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Fig. 1: Pick and place task in which the robot has to pick a mug and move it to the target pose (in the shelves) without colliding. We exploit diffusion
models for jointly optimizing both grasp and motion and show the successful trajectory from left to right.

Abstract— Multi-objective optimization problems are ubiqui-
tous in robotics, e.g., the optimization of a robot manipulation
task requires a joint consideration of grasp pose configurations,
collisions and joint limits. While some demands can be easily
hand-designed, e.g., the smoothness of a trajectory, several
task-specific objectives need to be learned from data. This
work introduces a method for learning data-driven SE(3) cost
functions as diffusion models. Diffusion models can represent
highly-expressive multimodal distributions and exhibit proper
gradients over the entire space due to their score-matching
training objective. Learning costs as diffusion models allows
their seamless integration with other costs into a single differen-
tiable objective function, enabling joint gradient-based motion
optimization. In this work, we focus on learning SE(3) diffusion
models for 6DoF grasping, giving rise to a novel framework
for joint grasp and motion optimization without needing to de-
couple grasp selection from trajectory generation. We evaluate
the representation power of our SE(3) diffusion models w.r.t.
classical generative models, and we showcase the superior per-
formance of our proposed optimization framework in a series
of simulated and real-world robotic manipulation tasks against
representative baselines. Videos, code and additional details are
available at: https://sites.google.com/view/se3dif

I. INTRODUCTION

Autonomous robot manipulation tasks usually involve
complex actions requiring a set of sequential or recurring
subtasks to be achieved while satisfying certain constraints,
thus, casting robot manipulation into a multi-objective mo-
tion optimization problem [1]–[3]. Let us consider the pick-
and-place task in Fig. 1, for which the motion optimization
should consider the possible set of grasping and placing
poses, the trajectories’ smoothness, collision avoidance with
the environment, and the robot’s joint limits. While some
objectives are easy to model (e.g., joint limits, smoothness),
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others (e.g., collision avoidance, grasp pose selection) are
more expensive to model and are therefore commonly ap-
proximated by learning-based approaches [4]–[8].

Data-driven models are usually integrated into motion
optimization either as sampling functions (explicit genera-
tors) [6], [9], or cost functions (scalar fields) [4], [10]. When
facing multi-objective optimization scenarios, the explicit
generators do not allow a direct composition with other
objectives, requiring two or even more separate phases during
optimization [11]. Looking back at the example of Fig. 1, a
common practice is to learn a grasp generator as an explicit
model, sample top-k grasps, and then find the trajectory
that, initialized by a grasp candidate, solves the task with
a minimum cost. Given the grasp sampling is decoupled
from the trajectory planning, it might happen the sampled
grasps to be unfeasible for the problem, leading to an un-
solvable trajectory optimization problem. On the other hand,
learned scalar fields represent task-specific costs that can
be combined with other learned or heuristic cost functions
to form a single objective function for a joint optimization
process. However, these cost functions are often learned
through cross-entropy optimization [6], [12] or contrastive
divergence [10], [13], creating hard discriminative regions
in the learned model that lead to large plateaus in the
learned field with zero or noisy slope regions [14], [15],
thereby making them unsuitable for pure gradient-based
optimization. Thus, it is a common strategy to rely on task-
specific samplers that first generate samples close to low-cost
regions before optimizing [6], [12].

In this work, we propose learning smooth data-driven cost
functions, drawing inspiration from state-of-the-art diffusion
generative models [16], [17]. By smoothness, we refer to the
cost function exposing informative gradients in the entire
space. We propose learning these smooth cost functions
in the SE(3) robot’s workspace, thus defining task-specific
SE(3) cost functions. In particular, in this work, we show
how to learn diffusion models for 6DoF grasping, leveraging
open-source vastly annotated 6DoF grasp pose datasets like
Acronym [18]. SE(3) diffusion models allow moving initially
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random samples to low-cost regions (regions of good grasp-
ing poses on objects) by evolving a gradient-based inverse
diffusion process [19] (cf. Fig. 2). SE(3) diffusion models
come with two benefits. First, we get smooth cost functions
in SE(3) that can be directly used in motion optimization.
Second, they better cover and represent multimodal distri-
butions, like in a 6DoF grasp generation scenario, leading
to better and more sample efficient performance of the
subsequent robot planning.

