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Abstract

Supervised learning is among the most successful approaches to classify on gesture of
human skeleton. While impressive results were achieved, supervised learning model are
limited in new class inference without label as it demands re-training for new class and
resulting in more computational. Density estimation is reasonable approach to tackle
these problems. A probabilistic view on unsupervised learning improves the inference
on new class without re-training on datasets through probability distributions. In this
thesis, we discuss the GestureFlow model to classify on gesture of human skeleton inspired
by normalizing flow. We evaluate di�erent approaches such as Fully Connected Model,
Support Vector Machine and GestureFlow model on our datasets. We further develop
a new metric for inference the label on new class. Our results suggest, GestureFlow
model is less computational and more powerful expressiveness of probability distributions
compared to baseline model.



Zusammenfassung

Überwachtes Lernen gehört zu den erfolgreichsten Ansätzen zur Klassifizierung nach
Gesten des menschlichen Skeletts. Während beeindruckende Ergebnisse erzielt wurden,
wurde das überwachte Lernmodell in einer neuen Klasseninferenz ohne Label begrenzt,
da es eine Umschulung für eine neue Klasse erfordert und zu mehr Rechenaufwand
führt. Die Dichteschätzung ist ein vernünftiger Ansatz, um diese Probleme anzugehen.
Eine probabilistische Sicht auf unbeaufsichtigtes Lernen verbessert den Rückschluss auf
eine neue Klasse, ohne die Datensätze durch Wahrscheinlichkeitsverteilungen erneut zu
trainieren. In dieser These diskutieren wir das GestureFlow-Modell, um die Geste des
menschlichen Skeletts zu klassifizieren, die durch die Normalisierung des Flusses inspiriert
ist. Wir bewerten verschiedene Ansätze wie das vollständig verbundeneModell, die Support
Vector Machine und das GestureFlow-Modell in unseren Datensätzen. Wir entwickeln eine
neue Metrik weiter, um auf das Etikett für eine neue Klasse schließen zu können. Unsere
Ergebnisse legen nahe, dass GestureFlowmodel im Vergleich zum Basismodell weniger
rechnerisch und aussagekräftiger für Wahrscheinlichkeitsverteilungen ist.
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�. Introduction

With the development of robotic technology, the impact of robots on our daily lives has
become critical. The subsequent interactions between humans and robots will become
more and more frequent. The main goal of our work is to model a probability distribution
given its sample and classify on human skeleton gesture.

Among the most successful approaches to classify on human skeleton gesture is supervised
learning model[1, 2]. For labeled data, it can achieve good classification and has significant
classification capabilities. However, for new data sets, a huge amount of computation is
required, and it is di�cult to infer the new dataset to infer the label.

In unsupervised learning, its importance stems from the relative abundance of unlabeled
data compared to labeled data and their applications such as density estimation, outlier
detection, prior construction. We follow the normalizing flow[3] to tackle the problem
of re-training model for new class. This work further evaluates metrics to measure the
classified capabilities of an algorithm.

The struture of thesis shows as follows. In Chapter 2, fundamental concepts required
for the rest of this thesis are reviewed briefly. The chapter introduce the the structure
of Fully Connected Model, [1] and Fully Connected Model [2] ,and their derivation of
classification. Further, we discuss normalizing flow[3] and its powerful expressiveness of
probability distributions. Moreover, we give an in-depth introduction to the coupling layer
which inspire our GestureFlow model. we describe the structure of neural network of
Openpose and its application. Based on Openpose we recording our dataseta and applyit
in real-time human skeleton tracking In chapter 3, the related works in the state of the
art are presented. In chapter 4, we evaluate GestureFlow model with a comparison to
baseline model. In addition, we also considered the classification results learned from the
Gaussian distribution and the model learned by normalizing flow. We apply gestureflow
model in real-time human skeleton pose classification in 2- and 3-dimensional coordinate.
In Chapter 5, We summarized the classification achieved results by our proposed method
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compared to the baseline model. At the end, in Chapter 6, an outlook for future work is
provided to this thesis.
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�. Foundations

This chapter introduces the fundamentals in pursuit of algorithms and models. This
section consists of two parts. At the beginning of this section, the terms of supervised
learning of baseline model get recapped. Furthermore, the di�erent types of generative
models are described. Besides, Openpose is introduced for human skeleton detection.

In Section 2.1.1, the basics for the Fully Connected Model(FCM) are provided. We present
the basic parameters and show how to apply FCM for learning and classification on human
gesture data. In Section 2.1.2, the description of the Support Vector Machine is introduced,
which is a supervised model for classification in human gesture data. In Section 2.2.1,
Gaussian Naive Bayes Classification is presented. Section 2.2.2 highlights Normalizing
Flows, which are unsupervised techniques known for capturing underlying relations in
human gesture data.

