Lie algebra by the LogMap. For any
point & € U, it will map to a point in a subset of the tangent
space, T € UuCT = M. We call first cover of the tangent
space to U M- The map between Uy and U M 1s guaranteed
to be diffeomorphic given the LogMap properties [21]. Then,
we apply a Euclidean diffeomorphism f, between the first
covers of the observation space UM and the first covers of the
latent space, U v We introduce our proposed f in Section IV.
Finally, we can map the points y € Uy backtoy € Uy CN
by the ExpMap and represent it in the Lie Group. Given the
three steps are diffeomorphic, we can guarantee that & applies
a diffeomorphism between Uy, and Uys. For the points not
belonging to the set U, we apply the identity map. The identity
map is also diffeomorphic.

Even if each part in (2) is diffeomorphic in itself, to guarantee
the function ® is diffeomorphic in the whole Lie group, we
require to guarantee the function is continuous and differentiable
in the boundaries between Uy, and M & Uy,. To do so, we
impose structurally fo to become the identity map fy(Z) = &
when approaching to the boundaries of the set Uy Thus,

®(x) = ExpMap o fg o LogMap(x)
= ExpMap o LogMap(x) = x 3)

when  is close to the boundaries of U .

1) An Intuitive Example for 1-Sphere (S') Manifold: The
1-sphere manifold is composed by all the points in a circle of
radius r, S : {z € R?; ||z|| = r}. We visualize this manifold
in Fig. 3. To model a d1ffeom0rph1c transformation between M
and NV, we propose to split the manifold in two sets: the set
U considers all the points in the manifold except the point
in the south 5 = (0,7), Usm = SL,.. Equally, the set in the
latent manifold Uy, also consider Uy = S;ws. The other set
Me Uy ={xs} is composed of the point not belonging to
Uprq. We can observe that Uy, is diffeomorphic to the open
line segment Unm = (—m, 7). We refer to this set as first-cover
of the tangent space Uy = Uy = (—m, 7). We can map any
point from Uy, to Unm by the LogMap function. Inversely, we
can map the points from the open line segment to the set Uy
by the ExpMap function. We remark that points in Uy, are

Authorized licensed use limited to: ULB Darmstadt. Downloaded on January 18,2023 at 11:32:06 UTC from IEEE Xplore. Restrictions apply.



12572

Manifold Stable Vector Fields

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 4, OCTOBER 2022

Bounded Flow

d(p*A joint Jacobian Inv

-1 y
[+ oo

Dynamics

|3 = 3 |« LogMap |

t
¥ = k(x,to) + / hy (K(x, £))dt
Jito
K(x, to) = X

fadd
=

=N

D

fo v

N~—}
fo

| ExpMap | ¥

o | LogMap ﬂ,
T

Fig. 4.

Left: Manifold stable vector fields block diagram. Right: Proposed architecture for our diffeomorphic function fg. As shown in (1), our manifold SVF is

composed of three elements: a diffeomorphism @ (light blue box)(for simplicity, we only visualize the part related with the set U p,), the latent dynamics g (yellow
box) and, the pullback operator d®* (red box). The diffeomorphism ® is composed of three elements: the LogMap, a bounded diffeomorphism between first covers
fo (blue) and, the ExpMap. The pullback operator d®* has two elements: the Jacobian inverse, computed for the diffeomorphism f g, and the Adjoint operator.
Additionally, to control a robot, we first map the current joint configuration g to @ € SF(3) by Forward Kinematics. And once & € s¢(3) is computed, we map it

back to the configuration space by J 111(' Then, we apply a velocity controller in the configuration space. The dashed line from the output of fg and the dynamics
input represents a shortcut we consider in practice as long as the latent ExpMap and LogMap are computed in the same origin frame.

two-dimensional while points in U ‘M are one-dimensional. Once
the points are in the U M, we model a bounded diffeomorphic
function fg that maps the points in U M to U . We present
in Section IV how we model this bounded diffeomorphism
fo- This map can be thought of as a deformation of the line
Unm, stretching or contracting the line. We highlight that while
representing directly a diffeomorphism between the open line
segments U M and U v 1s easy, representing it between the groups
Upq and Uy is hard, given that Upq and Uy are not Euclidean
spaces.