Consequently, we propose a joint grasp and motion opti-
mization framework using the learned 6DoF grasp diffusion
model as cost function and combining it with other differ-
entiable costs (trajectory smoothness, collision avoidance,
etc.). All costs combined (learned and hand-designed) form
a single, smooth objective function that optimizing it enables
the generation of good robot trajectories for complex robot
manipulation tasks. This work shows how our framework
enables facing grasp generation and classical trajectory op-
timization as a joint gradient-based optimization loop.

Our contributions are threefold: (1) we show how to
learn smooth cost functions in SE(3) as diffusion models.
As SE(3) is a non-Euclidean space, we show a practical
approach for adapting the training and sampling processes
of diffusion models for learning 6DoF costs. Then, (2) we
use the SE(3) diffusion models to learn 6DoF grasp pose
distributions as cost functions. In our experiments, we show
that our learned models generate more diverse and successful
grasp poses w.r.t. state-of-the-art grasp generative models.
Once the model is trained, (3) we introduce a gradient-
based optimization framework for jointly resolving grasp
and motion generation, in which, we integrate our learned
6DoF grasp diffusion model with additional task related cost
terms. In contrast with previous methods that decouple the
grasp pose selection and the motion planning, our frame-
work resolves the grasp and motion planning problem by
iteratively improving the trajectory to jointly minimize the
learned object-grasp cost term and the task related costs. We
remark that this joint optimization is only possible thanks
to the smoothness of our learned diffusion model and using
instead a grasp classifier, trained with cross-entropy loss, as
cost won’t resolve the problem due to its lack of smoothness.
Our quantitative and qualitative results in simulation and
the real-world robotic manipulation experiments suggest that
our proposed method for learning costs as SE(3) diffusion
models enables efficiently finding good grasp and motion
solutions against baseline approaches and resolves complex
pick-and-place tasks as in Fig. 1.

II. PRELIMINARIES

Diffusion Models. Unlike common deep generative mod-
els (Variational Autoencoders (VAE), generative adversarial
networks (GAN)) that explicitly generate a sample from a
noise signal, diffusion models learn to generate samples by
iteratively moving noisy random samples towards a learned
distribution [16], [20]. A common approach to train diffusion
models is by Denoising Score Matching (DSM) [21], [22]. To
apply DSM [20], [23], we first perturb the data distribution

ρD(x) with Gaussian noise on L noise scales N (0, σkI) with
σ1 < σ2 < · · · < σL, to obtain a noise perturbed distribution
qσk

(x̂) =

∫
x

N (x̂|x, σkI)ρD(x)dx. To sample from the per-
turbed distribution, qσk

(x̂) we first sample from the data dis-
tribution x ∼ ρD(x) and then add white noise x̂ = x+ ϵ with
ϵ ∼ N (0, σkI). Next, we estimate the score function of each
noise perturbed distribution ∇x log qσk

(x) by training a noise-
conditioned Energy Based Models (EBM) Eθ(x, k), by score
matching ∇xE(x, k) ≈ −∇x log qσk

(x) for all k = 1, . . . , L.
The training objective of DSM [22] is

Ldsm =
1

L

L∑
k=0

Ex,x̂
[∥∥∇x̂Eθ(x̂, k) +∇x̂ logN (x̂|x, σ2

kI)
∥∥] , (1)

with x ∼ ρD(x) and x̂ ∼ N (x, σkI)
1. To generate samples

from the trained model, we apply Annealed Langevin
Markov Chain Monte Carlo (MCMC) [24]. We first draw
an initial set of samples from a distribution xL ∼ ρL(x) and
then, simulate an inverse Langevin diffusion process for L
steps, from k = L to k = 1

xk−1 = xk −
α2
k

2
∇xk

Eθ(xk, k) + αkϵ , ϵ ∼ N (0, I), (2)

with αk > 0 a step dependent coefficient. Overall, DSM
Eq. (1) learns models whose gradients point towards the
samples of the training dataset ρD(x) [19].
SE(3) Lie group. The SE(3) Lie group is prevalent in
robotics. A point H =

