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Fig. 1. Composable Energy Policies generate trajectories reactively in a wide set of environments, as the ones in the figure. The generated trajectories are
attracted to a target pose, visualized by the green sphere, and avoid a set of obstacles, shown as red spheres.

Abstract—Reactive motion generation problems are usually
solved by computing actions as a sum of policies. However,
these policies are independent of each other and thus, they can
have conflicting behaviors when summing their contributions
together. We introduce Composable Energy Policies (CEP), a
novel framework for modular reactive motion generation. CEP
computes the control action by optimization over the product of
a set of stochastic policies. This product of policies will provide a
high probability to those actions that satisfy all the components
and low probability to the others. Optimizing over the product
of the policies avoids the detrimental effect of conflicting be-
haviors between policies choosing an action that satisfies all the
objectives. Besides, we show that CEP naturally adapts to the
Reinforcement Learning problem allowing us to integrate, in a
hierarchical fashion, any distribution as prior, from multimodal
distributions to non-smooth distributions and learn a new policy
given them. Video in https://sites.google.com/view/composable-
energy-policies/home

I. INTRODUCTION

Many robotic tasks deal with finding a control action
satisfying multiple objectives. An apparently simple task such
as watering some plants requires satisfying multiple objectives
to perform it properly. The robot should reach the targets
(the plants) with the watering can, avoid pouring water on
the floor while approaching, and avoid colliding and break
plant’s branches with its arms. In contrast with more sequential
tasks [41, 16, 17, 38], in which the objectives are satisfied
concatenating them in time, in the presented work, we consider
tasks in which multiple objectives must be satisfied in parallel.

The problem has been faced with a spectrum of solutions
that balance between global optimality and computational
complexity. Path planning methods [25, 24, 19] find a global

trajectory from start to goal by a computationally intense
Monte-Carlo sampling process. Trajectory optimization meth-
ods [44, 31, 18, 36] reduce the computational burden of
planning methods by learning the global trajectory given an
initial trajectory candidate. These methods reshape the global
trajectory to satisfy the objectives. However, they still require
solving an optimization problem over long temporal horizon
trajectories. Reactive Motion Generators, such as Artificial
Potential Fields (APF) methods [20, 22, 10, 21, 32, 3] have
a very low computational cost, but lack any guarantees of
finding a global trajectory satisfying the objectives. These
methods propose a modular approach. Each component pro-
poses a deterministic policy to satisfy one of the objectives,
and the control action is obtained by the sum of the policy
contributions.

There is a clear gap in methodology. The first (path planning
and trajectory optimization), approach the problem as an
optimization or inference problem over the combined objec-
tives, while the second (reactive motion generation) assumes
a complete independence between objectives, lacking any
optimality guarantees. We frame Reactive Motion Generation
as an optimization problem over a product of expert poli-
cies [13, 30, 29, 11, 42]

a∗ = arg max
a

∏
k

πk(a|s). (1)

Most of the previous approaches for reactive motion genera-
tion, compute each action maximizing a certain objective inde-
pendently and then, sum the actions together [32, 20, 10, 14].
This independence between policies can end up in conflicting
behaviors leading to oscillations or local minima. In our
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approach, we first compute the product of a set of stochastic
policies, and then, we compute the action maximizing the
product of them. This approach can be understood as a prob-
abilistic logical conjunction (AND operator) [7, 42] between
the stochastic policies (see Fig. 2 for visual representation).

Nevertheless, there are exceptions. Dynamic Window Ap-
proach (DWA) [9, 46] solves the reactive motion generation
for a 2D planar robot in a two steps optimization algorithm.
First, the search space of possible actions is reduced given
a set of constraints. Then, given an objective function, the
optimal action is computed solving an optimization problem.
In contrast with DWA, in our work, we compute the optimal
action only through an optimization phase. Additionally, we
consider 7-dof robots instead of planar robots and allow to
integrate objectives defined in arbitrarily different task spaces.
Finally, given the flexibility of our method, we can integrate
policies from multiple sources in a single model. We could
integrate obstacle avoidance policies with data-driven learned
policies, compute a solution by trajectory optimization and
add reaction to unexpected situations or integrate priors in a
Reinforcement Learning (RL) policy to accelerate learning and
ensure safety.

Contribution: We present Composable Energy Policies
(CEP), a new framework for modular robot control. In contrast
with previous methods [20, 32, 34] that solves reactive motion
generation with a sum of deterministic policies, our method
solves reactive motion generation by maximum likelihood es-
timation over a product of expert policies. We claim that opti-
mizing over the composed policy distributions will increase the
guarantees of satisfying all the objectives jointly w.r.t. adding
actions coming from different policies. To validate our claims,
we derive the reactive motion generation problem from control
as inference view and compute the optimality guarantees of
applying a product of expert policies (Appendix A).

In our work, we aim for flexible composition of modular
policy distributions. We propose a framework to integrate
stochastic policies represented in arbitrary state-action spaces.
Additionally, these policies might have multiple sources from
data-driven learned multimodal policies to computationally
costly control as inference solutions. In section V, we show
how to integrate a RL policy with a set of prior policies to
improve exploration and guarantee safety exploration.

In the following, we focus on presenting the method’s main
blocks while in the Appendix, we focus on the theoretical
interpretation of the method. In section VI, we validate our
algorithm in both reactive motion generation and prior based
RL problems.

Notation: As our discussion will involve a set of policies
and a set of spaces in which these policies are represented,
we will use superscript (πx) to represent the space in which
the policy is and subscript (πx) to represent the policy index.
fzx (·) represent a transformation map from space X to space
Z , sx is the state in space X and sz , the state in space Z .

