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Abstract— Similarity distance measure between two trajecto-
ries is an essential tool to understand patterns in motion, for
example, in Human-Robot Interaction or Imitation Learning.
The problem has been faced in many fields, from Signal Pro-
cessing, Probabilistic Theory field, Topology field or Statistics
field. Anyway, up to now, none of the trajectory similarity
measurements metrics are invariant to all possible linear trans-
formation of the trajectories (rotation, scaling, reflection, shear
mapping or squeeze mapping). Also not all of them are robust
in front of noisy signals or fast enough for real-time trajectory
classification. To overcome this limitation this paper proposes a
similarity distance metric that will remain invariant in front
of any possible linear transformation. Based on Pearson’s
Correlation Coefficient and the Coefficient of Determination,
our similarity metric, the Generalized Multiple Correlation
Coefficient (GMCC) is presented like the natural extension of
the Multiple Correlation Coefficient. The motivation of this
paper is two-fold: First, to introduce a new correlation metric
that presents the best properties to compute similarities between
trajectories invariant to linear transformations and compare
it with some state of the art similarity distances. Second, to
present a natural way of integrating the similarity metric in an
Imitation Learning scenario for clustering robot trajectories.

I. INTRODUCTION

In the industry of tomorrow it is expected the robots
to collaborate with humans. The robots should not only
imitate the humans [1], [2], but also interact with us. The
objective of Human-Robot Interaction (HRI) is to understand
intentions [3] and shape the interactions [4] between one or
more humans and one or more robots [5].

There is a lot of work done in human intention recognition
and generalization. In [6], Amor et al. developed a Human-
robot solution based on PPCA. Their algorithm computes a
low-dimensional projection to encapsule human-robot inter-
actions in the training and then in testing, observing human
motion, the robot was able to infer his movement. They
found out that for certain motions, even if the robot was
taught how to interact when human was moving hands up,
the robot was able to generalize even when the human hands
where moving down. In [7], Interaction Primitives (IP) [8]
were used to learn human robot interactions. Probabilistic
Motion Primitives (PROMP) [9] were used to model human
motions for each skill and then the robot was able to guess
the skill human was doing through Bayes and then generalize
on the skill applying conditioning over PROMP. In [10],
PROMP’s were also used to adapt robot movements to a
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Fig. 1: GMCC applied for clustering taught trajectories in
Imitation Learning

human-robot table tennis match. In [11], HMM were used
to recognize human gestures. The recognition was invariant
to the starting position of the gestures. The sequences of
human motion were segmented into atomic components and
clustered by HMM.

Anyway, up to now, the generalization on human gestures
recognition has been applied on a few specific tasks and
very limited to small variations between the learned human
motion and the observed one. The actual algorithms tends to
fail recognizing gestures if these are similar shape to the ones
already in our gestures library but with different rotations.

This limitation can be overcome developing a good simi-
larity measurement that can extract the relevant features from
the learned human motions and then be able to recognize
rotated or scaled new observations. In an ideal case of HRI,
it should be enough teaching the robot how to interact with
the human for some particular cases and then, during the
testing, when the human is doing a similar shape motion, but
maybe rotated, the robot could find the similarities between
the previously learned motions and the new ones.

A. Problem Statement

The motion similarity has been studied in different fields.
For example, In Probabilistic Theory field, the motion has
been represented as a probability distributions. This let the
similarity distance to be robust with noisy motions. In Signal
Processing field the motion are represented as time series.
Similarity metrics deals with time morphed time series.
None of the commented similarity metrics consider spatial
transformations among trajectories and so, these similarity
metrics give poor performance measuring the similarity
distance among rotated or scaled trajectories.