[
R t
0 1

]
∈ SE(3) represents the full

pose (position and orientation) of an object or robot link with
R ∈ SO(3) the rotation matrix and t ∈ R3 the 3D position. A
Lie group encompasses the concepts of group and smooth
manifold in a unique body. Lie groups are smooth manifolds
whose elements have to fulfil certain constraints. Moving
along the constrained manifold is achieved by selecting any
velocity withing the space tangent to the manifold at H
(i.e., the so-called tangent space). The tangent space at the
identity is called Lie algebra and noted se(3). The Lie algebra
has a non-trivial structure, but is isomorphic to the vector
space R6 in which we can apply linear algebra. As in [25],
we work in the vector space R6 instead of the Lie algebra
se(3). We can move the elements between the Lie group
and the vector space with the logarithmic and exponential
maps, Logmap : SE(3) −→ R6 and Expmap : R6 −→ SE(3) respec-
tively [25]. A Gaussian distribution on Lie groups can be
defined as

q(H|Hµ,Σ) ∝ exp
(
−0.5

∥∥Logmap(H−1µ H)
∥∥2
Σ−1

)
, (3)

with Hµ ∈ SE(3) the mean and Σ ∈ R6×6 the covariance
matrix [26]. This special form is required as the distance
between two Lie group elements is not represented in
Euclidean space. Following the notation of [25], given a
function f : SE(3) −→ R, the derivative w.r.t. a SE(3) element,
Df(H)/DH ∈ R6 is a vector of dimension 6. We refer
the reader to [25] and the Appendix in project site for an
extended presentation of the SE(3) Lie group.

1Note that we learn the energy Eθ instead of the score, as its common in
the literature [16], [20], to use it as a cost function and evaluate the quality
of our samples in an optimization problem
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Fig. 2: Generating high quality SE(3) grasp poses by iteratively refining
noisy initial samples (k=L) with an inverse Langevin diffusion process over
SE(3) elements (Eq. (6)).

III. SE(3)-DIFFUSION FIELDS

In this section, we show how to adapt diffusion models
to the Lie group SE(3) [25], as it is a crucial space for
robot manipulation. The SE(3) space is not Euclidean, hence,
multiple design choices need to be considered for adapting
Euclidean diffusion models. In the following, we first explain
the required modifications (Section III-A). Then, we propose
a neural network architecture for learning SE(3) diffusion
models that represent 6DoF grasp pose distributions and
show how we train it (Sec. III-B). Finally, we show how
to integrate the learned diffusion models into a grasp and
motion optimization problem and show how to optimize it
jointly considering the grasp and the motion (Sec. III-C).

A. From Euclidean diffusion to diffusion in SE(3)

We call SE(3)-DiffusionFields (SE(3)-DiF) a scalar field
that provides a scalar value e ∈ R for an arbitrary query
point H ∈ SE(3), i.e., e = Eθ(H, k) with a scalar conditioning
variable k determining the current noise scale [20].
Denoising Score Matching in SE(3). Similar to the Eu-
clidean space version (cf. Sec. II), DSM is applied in two
phases. We first generate a perturbed data point in SE(3),
i.e., sample from the Gaussian on Lie groups Eq. (3),
Ĥ ∼ q(Ĥ|H, σkI) with mean H ∈ ρD(H) and standard de-
viation σk for noise scale k. Practically, we sample from this
distribution using a white noise vector ϵ ∈ R6,

Ĥ =HExpmap(ϵ) , ϵ ∼ N (0, σ2
kI). (4)

Following the idea of DSM, the model is trained to match the
score of the perturbed training data distribution. Thus, DSM
in SE(3) requires computing the derivatives of the model and
the perturbed distribution w.r.t. a Lie group element. Hence,
the new DSM loss function on Lie groups equates to

Ldsm =
1

L

L∑
k=0

EH,Ĥ

[∥∥∥∥∥DEθ(Ĥ, k)

DĤ
+
D log q(Ĥ|H, σkI)

DĤ

∥∥∥∥∥
]
,

(5)

with H ∼ ρD(H) and Ĥ ∼ q(Ĥ|H, σkI). Note that, as in-
troduced in Sec. II, the derivatives w.r.t. a SE(3) element
Ĥ outputs a vector on R6. In practice, we compute this
derivative by automatic differentiation using Theseus [27]
library along with PyTorch.