II. PRELIMINARIES

A. Artificial Potential Fields

Reactive motion generation deals with the problem of gener-
ating local and quick motion. The developed methods require
to have low computational burden to give a fast response
reacting to unexpected situations. APF [20] propose to solve
the problem by a weighted sum of a set of dynamic systems
represented in a set of task spaces. Let’s assume a set of
transformations maps fz0x , . . . ,f

zK
x , that transform a point

in the configuration space, X , to a set of task spaces, Zk,
(zk, żk) = (fzkx (x),Jzk(x)ẋ), with Jzk = ∂f

zk
x (x)
∂x ; and a

set of deterministic second-order dynamic systems in the task
space, gz0 , . . . , gzk . The APF represents the dynamic system
in the configuration space X

gx =

K∑
k=0

Jz
+
k Λk(zk)gzk (2)

with a weighted (Λk(zk)) sum of the of the projected dy-
namics and Jz

+
k the pseudoinverse Jacobian. Each dynamic

component represent the policy to satisfy a particular objective.
Given that we are looking for the motion that satisfy multiple
objectives, the sum of the dynamics might not be enough as the
different components might have conflicting behaviours and
thus lead to local minima or oscillations. In Appendix C, we
show that APF can be rewritten as a particular case of product
of experts and provide an interpretation of their failures.

We aim to solve the conflicts between dynamics by the
maximum likelihood estimation over the product of a set
of dynamic distributions. In our work, we model each dy-
namic component by a distribution. These distributions can
be understood as a weighted set of possible dynamics for
each component. In the combination of these distributions,
our method will search for the dynamics that better satisfy
the combined set of objectives and thus, avoid conflicting
behaviors, as shown in Figure 2.

III. COMPOSABLE ENERGY POLICIES

Let us assume a set of independent stochastic policies
π1(a|s), . . . , πK(a|s) modeled by a Boltzmann distribution

πi(a|s) = exp(Ei(a, s))
1

Zi(s)
(3)

with E : S × A → R is an arbitrarily represented energy
function and Z(s) =

∫
a

exp(E(a; s))da is the normalization
factor. Choosing a Boltzmann distribution is not an arbitrary
choice. Boltzmann distribution allows representing an arbitrary
distribution by a suitable definition of the energy function
(E) [26]. Additionally, computing the product of experts

π(a|s) =

K∏
k=0

πk(a|s)βk ∝ exp

(∑
k

βkEk(a, s)

)
. (4)

will end up in a weighted sum over the individual energy
components in the log-space. Linearly combined energies are
beneficial for computing the energies contribution in parallel



Fig. 2. Visual Representation of modular control for Goto + Obstacle Avoidance. In the top box, we show Artificial Potential Field (APF) [20] policy. In the bottom box, we
show Composable Energy Policies (CEP). In contrast, with artificial potential field method, that sums deterministic actions (goto, avoid obstacle), CEP computes the product of the
policy distributions. The composition will provide high probability to those actions that satisfy both components and low to the rest. This approach helps avoiding conflicts between
different components. Robot: blue circle, obstacle: red circle and target: green cross. Thick dotted line: performed trajectory, light dotted line: possible future trajectories.

and thus, in practise, parallelize the computation by multi-
processing, increasing the control frequency. Product of ex-
perts is a natural choice for our policy; given a set of energies
E1, . . . , EK , product of experts is the posterior of an inference
problem maximizing the energies (See Appendix B).

A. Energy Tree

In the composition proposed in (4), each energy function
is considered to be in the same state-action space. However,
in most of the robotics scenarios, we might be interested in
composing together energies defined in different task spaces.
Navigation of the robot’s end-effector towards a target while
avoiding the obstacles, composes skills defined in different
task spaces. Each robot link should avoid obstacles and the
end effector should reach a certain target position. Inspired by
APF [20] and Riemannian Motion Policies (RMP) [32], we
propose to model the composition of energies in different task
spaces. We introduce the probabilistic graphical model for our
policy in Fig.3.

Our architecture is composed of two main components.
First, we have a set of policies πz(az|sz), defined in different
state-action latent spaces (task space) (sz,az) ∈ Z . Second,
we consider a set of deterministic mappings that transform
the state-actions in the common space (configuration space)
(sx,ax) ∈ X to the latent state-action spaces Z , fzx : X −→ Z .

Applying the change of variable rule in probabilistic density
functions [1, 2], given the mapping fzx is bijective in the
actions (az ↔ ax), we can write the policy in the common
space, πx, in terms of the latent space policy πz [45]

πx(ax|sx) = πz(az|sz)
√

det(JᵀJ)

= πz(fzx (sx,ax))
√

det(JᵀJ). (5)

with J = ∂fzx (ax, sx)/∂ax is the Jacobian of fzx in the action
ax. The equality in (5) does not hold for injective or surjective
transformations. In practice, we apply the equality for any
possible map fzx (bijective, surjective, and injective), and we
leave for future work the study of the policy distribution under
surjective or injective mappings.

From (5), we can write πx(ax|sx) w.r.t. the energy function
defined in the latent space Ez(az; sz)

πx(ax|sx) = exp (Ez(fzx (ax, sx)))
1

Z(sx)
(6)

with

Z =

∫
az

exp(Ez(az, sz))daz√
det(JᵀJ)

. (7)

This policy representation allows to define the energy function
in an easy to represent task space. Then, for any sx,ax ∈ X ,
we can map them to the latent space Z , (sz,az) = fzx(sx,ax)
and compute the un-normalized log-probability of the action
in a given latent policy Ez(az, sz).

Our energy tree is inspired by the APF formulation, but
it has important differences. In APF formulation, there is an
explicit function from state sx to action ax

ax = fz−1
x (az) = fz−1

x (g(sz)) = fz−1
x (g(fzx (sx))) (8)

where fzx is the function mapping from common space to
latent space and g is a deterministic policy in the latent space.
In this approach, fzx is required to be invertible. In contrast,
CEP assumes an implicit function from sx to ax

ax = arg max
ax

Ez(fzx (ax, sx)). (9)

In this approach, we do not need to compute the inverse
of fzx . Additionally, Ez represents the energy in the latent
space, so we can combine distributions instead of combining
deterministic dynamics. In Sec. IV we show that having
an implicit function might be beneficial for reactive motion
generation.

In case a set of policies exist in different task spaces
Z1, . . . ,ZN , we can compose the policies together

πx(ax|sx) = exp

(
K∑
k=1

βkE
zk(fzkx (ax, sx))

)
1

Z(sx)
(10)

Shown in Fig. 3, CEP has a recursive architecture. Our model
allows us to represent the latent policies πz(az|sz) with a set
of policies in an even deeper latent spaceW , and still compute
the optimization in the same way.