As shown before, to guarantee that ® is diffeomorphic for the
whole manifold S!, we need to guarantee that f, becomes the
identity map close to the boundaries of Uy For the case of S,
the function f g should approximate the identity map the closer
the points are to —7 and 7. Intuitively, the function f 4 represents
a space deformation in (—, ) that becomes the identity close
to the boundaries — or 7. We illustrate this diffeomorphic map
in Fig. 3.

B. Latent Stable Dynamics g

For a given manifold )V, the vectors are represented in the
tangent space of the manifold, TAV. Thus, a dynamic system
in a manifold is a function that for any point in the manifold
outputs a vector in the tangent space, g : N' — TN. Similarly
to the transformation map ®, we propose to model the dynamics
by parts

—LogMap,, (y) ify € Uy

. “4
0 ifye NoUy @

y=g(y) =

For any element in Uy, we first map the point to the tangent
space centered at y; and then, compute the velocity vector as
Yy = g(¥) = —9. These dynamics will induce a stable dynamic
system in the manifold Uy, with a sink in y ;. For any point out
of the set Uys, we set the velocity to zero. This will set an unstable
equilibrium point for any point in A" & Uy. In practice, given
the LogMap in our dynamics (4) is the inverse of the ExpMap
in ®, we can directly compute the dynamics using as input the
output of fg without moving to N (dashed line in Fig. 4).

C. Pullback Operator d®*

The pullback operator unrolls all the steps to the latent space,
N, done by the diffeomorphism, ®, back to the observation
manifold, M. Additionally, given the velocity vector is defined
on the tangent space, the unrolling steps are done on the tangent
space. The pullback operator for the mapping, f g, is the Jacobian
Jy. The inverse of the Jacobian, maps the velocity vector
from the latent tangent space to the observation tangent space,
centered in the origin, J ]Zl : Ty N — Ty, M. Additionally,
we apply a second pullback operator to map the vector from the
tangent space in the origin « z to the tangent space in the current
pose x, A : Ty, M — T, M. This linear map is known as the
adjoint map and it can be understood as a change of reference
frame for the velocity vectors. We direct the reader to [32] to
find more information on how to model it. The whole pullback
operator is then, d®* = A o J}l.

IV. BOUNDED FLOWS AS TRANSFORMATION f

In Section III-A, we propose to model the diffeomorphism
between two subsets of the manifolds (U, and Uy/) through the
tangent space. To properly model the diffeomorphism, we have
introduced a function fg and defined its required properties.
The function f should be a diffeomorphism and should become
identity when approximating the boundaries of the tangent space
sets U M and U . To represent our function f g, we build on top
of the research on INN for Normalizing Flows [29], [33].

We propose to model the function fg by adapting Neural
ODEs [29] to our problem. Neural ODEs propose to model
the diffeomorphism between two spaces by the flow of a pa-
rameterized vector field hg. The flow k(z,t) : R*T! — R™,
represents the motion of a point for the time ¢, given the ODE,
dz/dt = he(x) = d(k(x,t))/dt = he(k(x,t))

t1
xy, = k(z,t1) = —I—/ heo(k(x,t))dt. 5)
0
with ¢; being a certain time instant and x the position of the
particle in the instant ¢ = 0. The flow function represents the
position of a particle x follows given the vector field hg at
the instant ¢;. In Neural ODEs, the function fg is represented
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by the output of the flow at time 1

y=fol@) = k@t =1) =2 +/O ho(k(z. 0)dt.  (6)

As presented in [26], [29], the function is a diffeomorphism,
as long as hg is a uniformly Lipschitz continuous vector
field (Picard—Lindel6f theorem).

Additionally, to compute the pullback operation, we are re-
quired to compute the Jacobian matrix of fg, J = Vo k(x,t1).
Given the vector field hg, there exists an ODE representing the
time evolution of the Jacobian

Ji(z,t) = Vichg(k(zx,t))J f(z,t)
J(x,to) = 1. (7)

In practice, we can use an arbitrary ODE solver and find the
values for J (x, t1) and k(z, t1) solving (6) and (7). In our case,
to guarantee a high control frequency rate, we apply the forward
Euler method to solve the ODE and then compute the Jacobian
by backward differentiation. It is important to remark that these
dynamics are used to represent the diffeomorphism f, between
two spaces and not to represent the desired vector fields.