Sampling with Langevin MCMC in SE(3). Evolving
the inverse Langevin diffusion process for SE(3) elements
(cf. Fig. 2 for visualization) requires adapting the previously
presented Euclidean Langevin MCMC approach Eq. (2). In
particular, we have to ensure staying on the SE(3) manifold

throughout the inverse diffusion process. Thus, we adapt the
inverse diffusion in SE(3) as

Hk−1 = Expmap
(
−α

2
k

2

DEθ(Hk, k)

DHk
+ αkϵ

)
Hk, (6)

with ϵ ∈ R6 sampled from ϵ ∼ N (0, I) and the step depen-
dent coefficient αk > 0. By iteratively applying Eq. (6), we
move a set of noisy SE(3) poses to the low energy regions
of Eθ, i.e. good grasp pose regions (See Fig. 2).

B. Architecture & training of Grasp SE(3)-DiffusionFields

Even though we can represent any data-driven cost in
SE(3) with SE(3)-DiF, in this work, we focus on cost
functions that capture 6DoF grasp pose distributions con-
ditioned on the object we aim to grasp. In this work, we
assume to have access to the object pose, a reasonable
assumption thanks to the impressive results in 6DoF object
pose estimation and segmentation [28]. We defer studying the
perception aspect of encoding point clouds into object pose
and shape as in [6], [29] for a future work. We illustrate the
architecture for our grasp SE(3)-DiF model in Fig. 3 and the
training pipeline in Algorithm 1. The proposed model maps
an object (represented by its id and pose) and a 6DoF grasp
pose H ∈ SE(3) to an energy e ∈ R, that measures the grasp
quality for the particular object.

We train the model to jointly match the Signed Distance
Field (SDF) of the object we aim to grasp and predict
the grasp energy level by the DSM loss Eq. (5). Learning
jointly the SDF of the object and the grasp pose improves
the quality of the grasp generation [29], [30]. During the
training, we assume the object’s id m and pose Ho

w∈ SE(3)
are available, and we retrieve a learnable object shape code
zm given the index m as in [31]. For training the SDF loss,
we apply a supervised learning pipeline. Given a dataset
of 3D points xw ∈ R3 and sdf ∈ R for a particular object
m, Dm

sdf : (xw, sdf), we first map the points to the object’s
reference frame xo =Ho

wxw and then predict the SDF given
the feature encoder Fθ (See Algorithm 1).

As previously introduced in Eq. (5), to apply the DSM
loss, we compute the energy e ∈ R over the grasp poses
Ĥ. These grasp poses have been previously obtained by
perturbing grasp poses from the dataset H ∈ ρD(H) with a
noise level k Eq. (4). In our problem, we consider ρD(H) to
be a distribution of successful grasp poses for a particular ob-
ject, and learn the energy to approximate the log-probability
of this distribution under noise. We compute the energy e

given a grasp pose Ĥ in three steps. (I) We transform the
grasp pose to a fixed set of N 3D-points around the gripper
xg∈RN×3 in the world frame xw=Hxg. We thereby express
the grasp pose through a set of 3D points’ positions, similar
to [30]. Then, we move the points to the object’s local frame,
xom=Hom

w xw. (II) We apply the feature encoding network
Fθ which is also conditioned on zm and k to inform about
the object shape and noise level, respectively. The encoding
network outputs both the SDF predictions for the query
points, sdf∈RN×1, and a set of additional features ψ∈RN×ψ.
Thus, the feature encoder’s output is of size N×(1 + ψ). (III)