B. Maximum Likelihood Estimation on CEP

In CEP, the optimal action is obtained by Maximum Like-
lihood Estimation over the product of expert policies. Given
the current state sx

axML = arg max
ax

K∏
k=0

πk(ax|sx)βk , βk > 0. (11)
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Fig. 3. Bayesian network for the energy tree. The policy distribution
πx(ax|sx) is computed w.r.t. the policies in the latent spaces Zi. Addi-
tionally, a latent policy πz(az |sz) can be represented by a set of policies
in a different latent spaces Wi. White diamonds represent deterministic
transformations and black square is a probabilistic mapping.

We assume a set of mappings fzx and a set of energies Ez

are given. We solve (11), by Cross Entropy optimization [35].
We define a proposed sampling model p(a|θ) and iteratively
solve

θt+1 = arg max
θt

Ep(ax|θt)

[
log

(
K∏
k=0

πk(ax|sx)βk

)]

∝ Ep(ax|θt)

[
K∑
k=1

βkE
zk(fzkx (ax, sx))

]
. (12)

The method is presented in Algorithm 1. Each energy (Ez)
component is linearly dependent and thus, in the optimization
process, we evaluate each energy component in parallel. Also,
we consider a batch N of actions evaluated all in parallel
on GPU. This parallelization reduces the computational time
for the optimization process and allows to use CEP for high-
frequency reactive motion generation.

IV. CEP FOR ROBOT MOTION GENERATION

In this section, we will provide further insights on how to
model the mapping functions and the stochastic policies for a
robot motion generation problem. We consider the motion is
generated with a second-order dynamic system in the robot’s
configuration space

q̈ = g(q, q̇) (13)

where q is the robot’s joint state, q̇ = dq/dt velocity and
q̈ = d2q/dt2, the acceleration.

Our dynamic system is modeled by the maximization in
(11). Thus, we represent our action ax = q̈ and the state
sx = {q, q̇}.

The energy distributions are defined in a set of task spaces.
We model the map between the common space (configuration

Algorithm 1: Composable Energy Policies

Given: N : Number of samples;
sx: Current state in common space;
K: Number of Energy Components;
(fz1x , E

z1 , βz1), . . . , (fzKx , EzK , βzK )): Maps, energies
and inverse temperatures;
I: Optimization steps;
(µ0,Σ0): Initial sampling distribution mean and
variance;
(a∗, e∗): Initial optimal action and energy;

for i← 0 to I − 1 do
for n← 0 to N − 1 do

axn ∼ N (µi,Σi);
for k ← 1 to K do

szk ,azkn = fzkx (sx,axn);
ezkn = Ezk(szk ,azkn );

exn =
∑K
k=1 β

zkezkn

µi+1 ← Updateµ(µi,a
x
0:N , e

x
0:N );

Σi+1 ← UpdateΣ(Σi,a
x
0:N , e

x
0:N );

a∗i , e
∗
i ← argamaxe(e

x
0:N );

if e∗ < e∗i then
a∗ ← a∗i ;
e∗ ← e∗i ;

return a∗;

space) and the latent space (task space) fxq by the robot’s
kinematics

x = fkin(q)

ẋ = J(q)q̇ (14)

ẍ = J(q)q̈ + J̇(q)q̇ ≈ J(q)q̈

with forward kinematics fkin to a given task space and J(q) =
∂x/∂q, the Jacobian for the given forward kinematics.

For the particular case in which the mappings are given by
(14), we represent the general policy in (10) as

πq(q̈|q, q̇) ∝ exp

(
K∑
k=1

βkE
xk(Jk(q)q̈, fkink(q),Jk(q)q̇)

)
.

(15)

We remark, that computing the optimal solution for (15), given
we use an implicit representation, we only require access to the
forward kinematics fkin and the Jacobian J functions. Instead,
explicit methods [32, 20], require to compute the Jacobian
pseudoinverse to get the action in the configuration space as
shown before in (2) and (8). Jacobian pseudoinverse might be
problematic to compute if the robot is in singularities.

Energy functions allow having a flexible policy distribution
representation. In the following, we provide some energy pro-
posals for the main components the robot requires for reactive
motion generation. Additionally, we show in Appendix C, that



the weighted sum of deterministic policies (Artificial Potential
Fields methods), can be framed as a particular case of CEP.

Go To a target: The simplest distribution model for going
to a target position is a normal distribution

π(ẍ|x, ẋ) = N (µ(x, ẋ),Σ(x)) (16)

with

µ(x, ẋ) = −Kp(x− x∗)−Kvẋ (17)
Σ(x) = α(x− x∗)ᵀ(x− x∗). (18)

The distribution proposes as mean µ, a PD-controller with
x∗ the target state and Kp > 0 and Kv > 0 gains and a
covariance matrix Σ represented as the quadratic distance to
the target, scaled by α > 0. The variance will shrink closer to
the target and, thus, the relevance of this energy component
will increase the closer we are to the desired state.

Obstacle Avoidance: We represent obstacle avoidance
energy in the unidimensional space represented by the vector
between the cartesian robot position xr in task space and the
cartesian obstacle position xo.

We first compute the vector pointing to the obstacle

vr,o = xr − xo (19)

Then, we project the velocity ẋ and the acceleration ẍ vectors
in the task space

ẋp = ẋ
ẋ · vr,o
||ẋ||||vr,o||

ẍp = ẍ
ẍ · vr,o
||ẍ||||vr,o||

(20)

Finally, we compute the energy for the acceleration ẍp, ẋp and
vr,o as

E(ẍp, ẋp,vr,o) =


0 if ẋp < 0 or ||vr,o|| > γ

−∞ if ẍp > −αẋp − β
0 otherwise

(21)

with a distance threshold parameter γ > 0 to activate the
energy component. If the projected robot velocity is not
pointing to the obstacle or if the robot’s task space position is
too far from the robot, the distribution is a uniform distribution
over the whole acceleration space. In case the robot is close to
the obstacle and the velocity vector points to the obstacle, the
distribution then becomes a uniform distribution between −∞
and −αẋp − β, Up(−∞,−αẋp − β) with α > 0 and β > 0.