Statistics field provides the best similarity metrics to
compare spatially transformed trajectories. In Statistics, two
trajectories similarity depends on how correlated are between
each other. A high correlation between trajectories will mean
a high similarity. For the case of unidimensional trajectories
xt ∈ IR and yt ∈ IR where t is the time samples, Pearson’s
correlation coefficient is measured as follows

ρ(xt, yt) =
cov(xt, yt)
σxσy

. (1)

The correlation coefficient will be 1 if the trajectories are
totally positive correlated, 0 if there is no any linear corre-
lation and -1 if there is a total negative linear correlation.
When it comes multidimensional variables, several correla-
tion coefficients exist. The first multidimensional coefficient
was proposed by Harold Hotelling in 1936 [12]. The Canon-
ical Correlation Coefficient (CAC), measures the correlation
between a linear combination of the first variable Xt ∈ IRn

and a linear combination of second variable Yt ∈ IRn

(a∗, b∗) = argmax
a,b

ρ(aᵀXt, b
ᵀYt),

CAC(Xt,Yt) = ρ(a∗ᵀXt, b
∗ᵀYt).

(2)

Nowadays, the most famous multidimensional correlation
coefficients for considering spatial transformations are two:
RV Coefficient and Distance Correlation (dCor). RV Coeffi-
cient [13] is computed as follows

RV (Xt,Yt) =
tr(XtX

ᵀ
t YtY

ᵀ
t )√

tr(XtX
ᵀ
t )

2tr(YtY
ᵀ
t )2

. (3)

As it can be seen RV coefficient is computed with XtX
ᵀ
t and

YtY
ᵀ
t . If we consider X2 = XQ where Q is any orthogonal

matrix, then, X2X
ᵀ
2 = XQQᵀXᵀ = XXᵀ. From here,

it is concluded that RV coefficient will be invariant to any
orthogonal transformation, so invariant to rotations.

On the other hand, Distance Correlation [14] is not only
invariant to linear transformations but also to some non linear
transformations also. Having two multidimensional vectors
Xt ∈ IRn and Yt ∈ IRn; first, the euclidean distance is
computed between different time samples

ak,j = ||Xj −Xk||, k, j = 0, . . . , T

bk,j = ||Yj − Yk||, k, j = 0, . . . , T

where || · || is the euclidean distance. Once computed, ak,j
and ak,j are double normalized

Aj,k = ak,j − a·,k − aj,· + a·,·

Bj,k = bk,j − b·,k − bj,· + b·,·

and the obtained values used for computing the distance
covariance (dCov) and the distance correlation (dCor)

dCov2(X,Y ) =
1

n2

n∑
k=1

n∑
j=1

Aj,kBj,k,

dCor(X,Y ) =
dCov(X,Y )√

dVar(X)dVar(Y )

(4)

where, dVar2(X) = dCov2(X,X). dCor will only consider
the sign of the distances computed between different time
samples. If the normalized distances from k to j have the
same sign in both Akj and Bkj , the correlation will increase
and if the signs are different then decrease. So, dCor does
not care if the relation between the variables is linear or
nonlinear.

In this paper, we propose a new correlation measurement
for multidimensional variables. As far as we know, there is no
any trajectory similarity measurement that remains invariant
to any linear transformations and only linear transformations.
Our algorithm is computed as an extension of the Multi-
ple Correlation Coefficient for multidimensional variables
and it will be demonstrated that the Multiple Correlation
Coefficient can be considered as a particular case of the
the Generalized Multiple Correlation Coefficient(GMCC) for
unidimensional variables.

The rest of the paper is organized as follows: In Section I-
B, similarity measures from other fields are presented. In
Section II, first the mathematical basis of our algorithm
is briefly explained, to continue with the presentation of
the novel similarity metric, GMCC. Section III is dedicated
to the experiments developed on the robot. First, GMCC’s
characteristics are studied and compared to RV Coefficient
and dCor. Later, the GMCC is applied in a clustering task
of robot trajectories Fig. 1. Finally, the paper concludes in
Section IV discussing ideas for future work.

B. Related Work

The similarity measurements presented in Section I-A are
the best similarity measurements when it comes to measure
spatial invariant similarities. Nevertheless, there are also rel-
evant similarity measurement in other fields: in 1) similarity
distances from Signal Processing field are presented, in 2)
similarity distances from Topology field and in 3) similarity
distances from Probabilistic Theory field.