Fig. 3: SE(3)-DiF’s architecture for learning 6D grasp pose distributions. We train the model to jointly learn the objects’ sdf and to minimize the denoising
loss. Given grasp pose H∈SE(3) we transform it to a set of 3D points xw∈RN×3 (I). Next, we transform the points into the object’s local frame, using
the object’s pose Ho

w . Given the resulting points xo and the object’s shape code z we apply the feature encoder Fθ (II) to obtain a object and grasp-related
features (sdf, ψ)∈ RN×(ψ+1). Finally, (III) we flatten the features and compute the energy e through the decoder Dθ .

We flatten the features and pass them through the decoder
Dθ to obtain the scalar energy value e. Given the energy, we
compute the DSM loss Eq. (5). During training, we jointly
learn the objects’ latent codes zm, and the parameters θ of
the feature encoder Fθ and decoder Dθ.

Algorithm 1: Grasp SE(3)-DiF Training
Given: θ0: initial params for z, Fθ , Dθ;
Datasets: Do : {m,Ho

w}, object ids and poses,
Dm
sdf : {x, sdf}, 3D positions x and sdf for object m,

Dm
g : {H} succesful grasp poses for object m;

1 for s← 0 to S − 1 do
2 k, σk ← [0, . . . , L]; // sample noise scale

3 m,Ho
w ∈ Do; // sample objects ids and poses

4 z = shape codes(m); // get shape codes

5 SDF train
6 x, sdf ∈ Dm

sdf ; // get 3D points and sdf for obj. m

7 ˆsdf, = Fθ(H
o
wx, z, k); // get predicted sdf

8 Lsdf = Lmse( ˆsdf, sdf); // compute sdf error

9 Grasp diffusion train
10 H ∼ Dm

g ; // Sample success grasp poses for obj. m

11 ϵ ∼ N (0, σkI); // sample white noise on k scale

12 Ĥ =HExpmap(ϵ); // perturb grasp pose Eq. (4)

13 xo
n = Ĥxn; // Transform to N 3d points (see Figure 3)

14 ˆsdfn,ψn = Fθ(x
o
n, zb, k); // get features

15 Ψ = Flatten( ˆsdfn,ψn); // Flatten the features

16 e = Dθ(Ψ); // compute energy

17 Ldsm = Ldsm(e, Ĥ,H, σk); // Compute dsm loss Eq. (5)

18 Parameter update
19 L = Ldsm + Lsdf; // Sum losses

20 θs+1 = θs − α∇θL; // Update parameters

21 return θ∗;

C. Grasp and motion optimization with diffusion models

Given a trajectory τ : {qt}Tt=1, consisting of T waypoints,
with qt ∈ Rdq the robot’s joint positions at time instant t;
in motion optimization, we aim to find the minimum cost
trajectory τ ∗ = argminτ J (τ ) = argminτ

∑
j ωjcj(τ ), where

the objective function J is a weighted sum of costs cj ,
with weights ωj > 0. Herein, we integrate the learned SE(3)-
DiF for grasp generation as one cost term of the objective
function. It is, thus, combined with other heuristic costs, e.g.,
collision avoidance or trajectory smoothness. Optimizing
over the whole set of costs enables obtaining optimal trajec-
tories jointly taking into account grasping, as well as motion-
related objectives. This differs from classic grasp and motion
planning approaches in which the grasp pose sampling
and trajectory planning are treated separately [32], by first
sampling the grasp pose, and, then, searching for a trajectory
that satisfies the selected grasp. In classic approaches, given

the grasp sampling is decoupled from the trajectory planning,
it might happen the sampled grasps to be unfeasible for
the problem, leading to an unsolvable trajectory planning
problem. We hypothesize that jointly optimizing over both
the grasp pose and the trajectory allows us to be more sample
efficient w.r.t. decoupled approaches.