Avoid Joint Limits: Similarly to the collision avoidance
energy, we model the joint limits avoidance with a uniform
distribution that provides high probability to those accelera-
tions pointing in the opposite direction to the joint limit as
long as the joint is close to the limits. Given the distance to
the joint limit

dl = q − ql (22)

with ql the joint limit, the energy can be represented as

E(q̈; q̇, q) =


0 if dl

|dl| q̇ < 0 or |dl| > γ

−∞ if dl
|dl| q̈ > −α

dl
|dl| q̇ − β

0 otherwise

(23)

with α > 0 and β > 0.
Imitation Learning, Control-as-Inference and RL: CEP

architecture is not only limited to heuristic energies. The
architecture allows to integrate any form distributions. CEP
architecture allows to integrate multimodal policies learned by
behavioural cloning [45, 29], posterior distributions computed
by control as inference [23, 48, 49] or a RL policy.

In the following, we propose a novel hierarchical reinforce-
ment learning policy to integrate an RL agent with a set of
prior distributions.

V. CEP FOR HIERARCHICAL REINFORCEMENT LEARNING

Priors have been widely used in RL, accelerating the learn-
ing process and therefore improving the sample efficiency.
Most popular approaches can be categorized in two groups. On
the one hand, methods that first approximate a parameterized
policy to mimic the priors

min
θ
DKL(πθ(a|s)||πq(a|s))

and then, update this policy to maximize for a new task [28,
45].

max
θ

Epπθ (s,a)[R(s,a)].

Even if this approach is the most popular one, if the param-
eterized policy is not sufficiently expressive is not going to
cover all the prior information. Moreover, the parameterized
model might forget important information coming from the
prior after some RL updates. On the other hand, Hierarchical
Reinforcement Learning (HRL) methods [15, 39, 40, 5, 30]
consider a two-layered policy.

πL(a|s) =

∫
aH

πq(a|s,aH)πHθ (aH |s)daH (24)

Given some priors, a policy πq is modeled conditioned on
a higher-order action aH . For sampling an action, we first
sample an action from the high-level policy, aH ∼ πHθ (aH |s)
and then, we sample from the conditioned low-level policy,
a ∼ πq(a|s,aH). Most of the previous HRL policies assume
rather a mixture of skills [30, 12, 28, 8] or a simple sum
of the prior actions [15, 39] as HRL policies. These policy
architectures might not satisfy the desired properties in a real
robot RL problem, rather because they are not safe enough or
because they are so limited in their exploration space.

In a robot learning scenario, a desired HRL policy should
consider (1) priors that guarantee hard constraints to avoid
collisions, (2) multimodal/non-normal priors to provide a
rich set of possible exploring regions, (3) allow to integrate
multiple prior sources in the same policy and (4) do not limit
the exploration region to a few set of given skills. In the



following, we show that CEP allows integrating all the desired
properties in the HRL policy.

In our work, we propose to model the low level policy with
a CEP

µH ,ΣH ∼ πHθ (µH ,ΣH |s) (25)

πL(a|s,µH ,ΣH) = πq(a|s)N (a|µH ,ΣH)

In our model, the action is computed by the maximization over
the low-level policy

a = arg max
a

πL(a|s,µH ,ΣH). (26)

Our proposed policy combines the given prior policy distribu-
tion with a normal distribution parameterized with the high-
level policy. This structure allows integrating any type of prior
distribution with a learnable policy. The prior could impose
hard constraints to avoid actions that lead to collisions by
setting πq(a|s) = 0 or encourage the robot to explore in a
mixture of regions by setting a mixture of distributions as
prior.

The variance ΣH control controls the importance of the
learning policy w.r.t. the priors. The bigger ΣH is the
less relevant the learning policy is and thus, the higher
the influence of the priors in the action; in the limit
limΣH→0 π

L(a|s,µH ,ΣH) = δ(µH − a), the prior effect
disappear and we only trust in the learning policy.

It is interesting to remark that our model applies RL in the
high-level policy and solves a stochastic search optimization
problem in the low-level policy. With the low-level stochastic
search optimization, we can guarantee that some conditions
(obstacle avoidance) will be satisfied in the robot action, while,
a simple residual control could not.

VI. EXPERIMENTAL EVALUATION

The model evaluation is split into two parts. First, we study
CEP performance for reactive motion generation. We evaluate
how the different energy components perform by observing the
success rate and the collisions in a set of obstacle avoidance
environments. We compare CEP w.r.t. previous modular reac-
tive controllers. We exclude trajectory optimization and path
planning algorithms as our evaluation is interested in reactive
controllers that can provide a control response in high control
frequencies (≥500Hz).

Second, we evaluate CEP in an RL problem. We want to
observe if using CEP as prior boosts the learning performance
of an RL agent. Additionally, we want to evaluate if the
proposed priors are sufficiently strong to impose safety priors
in the policy and avoid collisions. We compare our approach
to previous methods applying both Behavioural Cloning + RL
and Hierarchical RL.

Reactive Motion Generation
We consider the problem of controlling a robot manipulator

in a set of obstacle avoidance environments. We use a 7
dof KUKA-LWR robot manipulator and the objective is to
reach a target pose (3D and 6D) while avoiding colliding

Fig. 4. Reactive Motion Generation Environments. In the top, from left to right: 1
Obstacle, 3 Obstacles, Cross. In the bottom, from left to right: Cage I, Cage II, Double
Cross. Green Sphere: target pose, red spheres: obstacles.

with the obstacles. We consider increasingly difficult envi-
ronments presented in Fig. 4. The robot is initialized in a
random joint configuration and its motion is generated by a
set of modular reactive motion generators, without additional
global path planning algorithms. We evaluate the success rate
and the collision rate of our method and compare it w.r.t.
deterministic modular reactive motion controllers (Artificial
Potential Fields [20] and Riemannian Motion Policies [32])
as baselines.