1) In Time Series field, the similarity has been faced
from time shifting perspective. Dynamic Time Warp-
ing (DTW) [15] is a well-known algorithm. Consid-
ering two similar trajectories, DTW finds the best
matching between them applying time shifting, any-
way it doesn’t give any metric about how similar
two time series are. A similarity measure consider-
ing the time shifting is the Edit Distance With Real
Penalty (EDR) [16]. On it, Chen et al. propose a
similarity measurement based on string edit distance.
The similarity distance between two trajectories will
be related with the number of elements we should add
or delete to make them equal. None of these similarity
metrics are invariant to spatial transformations.

2) On Topology field, the similarity between trajectories
is studied without considering the time information
and so, only spatial information is used. The two
most well-known similarity measurements are Frechet
distance [17] and Hausdorff distance [18]. Frechet dis-
tance is presented as the bottleneck maximun distance
between two trajectories. From a different approach,



Hausdorff distance is the greatest of all the distances
from a point in one set to the closest point in the
other set. These distances doesn’t consider spatial
transformations of the trajectories.

3) On Probabilistic Theory field, Maximum Likelihood
is the most used algorithm for measuring the similarity
between two trajectories. In [3], Maximum Likelihood
was used to compute the similarity between learned
gestures and the observations. The benefits of using
probabilistic approaches are several. In contrast with
similarity metrics from other fields, Maximum Likeli-
hood can not only give the probability of how similar
two trajectories are, but also, predict the trajectory from
partial observations of the trajectory. So, the algorithms
can be used for recognizing and predicting the human
motions. The drawback is that no spatial transforma-
tions are considered between learned motions and the
observed ones.

II. GENERALIZED MULTIPLE CORRELATION
COEFFICIENT

We introduce a new correlation coefficient. This coefficient
can be used as a similarity measure between multidimen-
sional time series. Having two multidimensional trajectories
Xt ∈ IRn and Yt ∈ IRn where t is the time samples
and n the dimensions, the Generalized Multiple Correlation
Coefficient (GMCC) is a measure of how well can be mapped
a linear transformation between the trajectories Xt and Yt.
As lot of correlation measurements, the GMCC takes values
between 0 and 1. A coefficient of 1 means that there is a
complete correlation between Xt and Yt, and a value of 0
means that there is no any possible linear relation between
the vectors Xt and Yt.

The invariability on linear transformation is the biggest
contributions of this new similarity metric. The coefficient
will remain invariant in front of any possible linear transfor-
mation and only linear transformations, so the correlation
coefficient will decrease sharply when no linear correla-
tions appear. This contribution is particularly interesting in
comparison with other correlation coefficients such as RV
coefficient, that remains invariant with only with orthogonal
transformation matrices and dCor that remains invariant with
not only linear but also some nonlinear transformations.

As additional contributions, and similarly to other corre-
lation coefficients, GMCC is robust when noisy trajectories
are compared and the coefficient is obtained instantly in
comparison with other Signal Processing field similarity
metrics such as EDR [16] or TWED [19] which computation
time is of O(t2) where t is the time samples of the compared
trajectories Xt and Yt.

GMCC is an extension of the Multiple Correlation Coef-
ficient. While the Multiple Correlation Coefficient computes
the correlation between an univariate dependant variable y
and multiple independent variables X , the GMCC extends
it to multivariate dependant variables Y . Moreover, in Sec-
tion II-B it will be demonstrated that Multiple Correlation

Coefficient can be computed as a particular case of the
GMCC.

The Section II continues as follows: In Section II-A a brief
introduction to the mathematical basis for developing our co-
efficient is presented. Once the Coefficient of Determination
and the Multiple Correlation Coefficients are introduced, in
Section II-B our novel coefficient, GMCC is presented and
computed.