Relevant consideration for our problem is that the function
fo should define a diffeomorphism between two bounded sets
UM and U, v and the transformation should become identity
close to the boundaries of these sets. Nevertheless, without
any additional considerations on hg, the flow could move a
point in U to any point in R”, with n the dimension of the
Euclidean space in which the set Uy is. To bound the flow
between the sets, we impose structurally that the vector field hg
vanishes when approaching the boundaries. If the flow dynamics
are zero, then, the input and the output are the same and we
don’t apply space deformation at that point. Given a distance
function a(x) : R™ — R that measures how close we are to the
boundaries, we define the vector field as

ho(x) = a(z)pe(x), (8)

with 7 an arbitrarily chosen uniformly Lipschitz continuous
parameterized vector field and « the scaling function of the
dynamics to satisfy the desired constraints, preventing to move
out of the set. & becomes zero close to the boundaries. Then,
close to the boundaries,

y = fo(x) = k(z,t1) = k(z,t) = x. 9)

Thus, the function fg is guaranteed to approximate the iden-
tity in the boundaries.

Given the set U M varies between the manifolds, we consider
different distance functions « for each possible manifold. For
the case of SO(2), the first covers are Uy = Uy = (—, 7).
To impose identity map in the boundaries, the dynamics are
weighted with a(x) = (7 — |z]) /7. v is a function that moves
from 1 to O when we approach the +7 boundaries.

For the case of §2, the sets are Uy = Uy = {x € R?; ||z|| <
7}, This set is diffeomorphic to the set in Uy = Uy C S?,
which considers all the points in the manifold except the an-
tipodal point. To impose the dynamics to become zero close
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Algorithm 1: Behavioural Cloning for Manifold-SVF

Given: mSVF: Manifold SVF function ;
6o: initial parameters of the function mSVF;
I: Optimization steps;
D: {{wi,hd:i,t}tT;‘l}fil: N trajectories, of T; length, with
the position in & € M and the velocity vector in ¢ € T M
fori<—0tol—1do
il)b,:i?b ~ D, // Sample a batch from dataset
L(0:) = 5 3 |@k — mSVE(wy; 0:)|13 ;
0i1 — 0; +aVeLl(6;);

5 return 0%;

to the boundaries of the set, the distance function is a(x) =
(Ilal| - ) /. o

For the case of SO(3), the sets are Uy = Uy = {zx €
R3; ||z|| < 7}. The sets are diffeomorphic to the SO(3) sets
Um =Un = SO(3)£r, C SO(3), that consider all possible
rotation matrices except the ones that have a 7 rotation from
the origin. The dynamics are weighted by the function a(x) =
(Ilel| = m)/.

For the case of the special Euclidean groups SE(2) and SE(3),
the orientation-related dimensions maintain the same first cov-
ers of the special orthogonal groups. For the position-related
dimensions, we bound the first cover to the desired workspace.
Given (p, 6) € se(3), with p the position related variables and
0, orientation related variables. We consider two scaling func-
tions, one for orientations and one for positions. The orientation
scaling function . (@) is computed given the scaling functions
above. The scaling function for the positions s (p) can be used
to enforce workspace limits and varies depending on the chosen
workspace boundaries. We compute the distance function by

Ol(p, 0) = apos(p)aori(0)~

V. EXPERIMENTAL RESULTS

We present three experiments to evaluate the performance
of our approach. In the first experiment, we illustrate, in a S
manifold, the performance of our proposed f, w.r.t. functions
that do not take into consideration the manifold and treat is as
Euclidean. Even if S? is not a Lie Group, we can apply the
proposed approach also on it and serves as a useful manifold for
illustration.

In the second and third experiments, we evaluate the perfor-
mance of our model in the Lie Groups SE(2) and SE(3), for a
2D peg-in-a-hole task and a pouring task respectively.

A. Network Evaluation in S? Manifold

We study the problem of learning stable vector fields in 2-
sphere, S? by behavioral cloning (Algorithm 1). The objective of
this experiment is to evaluate the influence of choosing different
INN as mapping fg.

For evaluation, we consider three models. The three mod-
els use our proposed architecture in Fig. 4 and vary in the
used diffeomorphism fg. We consider two models using the
INN from previous works [18], [20] that considers a diffeo-
morphism in the whole Euclidean space f,:R"™ — R™ and
our proposed INN that learns a diffeomorphism in bounded
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domains, fg : U M= U, v We modified the LASA dataset [5]
to S? manifolds. We consider 22 different shape trajectories
and evaluate the models given three metrics: MSE, Area, and
Instability percentage. For measuring the instability percentage,
we initialized a set of points in random positions on S? and
generated a trajectory with the learned vector fields. Then, we
measured how many trajectories reach the target position after
a certain period.