Given that the learned function is in SE(3) while the
optimization is w.r.t. the robot’s joint space, we redefine the
cost as c(qt, k) = Eθ(ϕee(qt), k), with the forward kinematics
ϕee : Rdq −→ SE(3) mapping from robot configuration to the
robot’s end-effectors task space. This cost function provides
low cost to those robot configurations that lead to good
grasps. To obtain minimum cost trajectories, we frame the
motion generation problem as an inverse diffusion process.
Using a planning-as-inference view [33]–[36], we define a
desired target distribution as q(τ |k) ∝ exp(−J (τ , k)). This
allows us to set an inverse Langevin diffusion process that
evolves a set of random initial particles drawn from a
distribution τL ∼ pL(τ ) towards the target distribution q(τ |k)

τk−1 = τk + 0.5 α2
k∇τk log q(τ |k) + αkϵ , ϵ ∼ N (0, I), (7)

with step dependent coefficient αk > 0, noise level moving
from k = L to k = 1, and one particle corresponding to an
entire trajectory. If we evolve the particles by this inverse
diffusion process for sufficient steps, the particles at k = 1,
τ1 can be considered as particles sampled from q(τ |k = 1).
To obtain the optimal trajectory, we evaluate the samples on
J (τ , 1) and pick the one with the lowest cost.

IV. EXPERIMENTAL EVALUATION

The experimental section is divided in three parts. First,
we evaluate our trained model for 6DoF grasp pose gener-
ation (Sec. IV-A). We train a SE(3)-DiF as a 6DoF grasp
pose generative model using the Acronym dataset [18]. This
simulation-based dataset contains successful 6DoF grasp
poses for a variety of objects from ShapeNet [37]. We focus
on the collection of successful grasp poses for 90 different
mugs (approximately 90K 6DoF grasp poses). We obtain
the mugs’ meshes from ShapeNet, and train the model as
described in Algorithm 1. We generate a set of grasp poses
from the learned models and evaluate on successful grasping
and diversity. Second, we evaluate the quality of our trained
model when used as an additional cost term for grasp and
motion optimization (Sec. IV-B). We compare the perfor-
mance of solving a grasp and motion optimization problem



Fig. 4: 6D grasp pose generation experiment. Left: Success rate evaluation.
Right: Earth Mover Distance (EMD) evaluation metrics (lower is better).

jointly (using the learned model as cost function), w.r.t. the
state-of-the-art approaches that decouple the grasp selection
and motion planning, or heuristically combine them. Finally,
we validate the performance of our method in a set of real
robot experiments (Sec. IV-C).

A. Evaluation of 6DoF grasp pose generation

We evaluate grasp poses generated from our trained grasp
SE(3)-DiF model in terms of the success rate, and the
EMD between the generated grasps and the training data
distribution. We consider 90 different mugs and evaluate 200
generated grasps per mug. We evaluate the grasp success on
Nvidia Isaac Gym [38]. The EMD measures the divergence
between two empirical probability distributions [39], provid-
ing a metric on how similar the generated samples are to the
training dataset. To eliminate any other influence, we only
consider the gripper and assume that we can set it to any
arbitrary pose. We generate 6DoF grasp poses from SE(3)-
DiF by an inverse diffusion process, following Eq. (6).
We compare against three baselines. First, based on [6], [40],
we consider generating grasp poses by first sampling from a
decoder of a trained VAE and subsequently running MCMC
over a trained classifier for pose refinement (VAE+Refine).
Second, we consider sampling from the VAE (without any
further refinement). Third, we consider running MCMC over
the classifier starting from random initial pose [41]. In
this experiment, we assume the object’s pose and id/shape
to be known, and purely focus on evaluating the models’
generative capabilities. For ensuring a fair comparison, all
the baselines consider a shape code zm to encode the object
information as presented in Fig. 3. We add a pointcloud-
conditioned experiment in the Appendix.
We present the results in Fig. 4. In terms of success
rate, SE(3)-DiF outperforms VAE+Refine slightly (especially
yielding lower variance), and VAE or classifier on their own
significantly. The VAE alone generates noisy grasp poses that
are often in collision with the mug. In the case of classifier
only, the success rate is low. We hypothesize that this might
be related with the classifier’s gradient, as specifically in
regions far from good samples, the field has a large plateau
with close to zero slopes [14]. This leads to not being able
to improve the initial samples. Considering grasp diversity,
i.e., EMD metric (lower is better), SE(3)-DiF outperforms all
baselines significantly. A reason for the difference, might be
that VAE+Refine overfits to specific overrepresented modes
of the data distribution. In contrast, SE(3)-DiF’s samples
capture the data distribution more properly. We, therefore,
conclude that SE(3)-DiF is indeed generating high-quality
and diverse grasp poses. We add an extended presentation of