We build the CEP model with
• Go-To energy in the end effector’s task space.
• Obstacle Avoidance energy in each robot link’s task

space.
• Joint limits avoidance energy in the configuration space.

To guarantee high frequency control actions (≥ 500Hz), we
solve the optimization problem (11) in a Nvidia GPU RTX-
2800. Each energy component is parallelized and the action
samples are evaluated in batch. With a sufficient amount of
samples per optimization step (10.000 samples), the optimiza-
tion is solved in two steps.

Results and analysis: We summarize the obtained results
for the 3D Goto problem in table I. Few obstacles environ-
ments are easily solved by all the methods. We observe a
success rate of almost 100% for the first three environments
in the three cases. This result shows that simple scenarios
can be easily solved with local reactive controllers and it is
not required to solve a global trajectory planning problem. In
complex scenarios, CEP performs better than the baselines. We
can obtain an 89% success rate in the first cage environment
and 46% in the second cage. We think that these results might
be related to the way we compute the robot’s acceleration.
While the baselines methods compute the accelerations pro-
vided by the different components(Go-To, Avoid Joint Limits,
Obstacle Avoidance), and do not take into account any possible
conflict of interests between each action, our method first
computes the distribution obtained by the product of all the
components and then, computes the action that maximizes this
composed distribution. The built composition will provide high
probabilities to those actions that have high probability in each
component and low to the rest. Thus, the optimal action from



Methods 1 Obstacle 3 Obstacles Cross Double Cross Cage I Cage II
Success Collide Success Collide Success Collide Success Collide Success Collide Success Collide

Riemannian Motion Policies [32] 100/100 0/100 98/100 0/100 94/100 0/100 84/100 0/100 55/100 0/100 5/100 0/100
Artificial Potential Fields [20] 100/100 0/100 100/100 0/100 90/100 0/100 76/100 0/100 43/100 0/100 4/100 2/100

Composable Energy Policies(Ours) 100/100 0/100 100/100 0/100 98/100 0/100 91/100 0/100 89/100 0/100 46/100 0/100

TABLE I
RESULTS FOR 3D GOTO + OBSTACLE AVOIDANCE TASK

Methods 1 Obstacle 3 Obstacles Cross Double Cross Cage I Cage II
Success Collide Success Collide Success Collide Success Collide Success Collide Success Collide

Riemannian Motion Policies [32] 100/100 0/100 91/100 0/100 75/100 0/100 63/100 0/100 18/100 0/100 1/100 0/100
Artificial Potential Fields [20] 100/100 0/100 90/100 0/100 78/100 0/100 60/100 0/100 21/100 0/100 1/100 0/100

Composable Energy Policies(Ours) 100/100 0/100 100/100 0/100 91/100 0/100 87/100 0/100 43/100 0/100 14/100 0/100

TABLE II
RESULTS FOR 6D GOTO + OBSTACLE AVOIDANCE TASK

Fig. 5. Puck hitting environment. CEP is tested in a RL environment where
the robot needs to learn how to hit the puck. The reward is defined by the
euclidean distance between the puck and the green target. An additional reward
penalizes if the robot hits the table.

the composed distribution is expected to be the one that better
satisfies all the individual components.

The performance worsens for the 6D GoTo problem (Ta-
ble II). The orientation sets an important constraint in the
possible final configurations and reduces the set of trajectories
that solves the problem. CEP was able to perform relatively
better than the baselines but it got less than 50% success rate in
both cage environments, suggesting that in complex scenarios
an additional global path planner should be integrated with
CEP.

Prior Based Policies for RL
In the following experiment, we evaluate the performance

of CEP as a policy that combines prior policies with a new
learnable policy to solve a new task. We consider the problem
of hitting a puck and place it in a target position Fig. 5. We
use a 7 dof LBR-IIWA robot, the action space is defined
by the end-effector’s task space cartesian velocity a ∈ R3

and the state s ∈ R18 is represented by the end-effector’s
cartesian position xee, puck’s position xpuck, their relative
position rp-ee = xee − xpuck, the puck’s velocity vpuck, the
end effector’s velocity vee and the target position xtarget. One
episode has 1400 steps. We define the reward as

r = −||xpuck − xtarget||2 + rT (xee) (27)

with rT (xee) = −1000 if the robot’s end effector position
xee collides the table. The first term −||xpuck − xtarget||2 will
encourage the robot to put the puck close to the target, mini-
mizing the euclidean distance. The second term will encourage
the robot to avoid to collide against the table. We compare
CEP approach presented in (25) with other approaches that
combines prior information with RL. We consider Behavioural
Cloning + RL [28] and Residual Policy Learning [15, 39] as
baselines.

To guarantee a fair comparison, we apply the same prior
policy in the three scenarios. We build a prior policy with two
components in a CEP. We consider
• Go-To energy in the robot’s end effector’s task space.
• Table avoidance in the robot’s end effector’s task space.

The prior is combined in different forms depending on the
applied algorithm:

Behavioural Cloning + RL. We first fit a policy to the prior
policy

θ∗ = arg min
θ

Ep(s) [DKL(πq(a|s)||πθ(a|s))] (28)

and then directly sample from the fit policy

a ∼ πθ(a|s). (29)

Residual Policy Learning. We consider a hierarchical struc-
ture. We first sample, from the learnable policy and add the
optimal solution from the prior

a = a∗ + aH , aH ∼ πθ(aH |s) (30)

with

a∗ = arg max
a

πq(a|s). (31)

Composable Energy Policies. We also consider a hierarchi-
cal structure. In this case, we first sample from the learnable
policy

aH ∼ πθ(aH |s) (32)

and then, optimize over the composition

a = arg max
a

πq(a|s,aH). (33)



Fig. 6. Training curves for Hitting a puck environment. CEP-PPO performs consistenly
better than other prior + RL methods. Collision avoidance prior is stronger in CEP-PPO
and provides a safer training.