From Fig. 5, we can observe that the three architectures
performed similarly in both MSE and Area measures and were
able to mimic the performance of the demonstrations properly.
This indicates that the proposed algorithm can learn vector fields
on smooth manifolds. Nevertheless, as shown in the Instability %
metric, the performance of the Kernel Coupling Layer [20] and
the Coupling Layer [18] decay when initializing the trajectories
in a random position. Given the Kernel Coupling Layer and the
Coupling Layer define a diffeomorphism in the whole Euclidean
space, they lack any guarantee of being bijective between U M
and U v- Thus, these approaches lack guarantees about the
stability of the vector field in U M. We can observe the instability
of the vector fields by observing the antipodal point of the sphere,
where the boundaries of the first cover U M are defined. As
shown in Fig. 6, while our INN can guarantee all the vectors
pointing out of the antipodal (a source in the antipodal point), the
kernel coupling layer and coupling layer are not able to guarantee
stability close to the boundaries generating oscillatory behaviors
around the antipodal point.

B. Evaluation of SE(2) Stable Vector Fields in a 2D
Peg-in-A-Hole Task

We consider the environment presented in Fig. 7. The robot
is a 5-DOF robot moving in a 2d plane. The goal of the
task is to move the end-effector of the robot into the hole
while avoiding collisions against the walls. We generated a
1 K trajectory demonstration to train our models by applying

4
EY

Success Rate
o
>

I
Y

4
o

o 20 40

80
Data Percentage (%)
—— Ours(Bounded) NN-VF

Ours(Unbounded) — Q-SVF

Fig. 7.  Left: Peg-in-a-hole environment. We show in different colors, gener-
ated trajectories from different initial configurations. Right: Success rate Vs.
Data percentage. We evaluate the performance of a set of models when trained
with different amounts of data.

RRT-Connect [34] on the environment. We compare the perfor-
mance of our model w.r.t. three baselines. First, we consider a
vector field modeled by a naive fully connected neural network
in the tangent space of SE(2). Second, we trained a stable
vector field in the configuration space, Q. Third, similarly to the
experimentin S2, we model a vector field with the architecture in
Fig. 4, but consider a vanilla INN as fg instead of the proposed
INN. To evaluate the performances, we initialize the robot in
a random configuration and reactively evolve the dynamics.
To control the robot, we apply operational space control [35].
Given the current end-effector pose, x € SE(2), we compute
the desired velocity at the end effector &z € R® and pullback to
the configuration space by the Jacobian pseudoinverse.

We present the results in Fig. 7. We measure the success of the
different methods to approach the goal without colliding under
different amounts of training data. The vanilla neural network
model performed the worst with any amount of trained data. A
vanilla-NN is not limiting the family of possible vector fields,
thus it may learn vector fields with multiple equilibrium points,
limit cycles, or even unstable ones. This results in highly unstable
vector fields with poor performance. The results also show the
relevance of choosing a good task space representation. Learning
in SE(2) outperforms the configuration space approach. The
difference in performance might be related to the vector field
dimensionality, 5 for the configuration space and 3 for SE(2)
and also, with the task itself: as the peg-in-a-hole task is defined
in the operational space the SF(2) vector fields fit better the
problem. Finally, we observe the benefit of our proposed INN
w.r.t. vanilla INN approach. Given that the vanilla INN lacks
global stability guarantees, the robot gets stuck in limit cycles
and the performance decays.
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In conclusion, we have observed that (i) stability guarantees
greatly improves the performance of the policy for behavioral
cloning problems (ii) representing the vector field in a proper
manifold can boost the performance, and (iii) a bounded INN
guarantees stability, while the unbounded one does not, given ¢
is not diffeomorphic anymore.

C. Learning a Pouring Task With SE(3) Stable Vector Fields

In this experiment, we evaluate the performance of our method
on a pouring task (Fig. 1). To properly pour, the robot requires
to combine multiple positions and orientation changes. First,
we compare in simulation our method with Euler angle-based
vector fields. We consider two version of our model: One with
bounded fg, introduced in Section IV and one with a vanilla
unbounded INN as f, [36]. Then, we evaluate the performance
of our model in areal robot under target modifications and human
disturbances.