Fig. 5: Evaluation Pick in occlusion. We measure the success rate of 4
different methods based on different number of initializations.

the experiment in the Appendix in our project site.

B. Performance on grasp and motion optimization

We evaluate the performance of our learned grasp SE(3)-
DiF as a cost term into multi-objective grasp and motion
optimization problems. We consider the task of picking
amidst clutter (see Fig. 6) and measure the success rate on
solving it. The success is measured based on the robot being
able to grasp the object at the end of the execution. In the
Appendix in our project site, we provide additional details
on the chosen cost functions for the task. As introduced in
Sec. III-C, we generate the trajectories by integrating our
learned grasp SE(3)-DiF as an additional cost function to
the motion optimization objective function. Then, given a
set of initial trajectory samples, obtained from a Gaussian
distribution with a block diagonal matrix as in [2], we apply
gradient descent methods Eq. (7) to iteratively improve the
trajectories on the objective function. We evaluate the success
rate of the trajectory optimization given a different number
of initial samples. As gradient-based trajectory optimization
methods are inherently local optimization methods, multiple
initializations might lead to better results. We consider three
baselines (see Fig. 5). Decoupl.: we adopt the common
routing to solve grasp and motion optimization problems in a
decoupled way [11], [42], [43]. We first sample a set of 6DoF
grasp poses from a generative model and then plan a trajec-
tory that satisfies the selected grasp pose with CHOMP [1].
Second, we consider the OMG-Planner [44], that applies an
online grasp selection and planning approach. Finally, joint
(class.): we consider applying a joint optimization as in our
approach, but using a 6DoF grasp classifier as cost function
rather than a grasp SE(3)-DiF.
The results in Fig. 5 present a clear benefit from the joint
optimization w.r.t. the decoupled approach and the OMG-
Planner. In particular, our proposed joint optimization only
requires 25 particles to match the success rate of the de-
coupled approach with 800 particles. The reason for this
significant gap in efficiency is that the decoupled approach
generates SE(3) grasp poses that are not feasible given the
environment constraints, such as clutter or joint limits. How-
ever, when optimizing jointly, we can find trajectories that
satisfy all the costs by iteratively improving entire trajectories
w.r.t. all objectives. We also observe the importance of using
grasp SE(3)-DiF as cost term instead of a grasp classifier. The
classifier model lacks proper gradient information to inform
how to move the trajectories to grasp the object due to its
lack of smoothness in the whole space. Thus, the motion
optimization problem is unable to find solutions.

https://sites.google.com/view/se3dif
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Fig. 6: Simulated and real robot environments for picking amidst clutter.