We apply the hierarchical policy introduced in (25). For all
the experiments, we used the Mushroom-RL [6] PPO [37]
implementation. We include additional details in Appendix D.

a) Results and analysis: We show the obtained results in
Fig. 6. Our method, CEP-PPO performs on average better than
Residual Learning and Behavioural Cloning + RL methods.
The obtained results show that while CEP can consistently
improve its performance, residual policy learning has a slower
learning curve and behavioral cloning + RL decays in perfor-
mance. We remark that the three methods start performing
worse than the prior due to the stochasticity of the policies
in contrast with the deterministic prior. The obtained results
might be related to the collisions per episode. CEP based
policy allows imposing hard constraints to avoid collisions.
Both, behavioral cloning + RL and residual learning adds
white noise around the optimal prior action and then, increase
the chances of table collision. Fewer collisions mean that
rT (xee) is less activated during the training and then, the
learning can focus on moving the puck close to the target. In
the Behavioural Cloning case, we see that the table collisions
push the robot to avoid the table, and then, it forgets how to
reach the target. The Behavioural Cloning + RL policy ends
with a policy that makes the robot neither collide with the table
and neither to hit the puck. In the residual learning case, the
policy is updated by taking both hitting the puck and avoid the
table into consideration, while in CEP, the collisions against
the table are less, and thus, the training is more focused on
improving the hitting tactic.

CEP ablation study: When applying CEP-PPO, the ΣH

parameter from (25) controls how big is the influence of the
learnable policy in the overall policy. The smaller ΣH is; the
smaller the entropy for the learnable part and the higher the
influence in the overall policy. In order to study the influence
of the ΣH parameter, we compare CEP-PPO with fixed ΣH

and CEP-PPO with learnable ΣH . We present the obtained
results in Fig. 7 As expected having the freedom to set the
ΣH parameter allows the robot to learn a better behavior to
hit the puck. If the ΣH parameter is fix and too big, then the
learned policy has a low impact on the overall policy and it can
not improve a lot. With a very small ΣH , the learned policy
will have a very high impact in the overall policy and then,
it might not get benefited by the priors. When learning ΣH

Fig. 7. Training curves for Hitting a puck environment. Learning the variance of the
policy improves the learning curve, but also increases the probability of collisions.

parameter in the high-level policy, the robot decides when to
trust more in the priors and when less. This allows the robot
to get help from priors only if required, but also to decouple
from them to learn a better policy. However, shown in the
collisions plot from Fig. 7, reducing the effect of the priors
might increase the probability to go into dangerous regions and
collide more often against the table. Nevertheless, learning the
ΣH parameter seems to provide better results than keeping it
fixed.

VII. CONCLUSIONS

We have presented Composable Energy Policies, a novel ap-
proach for modular robot control. In contrast with the previous
method for reactive motion generation, which computes the
optimal action for each component independently; our method
solves an optimization problem over the sum of components.
We have shown that APF policies can be rewritten as a CEP
and provide reasoning of why their method might fail. Through
an evaluation phase, we have also shown that our method
can solve a set of reactive motion generation problems more
efficiently than artificial potential field methods.

Our method is flexible and allows us to represent each com-
ponent in an arbitrary set of state-action spaces. Additionally,
CEP allows integrating policies from multiple sources and
samples from the product of them. In our work, we show
how to integrate a RL agent with a set of priors. The resulting
algorithm combines a high-level RL policy with a low-level
optimization problem. This low-level optimization allows to
guarantee that the policy is safe (if an obstacle avoidance prior
is added) or to explore in informative regions (if guiding priors
are added). We have compared our method with two methods
that also combine prior information with an RL agent. Given
the low-level optimization of our method, we can guarantee
that some priors such as obstacle avoidance were satisfied and
the learning is more stable.

Additionally, we have introduced in the Appendix, the
relations between optimal control and reactive motion gener-
ation. Setting their connections allows us to compute how the
optimal policy for a multi-objective optimal control problem
diverges from the product of the optimal policies for each
objective. These insights allow us to better understand the
policy composition and improve the design of our components.
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APPENDIX A
A CONTROL AS INFERENCE VIEW FOR REACTIVE MOTION

GENERATION

In the following section, we want to highlight the con-
nections between reactive motion generation and control as
inference to evaluate the optimality guarantees of composing
energies in a multi-objective optimal control problem.

Fig. 8. Graphical model for the Optimal Control problem. st denoted the
state, at denotes the action and ot is an additional variable representing the
optimality of the state and action for a given reward.
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We frame optimal control as Bayesian inference prob-
lem [33, 27] over the sequence of actions a0:T . The optimal
control problem is visualized as a graphical model in Fig. 8.
The problem is formulated introducing an auxiliary variable
o0:T that represents the optimality of st and at under a
certain reward function, p(ot|st,at) ∝ exp(r(st,at)). Given
a certain prior distribution q(a|s0) and given s0 is known, the
inference problem is

p(AT0 |s0, O
T
0 ) =

p(OT0 |AT0 , s0)q(AT0 |s0)

p(OT0 |s0)
(34)

with

p(OT0 |AT0 , s0) =

∫
s1:T

p(OT0 |ST0 , AT0 )p(ST1 |AT0 , s0)dST1

(35)

where AT0 : {a0, . . . ,aT }, OT0 : {o0, . . . , oT } and ST0 :
{s0, . . . , sT }. The are two main directions to solve the pos-
terior in (34). First, methods that frame the problem as an
Hidden Markov Model (HMM) and solve it in an Expectation-
Maximization approach. Second, methods that compute the
posterior in the trajectory level AT0 . The first, are computation-
ally demanding as they require several forward and backward
message passing to compute the posterior. The second, needs
to solve the problem in the trajectory level and thus the
dimension of the variables grows linearly with the trajectory
length, T .

Reactive motion generation instead, solves a one-step-ahead
problem. The solutions in reactive motion generation are local
rather than global and thus, they are computationally more
efficient.

We frame reactive motion generation as a one-step control
as inference problem

p(a0|s0, O
T
0 ) =

p(OT0 |a0, s0)q(a0|s0)

p(OT0 |s0)
(36)

with

p(OT0 |a0, s0) =∫
S1:T

∫
A1:T

p(OT0 |ST0 , AT0 )p(ST1 |a0, s0)π(AT1 |ST1 )dST1 dA
T
1 .