For this experiment, we use a 7 DoF Kuka LWR arm. The
provided task demonstrations consist of 30 kinesthetic teaching
trajectories with a wide variety of initial configurations. We
considered different end-effector positions and orientations and
trained the three models by behavioral cloning (Algorithm 1).
To control the robot, we apply operational space control [35] for
our proposed model (Fig. 4) and position control for the Euler
angles vector field. Note that our proposed method adapts to any
other type of robot (prismatic joints, parallel robot) by changing
the forward kinematics function. We evaluate the three models in
three scenarios, robot performance with an initial configuration
close to the target, initial configuration far from the target, and
random initial configuration. We consider 10 different initial
configuration and measure the robot’s performance. In the three
cases, we measured the stability guarantees of the models (i.e.
the guarantee of arriving at the target pose after a certain time).
We present the experiment results in Fig. 8. From this figure,
we can see that our model with the bounded function fg outper-
formed the other models in the three cases. These results validate
our claims on the requirements of defining a function fg between
the first covers, to guarantee stability in the whole Lie Group.
Euler angle-based vector fields perform quite well for the case
of close initial configuration. Euler Angles are an undesirable
representation for feedback control due to their singularities and
non-uniqueness. Nevertheless, we can assume these types of
situations are rare close to the target and can perform relatively
well. Nevertheless, their performance decay considering initial
configurations far from the target. Given the non-uniqueness
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of the Euler-angles, representing globally stable vector fields in
Euler-angles is not possible. In the case of our model with vanilla
INN, it shows unstable behavior far from the target, while it
remains quite stable close to it. Diffeomorphism-based SVF lack
stability guarantees if the function ® is not bijective. This lack
of bijectiveness is more prone to happen close to the boundaries
of the first cover and ® remains bijective close to the target, with
the guarantee of being stable.

We also evaluate the performance of our model on areal robot,
measuring the model’s performance under target modifications
and human disturbances. To adapt to different target positions,
we use the current one @wre € SE(3) as the origin of the
LogMap (Fig. 4). This allows us to represent the vector fields
relative to the current target position. We track the target pot
by Optitrack motion capture systems. The control signal is
computed in a close-loop at a rate of 100 Hz.

For the system evaluation, we predefined 10 different initial
configurations covering the whole workspace. The robot holds a
glass with 4 balls and we measured the number of balls that enter
the pot after executing the trajectory. We considered 3 scenarios:
normal execution, physical disturbance, and target modification.

Looking at the results in Fig. 8, it is clear that the robot
achieves a very robust performance. In the normal execution,
it pours almost all the balls in the pot, given any initial config-
uration. This result shows the generalization properties of our
model: the robot was initialized in a position that does not belong
to the demonstration set, but was able to solve the task. We also
tested the system under heavy physical disturbances, including
pushing and holding the robot. In this scenario, the performance
decays, but the robot was able to succeed most of the time.
Finally, we observe the vector field was able to properly adapt
to different pot positions. The robot succeeded to put almost all
the balls in the pot except for some target positions that were
beyond the workspace limits of the robot.

VI. DISCUSSION & CONCLUSIONS

We have proposed a novel Motion Primitive model that can
learn stable vector fields on Lie Groups from human demon-
strations. Our work extends previous works on modeling stable
vector fields to represent them on Lie Groups. The proposed
model allows us to generate reactive and stable robot motions
for the full pose (orientation and position). Through an extensive
evaluation phase, we have validated the modeling decisions to
guarantee stability and the importance of representing the vector
fields on Lie Groups to properly solve robot tasks.

We have many directions to improve our model. First, the
chosen diffeomorphic function ® has some limitations. Our
proposed model cannot set the sink in the antipodal points, given
the map in antipodal points is an identity map. In practice, we
can set the attractor in an arbitrary pose by adding a linear trans-
formation that moves the sink. Nevertheless, we consider that
this limitation might influence the performance when modeling
complex motion skills with significant changes in orientation.
In the future, we aim to explore novel functions to represent the
diffeomorphism ®. The experiments we have carried out focus
on the performance evaluation of our proposed stable vector
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fields. However, these models are of particular interest combined
with additional motion skills, such as obstacle avoidance or
joint limit avoidance vector fields, as done in RMP [19] or
Composable Energy Policies (CEP) [37]. We will investigate
how to combine vector fields in future works.

Another possibility is to use the proposed method as a cost
function. Indeed, the architecture encodes in itself a Lyapunov-
stable potential function. We can use this function as a terminal
cost function (value function) or as a cost function in trajectory
optimization problems, allowing the integration of additional
cost functions. This approach could be beneficial in long-horizon
planning problems [38].
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