A. Coefficient of Determination

Considering an univariate dependant variable yt ∈ IR and
multiple independent variables Xt ∈ IRn, the coefficient
of determination, also know as R2 is the fraction of the
variance in the dependent variable y that is predictable from
the independent variables X [20]

R2 =

∑T
t=0(ŷt − y)2∑T
t=0(y − y)2

(5)

where ŷt = AᵀX = a1x1t + a2x2t + · · · + anxnt with
A ∈ Rn is the prediction model. yt can be expressed in
terms of predicted values ŷt and residual errors εt

yt = ŷt + εt

then, the parameters A that minimize the squared sum of
the residual error εt can be obtained through an optimization
function

A∗ = argmin
A

(

T∑
t=1

ε2t ) (6)

The solution of the optimization function from Eq. 6, A∗, is
computed by Least-Squared regression and so, the optimal
prediction model is ŷ∗t = A∗ᵀXt. In the particular case of
having this optimal model, the Coefficient of Determination
can be expressed in terms of the Pearson’s Correlation
coefficient [20]

R2 = cᵀR−1
xx c

ᵀ (7)

where c = (ρyx1
, . . . , ρxn

) is a vector with the correlation
coefficient between each individual independent variables xi
and the dependent variable y. Rxx is a correlation matrix
measuring the correlation between the independent variables

Rxx =


ρ11 ρ12 ρ13 . . . ρ1n
ρ21 ρ22 ρ23 . . . ρ2n

...
...

...
. . .

...
ρn1 ρn2 ρn3 . . . ρnn

 .
It is important to remark that in the case of having the
independent variables completely uncorrelated between each
other,Rxx becomes into the identity matrix

Rxx = Inxn (8)

and so, the coefficient of determination can be expressed as
a sum of squared Pearson’s Correlation coefficients. Mixing
Eq. 7 and Eq. 8

R2 =

n∑
i=1

ρ2yxi
.



Multiple Correlation Coefficient is the square root of Eq. 7
and it represents how well we can predict the parameters
of the dependant variable y with the multiple independent
variables X using the optimal linear model.

R =
√
cᵀR−1

xx c
ᵀ (9)

As remarked in [20], Multiple Correlation Coefficient
will increase when the number of the independent variables
increase and so it will give a high correlation coefficient
between any two variables. From regression perspective is
logical. As we are applying Least-Square regression to fit
X with y, when the independent variable increase, the noise
can be used to fit in y and so, we could have over-fitting
problems. Anyway, it is expected the noise not to affect
a lot in low-dimensional cases such as three dimensional
euclidean motions.

B. Generalized Multiple Correlation Coefficient

We propose a new correlation coefficient for the case of
multiple dependant variables Yt ∈ IRn and multiple indepen-
dent variables Xt ∈ IRn where t is the time sample and n
is the dimension. The given name is Generalized Multiple
Correlation Coefficient (GMCC), as it can be introduced
as the extension of the Multiple Correlation Coefficient for
multivariate dependent variables. The most relevant property
from GMCC in comparison with the state of the art multivari-
ate correlation coefficients such as RV and dCor is that it will
remain invariant to any possible linear transformations and
only linear transformations. For any nonsingular matrix H

GMCC(X,HX) = 1.

For Human-Robot Interaction framework or Imitation Learn-
ing framework, a similarity measurement that remains in-
variant between linearly transformed trajectories is a useful
tool. This is the case of different scale, rotation, mirror,
squeeze mapped or shear mapped trajectories. This similarity
measurement can be applied from classication of human
gestures in HRI environment to clustering of teached skills
in Imitation Learning as we will show in Section III.

GMCC lays between the RV coefficient that remains
invariant in front of rotations and scaling and the distance
correlation (dCor) that remains invariant for not only linear
transformations but also some nonlinear transformations. In
order to obtain a scalar correlation coefficient between Y
and X multidimensional trajectories, we propose a modified
Coefficient of Determination. Based on Eq. 5

R2 =

∑T
t=0 ||Ŷt − Y ||2∑T
t=0 ||Yt − Y ||2

(10)

where || · || is the euclidean norm and Ŷt = HX where
H is any nonsingular matrix. The R2 coefficient from
Eq. 10 is presented as the generalization of the Coefficient of
Determination. Moreover, R2 coefficient from Eq. 5, can be
computed as a particular case of Eq. 10 for unidimensional
variable y.