(37)

In contrast with the classical stochastic optimal control prob-
lem that finds the posterior for the whole trajectory AT0 , in
one-step-ahead control as inference problem, we aim to find
the posterior for only the instant next control action, a0.
Computing the posterior only for a0 requires the likelihood
to be defined as the marginal of not only the state trajectory
ST1 , but also the action trajectory AT1 . The graphical model for
one-step-ahead control as inference is presented in Fig. 9. In

Fig. 9. Graphical model for one-step ahead optimal control problem. In this
approach, the actions AT

1 are dependant on ST
1 given a policy π.
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one-step ahead control as inference, we introduce an additional
distribution π that provides us the probability of AT1 given ST1 .
This additional policy π is interpreted as the policy the agent
will apply in the future. In this context, given we know the
policy the agent will apply in the future, we are looking for
the instant action the maximized the cumulative reward in the
long horizon trajectory. (37) can be rewritten as the expectation
over p(OT0 |ST0 , AT0 )

EST0 ,AT0 ∼pπ(ST0 ,A
T
0 |s0,a0)

[
p(OT0 |ST0 , AT0 )

]
∝

EST0 ,AT0 ∼pπ(ST0 ,A
T
0 |s0,a0)

[
exp(

T∑
t=0

r(st,at))

]
=

exp(Qπr (s0,a0)) (38)

From what follows, the likelihood for our inference problem
is proportional to the exp(Q) defined over a certain policy π.
Given a π, the posterior for our inference problem is given by

p(a0|s0, O
T
0 ) ∝ exp(Qπr (s0,a0))q(a0|s0). (39)

The provided Q function depends on π and then, the quality
of our reactive motion generator to solve a long horizon
optimal control problem directly depends on the quality of
π. In the optimal case, for Q∗, the reactive motion generator
can find the optimal trajectory, even if the optimization is done
locally.

A. Optimality Guarantees

In CEP, we propose to model the Q function as the sum
of a set of optimal Q∗k functions. Instead, we are aware that
QΣ = 1

K

∑K
k=0Q

∗
k is not the optimal function Q∗ for the sum

of the rewards r = 1
K

∑K
k=1 rk. The closer QΣ is from the



optimal Q∗, the closer the product of experts policy would
be from the optimal policy. In this section, we study, given
a certain reward r = 1

2 (r1 + r2), how much the sum of the
individual components QΣ diverge from the optimal Q∗. In
[27] is shown, that the optimal Q function for the control as
inference problem can be computed by recursively solving the
soft-value iteration [50]

Q(s,a) = r(s,a) + Ep(s′|s,s) [V (s′)]

V (s) = log

∫
A

exp(Q(a, s)). (40)

We assume a finite horizon control as inference problem and
evaluate how much QΣ diverges from Q∗ when increasing the
control horizon

For t = T ,

Q∗T =
1

2
(r1 + r2) (41)

and

Q∗T1 = r1 , Q
∗T
2 = r2. (42)

Then,

Q∗T =
1

2
(Q∗T1 +Q∗T2 ) (43)

and the divergence

∆QT = Q∗T −QTΣ = 0. (44)

From (43), for T = 1 horizon optimal control problems, the
sum of the optimal components QΣ is equal to the optimal Q.
For longer horizon control as inference problems, the optimal
Q is computed by recursively solving the soft-bellman update
backward in time. For computing t = T − 1,

Q∗T−1(s,a) = r(s,a) + Ep(s′|s,s)
[
V ∗T (s′)

]
V ∗T (s) = log

∫
A

exp(Q∗T (a, s)). (45)

we do a soft bellman update. The difference betwen Q∗T−1

and QT−1
Σ

∆QT−1 = Q∗T−1 −QT−1
Σ = Ep(s′|s,a)

[
V ∗T − V TΣ

]
(46)

with

V ∗T − V TΣ = log

∫
A exp(Q∗T )∫

A(exp(Q∗T1 )
∫
A exp(Q∗T2 ))

1
2

= log

∫
A exp( 1

2Q
∗T
1 ) exp( 1

2Q
∗T
2 )

(
∫
A exp(Q∗T1 )

∫
A exp(Q∗T2 ))

1
2

. (47)

Then,

Q∗T−1 = QT−1
Σ + ∆QT−1

= QT−1
Σ + Ep(s′|s,a)

[
log

∫
A exp( 1

2Q
∗T
1 ) exp( 1

2Q
∗T
2 )

(
∫
A exp(Q∗T1 )

∫
A exp(Q∗T2 ))

1
2

]
(48)

From (46) and (47), we can obtain the recurrence relation
for the divergence error

∆Qt−1 = Ep(s′|s,a)

[
log

∫
A exp( 1

2Q
∗t
1 ) exp( 1

2Q
∗t
2 ) exp(∆Qt)

(
∫
A exp(Q∗t1 )

∫
A exp(Q∗t2 ))

1
2

]
.

(49)

From (46) and (47), we can see that if Q∗1 = Q∗2, then ∆Q = 0
and the more they differ, the bigger the divergence error to the
optima Q∗.

We can also extrapolate interesting results from (49). For
any Q∗1 and Q∗2,

(

∫
A

exp(Q∗t1 )

∫
A

exp(Q∗t2 ))
1
2 >

∫
A

exp(
1

2
Q∗t1 ) exp(

1

2
Q∗t2 )

(50)

and then,

∆Q < 0,∀Q∗1, Q∗2 (51)

And then, from (49), ∆Q monotonically decreases. The longer
the horizon T, the bigger the divergence error ∆Q.

In practice, these insights are beneficial for modeling our
Q functions. We can expect the performance of our reactive
motion generation to decay in those environments in which
long-horizon planning is required as the ∆Q will increase over
long horizons. On the other hand, the more overlapping regions
the Q components have, the smaller the divergence error would
be and the closer we would be to the optima.