C. Grasp and motion optimization on real robots

We conducted a thorough real-world evaluation of our
joint grasp and motion optimization framework driven by our
6DoF grasp diffusion model, using it as an additional cost
function, similarly to our simulated robot manipulation tasks.
Fig. 1 depicts a sequence of a real-world pick-mug and place-
on-shelf scenario. Overall, the experiments aim at assessing
the method’s capabilities in realistic conditions that include,
i) non-perfect state information, as the mugs pose is retrieved
from an external system (Optitrack) which induces small
calibration errors, ii) variations in the mug’s shape, as we
use a mug that is slightly different from the one we specify
for SE(3)-DiF, and iii) real-world trajectory execution. For
optimization, we initialize 800 particles (trajectories), and
only execute the one with lowest cost.
In the simplest testing scenario, where the robot has to pick
up a mug from various poses in a scene without any clutter,
we achieve 100% (20 successes / 20 trials) pickup-success.
We also find that our method transfers well to the more
difficult scenarios of picking up mugs that are initially placed
upside down with 90% (18/20) success, picking in occluded
scenes with 95% (19/20) success, and having to pick and
place the mug in a desired pose inside the shelf of Fig. 1
with 100% (20/20) success. Our real-world results underline
the effectiveness of our joint optimization approach. Videos
of the experiments also showcase that our method still comes
up with very versatile solutions2. Note that we attribute the
increased real-world performance w.r.t. the simulated one to
the simpler designed experimental scene, i.e., in simulation
we considered flying obstacles that were not realizable in
the real scene (Fig. 6). Nevertheless, our results confirm that
our proposed approach is highly performant in real settings,
without suffering sim2real discrepancies.
Limitations In our experiments, we focused on evaluat-
ing our diffusion model’s performance in grasp generation,
besides full trajectory optimization, assuming full object
state knowledge, without relying on complex perception
systems. Potential sim2real gaps w.r.t. the real environment
could potentially arise from imperfect perception, and hand-
designed cost terms that may not capture well the relevant
task description in more complex scenarios. Moreover, a
limitation comes with increasing number of cost terms, as
it becomes more difficult to weight them. In the future, we
consider adding automatic tuning of these hyperparameters
(i.e., Bayesian Optimization) to make the method scale better.

2Videos in https://sites.google.com/view/se3dif

V. RELATED WORK

Learning cost functions. Learned cost functions are preva-
lent in robotics research [45]. Particularly when it comes
to constructing SDFs for motion planning [46], or using
SDFs for forming optimization costs [47]. Learning implicit
representations of objects can be leveraged as costs for
motion optimization [10], [48] and control [49]. Highly
related to our work is the field of Inverse Reinforcement
Learning [13], [50]–[52], where the goal is to learn a cost
function from demonstrations.
6D grasp generation. 6D grasp pose generation is solved
with a myriad of methods from classifiers to explicit sam-
plers. [41], [53], [54] sample candidate grasps and score
them with learned classifiers. [55] predicts grasping out-
comes using a geometry-aware representation. Contrary to
methods classifying grasps, generative models can be trained
to generate grasp poses from data [6] but might require
additional sample refinement. While the generator in [40]
considers possible collisions in the scene, [56] proposes to
learn a grasp distribution over the object’s manifold. [29]
uses scene representation learning to learn grasp qualities
and explicitly predict 3D rotations.
Integrated grasp and motion planning. Due to the interde-
pendence of the selected grasp pose with the robot motion,
multiple efforts have tried to integrate both variables into a
single planning problem. In [57], [58], goal sets representing
grasp poses are integrated as constraints in a motion opti-
mization problem. In [59], [60], Rapidly-exploring Random
Trees [61] is combined with a TCP attractor to bias the tree
towards good grasps. [44] proposes an iterative procedure
to optimize both the grasp pose and the motion. Our work
differs from previous methods as we propose to set the grasp
pose objective as a learned cost function in a gradient-based
motion optimization problem.

VI. CONCLUSION

We proposed SE(3)-DiffusionFields (SE(3)-DiF) for learn-
ing task-space, data-driven cost functions to enable robotic
motion generation through joint gradient-based optimization
over a set of combined cost functions. At the core of SE(3)-
DiFs is a diffusion model that provides informative gradients
across the entire space and enables data generation through
an inverse Langevin dynamics diffusion process. Besides
having demonstrated that SE(3)-DiF generates diverse and
high-quality 6DoF grasp poses, we also drew a connection
between motion generation and inverse diffusion. Thus, we
presented a joint gradient-based grasp and motion optimiza-
tion framework, which outperforms traditional decoupled
optimization approaches. Our extensive experimental evalua-
tions reveal the superior performance of the proposed method
w.r.t. efficiency, adaptiveness, and success rates. In the future,
we want to explore diffusion models for reactive motion
control and the composition of multiple diffusion models to
solve complex manipulation tasks in which multiple hard-to-
model objectives might arise.

https://sites.google.com/view/se3dif
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