If Eq. 10 is extended

R2 =

∑T
t=0

√
(ŷ1t − y1)2 + · · ·+ (ŷnt − yn)2

2∑T
t=0

√
(y1t − y1)2 + · · ·+ (ynt − yn)2

2

and now, if square root is eliminated by the power in both
the numerator and denominator and the numerator split

R2 =

∑T
t=0(ŷ1t − y1)2

σ2
Y

+ · · ·+
∑T

t=0(ŷnt − yn)2

σ2
Y

where σ2
Y =

∑T
t=0(y1t − y1)2 + · · ·+

∑T
t=0(ynt − yn)2 =

σ2
y1

+ · · · + σ2
yn

. If now, each fraction is multiplied by
their respective variance of the dependant variable σ2

yi
, the

obtained equation is

R2 =

∑T
t=0(ŷ1t − y1)2

σ2
y1

σ2
y1

σ2
Y

+ · · ·+
∑T

t=0(ŷnt − yn)2

σ2
yn

σ2
yn

σ2
Y

.

For the particular case of the predicted linear models ŷit been
optimal, based on Eq. 7, it can be rewritten as a weighted
sum of the square of the Multiple Correlation Coefficient of
each variable of Y

R2 =

n∑
i=1

R2
yi

σ2
yi

σ2
Y

(11)

General Multiple Correlation Coefficient (GMCC) is the
square root of the general case of Coefficient of Determina-
tion from Eq. 10 under the particular case of optimal linear
prediction model computed in Eq. 11

R =

√√√√ n∑
i=1

R2
yi

σ2
yi

σ2
Y

. (12)

It can be observe, that for the particular case of Y being uni-
dimensional, The General Multiple Correlation Coefficient
becomes into the Multiple Correlation Coefficient.

The Generalized Multiple Correlation Coefficient rep-
resents how well a set of independent multidimensional
variables can predict a set of dependent multidimensional
variables by a linear model. GMCC will take values between
0 and 1, where 1 means a complete prediction of Y t with
Xt. One of the drawbacks of GMCC in comparison with RV
coefficient and dCor coefficient is that it is not symmetric so,
R(X,Y ) 6= R(Y ,X). In order to solve it, we can compute
the symmetric GMCC

Rsym(X,Y ) =
R(X,Y ) +R(Y,X)

2
(13)

Traj. type dCor RV GMCC
line 0.01 0.0006 0.0 0.001
line 0.02 0.02 0.0 0.005
line 0.04 0.01 0.0 0.02

circle 0.01 0.0 0.0 0.001
circle 0.02 0.0 0.0 0.002
circle 0.04 0.0035 0.0 0.0039

TABLE I: Similarity distance measurements for line and
circular trajectories with different noises for distance cor-
relation(dCor), RV coefficient and GMCC



(a) Circular trajectory with artificial gaussian noise (b) Linear trajectory with artificial gaussian noise

(c) Circular trajectories artificially linearly transformed (d) Linear trajectories artificially linearly transformed

Fig. 2: Artificially generated trajectories for testing the experiments in Section III-A

This symmetric correlation coefficient from Eq. 13 is used
to compute a similarity distance measure

dX,Y = 1−Rsym(X,Y ). (14)

A similarity distance of 1 means that X and Y are com-
pletely uncorrelated and the closer the distance is to 0, the
higher the linear correlation between X and Y .

In the experimental evaluation, this distance measure is
going to be compared with the two most relevant multivariate
correlation coefficients metrics RV and dCor.