Similar theoretical studies have been already developed [11,
47, 43]. In Optimal Control, composable optimality guarantees
were proven for linear dynamics, by the linearly-solvable
Markov Decision Processes (LMDP) approach. In [43, 4], a
weighted policy sum was proven to be optimal for the sum of
the rewards, as long as the rewards differ only in the terminal
reward.

In [11, 42], the optimality of the composition is studied in
a maximum entropy reinforcement learning problem

J(π) = Eπ,p(s0)

[
T∑
t=0

r(st,at) + αH(π)|st+1 ∼ p(·|st,at)

]
(52)

with H(π) the entropy of the policy. In [11] is proven, that
optimal soft-Q function for r = 1

2r1 + r2 is bounded

QΣ(s,a) ≥ Q∗(s,a) ≥ QΣ(s,a)− C∗(s,a) (53)

with QΣ = 1
2Q
∗
1 +Q∗2 and C∗ is the fixed point of

C(s,a)← γEp(s′|s,a)

[
D 1

2
(π∗1(a|s)||π∗2(a|s)) + max

a′
C(s′,a′)

]
(54)

and D 1
2

is the Renyi divergence of order 1
2 .



APPENDIX B
COMPOSABLE ENERGY POLICIES AS INFERENCE

The product of experts is the natural expression for the
multi-objective inference problem presented in Fig. 10. We
introduce a set of auxiliary variables o0, . . . , oK that represents
the optimality of s0 and a0 given a certain energy function
p(ok = 1|s0,a0) ∝ exp(Ek(s,a)). Then, the likelihood for

Fig. 10. Graphical model for Composable Energy Policies. ok is an auxiliary
variable that represents the optimality of s0 and a0 for a particular energy.

s0 a0

o0 o1 o2

the graphical model in Fig. 10 can be computed as the product
of the terms

p(s0,a0, o0:2) = q(a0)p(s0)

2∏
k=0

p(ok|s0,a0). (55)

We are interested on computing the maximum a posteriori for
a0 given s0 and ok = 1 , ∀ k = (0, 1, 2)

a∗0 = arg max
a0

p(a0|s0, o0:2 = 1)

∝ exp

(
2∑
k=0

Ek(a0, s0)

)
q(a0). (56)

From (56), we can see that the maximum a posteriori will
search for the optimal a0 given an exponentiated sum of
energies and the prior distribution q(a0). If we assume a
uniform distribution for the prior, we recover (4). Thus, the
product of experts represents the distribution that satisfies
best a set of components E0, . . . , Ek. We highlight that the
CEP graphical model in Fig. 10 and in Fig. 3 are equivalent.
The model in Fig. 10, represent the CEP as the distribution
maximizing a set of rewards E0, . . . Ek, while the model in
Fig. 3 represent the CEP as the distribution maximizing the
combination of a set of policies. Depending on the problem,
we might be interested to frame the problem with one or the
other approach.

APPENDIX C
COMPOSABLE ENERGY POLICIES AND ARTIFICIAL

POTENTIAL FIELDS METHOD

In the following section, we will show that the Artificial
Potential Fields Method can be written as a particular case of
Composable Energy Policies.

Artificial Potential Field Method assumes a weighted sum
of the accelerations generated by a set of dynamic components

q̈ =

K∑
k=0

Λkgk(q, q̇). (57)

Let’s consider a particular case of CEP were all the compo-
nents are represented with a normal distribution centered in
gk(q, q̇),

πk(q̈|q, q̇) = N (gk(q, q̇),Σk). (58)

Then, given K components

π(q̈|q, q̇) =

K∏
k=0

N (gk(q, q̇),Σk) = N (gΣ(q, q̇),ΣΣ) (59)

with

gΣ =

(
K∑
k=0

Σ−1
k

)−1( K∑
k=0

Σ−1
k gk

)
(60)

and

ΣΣ =

(
K∑
k=0

Σ−1
k

)−1

. (61)

In CEP, the acceleration is obtained by an optimization of

q̈ = arg max
q̈

π(q̈|q, q̇). (62)

The maximum of 59 is known; given the policy is a gaussian,
the maximun is the mean in 60

q̈ =

(
K∑
k=0

Σ−1
k

)−1( K∑
k=0

Σ−1
k gk(q, q̇)

)
. (63)

We can rewrite (63) to (57)

Λk =

(
K∑
k=0

Σ−1
k

)−1

.Σ−1
k (64)

We show that APF policy can be rewritten as a CEP, modelling
the dynamics by a product of normal distributions. Modelling
all the components by normal distributions might be a bad
choice for a proper modules integration. normal distributions
assume that (1) there is a unique optimal action (the mean)
to solve the task and (2) the actions quality is related to the
mahalanobis distance to the optima. While tasks like reaching
a target might satisfy (1) and (2); tasks like obstacle avoidance
might require richer representations to properly solve the task.

APPENDIX D
EXPERIMENTS

A. Reactive Motion Generation

The modular components (Go-to, Obstacle Avoidance and
joint limits avoidance) for both baselines APF and RMP
were modeled based on [20] and [3] respectively. CEP were
modeled following the energies presented in section IV. We
introduce a table with the hyperparameters for all CEP ener-
gies

B. Prior based policies for RL

We introduce a Table with the Hyperparameters for the PPO
in Mushroom-RL [6]. We used the same hyperparameters for
the three methods (Behavioural Cloning + RL, Residual RL
and CEP for RL).



Energy Modules Parameters
Reach Target Kp = 20. Kv = 30. α = 10.

Obstacle Avoidance γ = 0.2 α = 4. β = 0.1
Joint Limits avoidance γ = 0.3 α = 4. β = 0.1

TABLE III
COMPONENT PARAMETERS FOR COMPOSABLE ENERGY POLICIES IN

REACTIVE MOTION GENERATION

Hyperparameters
horizon 1400

Policy Net 18-128-128-3
policy std0 1.
policy batch 256

n epochs policy 2
policy learn rate 1e-4

Critic Net 18-256-256-1
critic batch 256

critic learn rate 3e-4
n steps per fit horizon x 30
Discount factor .997

TABLE IV
COMPONENT PARAMETERS FOR COMPOSABLE ENERGY POLICIES IN

REACTIVE MOTION GENERATION
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