III. EXPERIMENTAL EVALUATION

For the experimental evaluation of GMCC, the experi-
ments have been split in two sections. In Section III-A, the
GMCC characteristics will be studied in some predefined
trajectories. This Section will be useful to facilitate the reader
the understanding of the capacities and limitations of the
novel metric.

In Section III-B, GMCC is applied for a trajectory cluster-
ing problem and the obtained solution compared with RV and
dCor solutions. Six different type of trajectories have been
recorded with a KUKA LWR arm. The recorded trajectories
have been clustered through a hierarchical clustering method.

A. GMCC characteristics

For this first evaluation, two simple 2D signals are going
to be used: a linear and a circular trajectory. To observe
the robustness of GMCC in front of noisy signals, different
variance gaussian noises were added in both the linear
and circular trajectories. The obtained noisy trajectories are
presented in Fig. 2a and Fig. 2b. The similarity distances
between the original trajectories and the noisy signals were
computed for RV, dCor and GMCC and the obtained values
are presented in Table I.

From Table I, it can be observed that in terms of noise the
three similarity distances are pretty robust. GMCC is giving
the worst results in comparison with dCor and RV, but from
a general perspective, three of them remains robust in front
of noisy signals as the obtained values are close to 0.

In a second experiment the selected two trajectories, a line
and a circle, were transformed by rotation, scaling, reflection,
shear mapping and squeezing. The obtained trajectories are
presented in Fig. 2c and Fig. 2d. As the previous case,
the similarity distances were computed between the original
trajectory and the transformed ones for dCor, RV and GMCC
and obtained results organized in Tables II and III.

These tables are representative of the real power of
GMCC. While the RV coefficient is measuring big distances
between the original line and the one transformed by shear
mapping, rotation or squeezing, the GMCC remains robust in
null distance. dCor’s distance is also pretty close to 0, but in
shear mapping and squeezing gives a little bit worse results.
GMCC is the coefficient that works better for similarity
invariant to linear transformations and will remain always
in lowest distance for any linear transformations.

GMCC is limited to linear transformations. GMCC dis-
tance starts increasing when no linear mapping can be set be-
tween the compared trajectories. Meanwhile, dCor is capable

Transf. type dCor RV GMCC
rotation 0.0 0.01 0.0

scale 0.0 0.0 0.0
reflection 0.0 0.009 0.0

shear 0.12 0.18 0.0
squeeze 0.11 0.14 0.0

TABLE II: Similarity distance measurements for circular
trajectories with different transformations for distance cor-
relation(dCor), RV coefficient and GMCC



(a) RV Coefficient distance matrix (b) dCor distance matrix (c) GMCC distance matrix

Fig. 3: Distance Matrices computed for RV, dCor and GMCC

of finding also nonlinear mappings between trajectories. The
distance measured by dCor will be smaller than the distance
with GMCC for nonlinear correlations. In order to prove
this, the similarity distance has been measured between the
original line and the original circle and the obtained distances
presented in Table IV.

The distance measured by GMCC is 0.87 while the
distance measured by dCor is 0.57. dCor is less sensible
to nonlinear transformations than GMCC. our correlation
coefficient is a worse tool for measuring nonlinear correlation
but at the same time is a better metric for measuring only
linear correlations.

B. Clustering robot trajectories

Six different type of motions were recorded in a KUKA
LWR arm. The end effector’s cartesian position was recorded
for x, y and z. For each motion type five different demonstra-
tions were recorded with different scales, different starting
points and different orientations. The selected motions are
lines, U-shape, S-shape, circular,triangle and hello trajecto-
ries. All the demonstrations were fixed to the same time
length and same amount of time samples. Then, the similarity
distance matrix was computed among the demonstrations and
this distance matrix was used as the input for a hierarchical
clustering.

The similarity matrix of each 30 demonstrations ( six
gestures by five demonstrations) was computed for the three

Transf. type dCor RV GMCC
rotation 0.0 0.82 0.0

scale 0.0 0.0 0.0
reflection 0.0 0.819 0.0

shear 0.007 0.88 0.0
squeeze 0.0029 0.16 0.0

TABLE III: Similarity distance measurements for linear
trajectories with different transformations for dCor, RV and
GMCC

Transf. type dCor RV GMCC
line Vs circle 0.5258 0.27378 0.871

TABLE IV: Similarity distance measurements for line Vs
circle

correlation distances dCor, RV and GMCC. The obtained
similarity matrices are presented in the Fig. 3.

The first conclusion is extracted from Fig. 3b. dCor
distance is measuring small distances not only between the
demonstrations of the same motion but also between the
demonstrations of different motions. From here, we can
predict that at least with the recorded motions, dCor will
fail classifying or clustering them correctly. RV coefficient
and GMCC are obtaining similar results. For some gestures
GMCC differentiates better. For example, between circular
trajectories and S-shape trajectories. Anyway, GMCC is
getting worse results discriminating linear movements and
S-shape movements. It is also relevant to remark how badly
the hello trajectories are correlated. None RV coefficient or
GMCC is giving good similarity distance between most of
the hello trajectories.

The recorded demonstrations were clustered by hierarchi-
cal clustering to observe the application of our algorithm in
a real case scenario. During first evaluation, we considered
to cluster the demonstrations in six clusters. However, the
hello trajectories were very dissimilar not only in comparison
with other trajectories but also between each other as it
can be observed in the dendrograms from Fig. 4. This was
making the clustering to fail as the hello trajectories were
not clustered in the same cluster, but each one was a unique
cluster and then in a unique cluster we could find all the other
gestures. In order to solve this, the hierarchical clustering
tries to cluster the no-hello motions in five different clusters.

The applied linkage criterion was the average distance
between the clusters.The average linkage criterion will use
the average distance between all the elements in both cluster
to decide if they should merge or not

d(u, v) =

n∑
i=1

m∑
j=1

d(u[i], v[j])

nm
.

From the obtained dendrograms several conclusions can be
extracted. Expected from the similarity matrix in Fig. 3b,
dCor solution is not useful for clustering the recorded human
gestures. In Fig. 4b, it can be observed how the clusters has
been built with dCor. There are two main clusters. The one in
yellow, clustering in same cluster some triangle trajectories,



(a) RV’s dendrogram (b) dCor’s dendrogram (c) GMCC’s dendrogram

Fig. 4: Dendrograms computed for RV, dCor and GMCC

U-shape trajectories and S-shape trajectories. The other big
clustering some line trajectories, hello trajectories and circu-
lar trajectories. This poor results can be understood as dCor
finds not only linear but also non-linear correlations between
trajectories and so, it will find a small similarity distance
between most of the trajectories as they are nonlinearly
correlated.

The clustering obtained in GMCC’s dendrogram is better
than the clustering obtained in RV’s dendrogram. There
are less missclustered elements in GMCC than in RV.
GMCC missclusters two triangle trajectories with the circular
trajectories and one U-shape trajectory with the S-shape
trajectories. Meanwhile, RV dendrogram is also creating a
unique cluster between all U-shape and S-shape trajectories.
Also, one of the found clusters by RV is a cluster with
only two elements containing one triangle trajectory and one
circular trajectory. We can conclude that the best tool for
clustering three-dimensional motions is the GMCC.

IV. DISCUSSION AND FUTURE WORK

We presented a multidimensional correlation coefficient
that remains invariant for any linear transformation and only
linear transformations. This novel multidimensional has been
proved to be a multidimensional extension of the Multiple
Correlation Coefficient. The validity of GMCC has been
proved in a real robot learning scenario and have showed
better clustering capacities than state of art multivariate
correlation coefficients such as RV and dCor.

While our similarity distance is invariant to any linear
transformation, it cannot deal with time morphing and time
shifting. A promising improvement of our algorithm will
come from the mixture between DTW and GMCC. Another
interesting improvement comes from extending GMCC to
probabilistic motions. PROMPs are a promising representa-
tion of motions in Imitation Learning and we expect to merge
PROMPs with GMCC.
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