�.�. Supervised learning of baseline model

�.�.�. Fully Connected Model

Fully connected model is probabilistic models that map the learned distributed feature
representation to the sample label space. FCM find their application such as in a wide
range of fields such as image classification, voice recognition.

Structure of Fully Connected Model

Fully connected neural network is composed of a range of fully connected layers where
each output dimension relies on each input dimension. Figuratively, a fully connected
layer is represented based on the architecture from the [4] as follows in Figure.2.1. A
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neural network is premeditated with i hidden layers, where i 2{1, 2} index the hidden
layers of the network. In the neural network layer, the combined formula of a linear
transformation is given in 2.1 as follows:

zi = yi�1wi + bi (2.1)

where zi denote the vector of outputs into layer i, yi�1 denote the vector of inputs from
layer i (y0 = x is the input), bi is the biases and wi weights from layer i. Then the sparse
outputs are used as input to the next layer where is applied at each layer. According to this
structure of FCM, dropout is applied to a neural network is equivalent to sampling a sparse
network from it. Dropout is a technique to solve these two problems. It avoids overfitting
and states a way to e�ectively approximate wide range neural network architectures in
the form of combined exponentials.

Figure �.�.: A sparse network created by applying dropout to the two layer network.
Crossed units have been discarded.

Moreover, [4] introduce non-linear operation in order to reduce gradient explosion at
each layer which is given in 2.2 as follows:

yi = f(zi) (2.2)

where f is a non-linear activation function ReLU. Using the above defined inputs and
outputs, the softmax function is considered in the output-layer to normalize the inputs,
which is given in 2.3 as follows:

ỹi = exp zi/
X

i

exp zi (2.3)
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we can get a probability distribution of the label of the output. Finally, a cross entropy
loss function is evaluated over that dataset in the multi-classification problem. It can be
expressed in 2.4 as follows:

H(y, ỹ) = �
X

z

p(z)log(q(z)) (2.4)

where p(z) is probability of true label of the data, q(z) is probability of predicted label of
the data.

�.�.�. Support Vector Machine

This section summarizes the Support Vector Machine used throughout which is a non-
parametric supervised learning model. The kernel trick provides the way that maps inputs
to high-dimensional feature spaces in non-linear classification. A set of hyper-planes in
a high dimensional space is constructed which obtains a good separation. While the
distance among nearest training data point of any class is the largest, with the greater the
margin, the smaller the generalization error of the classifier. Figure.2.2 shows the decision
function of the two samples for a linearly separable issue on the margin boundaries.

Figure �.�.: A linearly separable problem in support vector machine.
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[2] motivates support vector machines to build a multi-class classifier, in which the kth

model yk(x) is trained using the data from class Ck. Given training vectors , n = 1, . . . , t
in multi-class classes and a vector which means the given prediction is correct for most
samples. It solves the following primal problem shown in 2.5 as follows:

min
wij ,bij ,⇠ij

1

2
(wij)Twij + C

X

n

⇠ijn

s.t.(wij)T�(xn) + b
ij � 1� ⇠ijn , if yn = i

(wij)T�(xn) + b
ij  �1 + ⇠ijn , if yn = j

⇠ijn � 0, n = 1, ...., t

(2.5)

where i and j represent the class of SVM; n the represents the index of the sample in the
of the i class and the j class; � represents from input space to feature space of non-linear
mapping, ⇠ is the distance from their correct margin boundary. To maximize the margin
(wij)Twij is minimized under the constraints which obtains optimal hyperplane. Once the
optimization problem is solved, the decision function in the feature space will accordingly
be of the form:

y
ij
new = sign[wij)T�(xnew) + b

ij ] (2.6)

�.�. Unsupervised learning of generative model

�.�.�. Gaussian Naive Bayes Classi�cation

Naive Bayes Classi�cation

Naive Bayes classification aims at applying Bayes’ theorem, which is given the value of
class variables. With the “naive” assumption of conditional independence [5] propose
a novel explanation on the superb classification performance of naive Bayes. Given X

is represented by a tuple of attribute values (x1, x2, , , xn), where xi is samples of class
variable. Y is represented by the a tuple of classification variable (y1, y2, , , ym), where yj
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is the label of class variable. From the probability perspective, according to Bayes Rule,
the probability of an sample X = (x1, x2, , , xn) being class yj is:

p(yj |x1, ...xn) =
p(yj)p(x1, ...xn|yj)

p(x1, ...xn)
(2.7)

Naive conditional independence assumption is applied in:

p(xi|yj , x1, ...xi�1, ..., xn) = p(xi|yj) (2.8)

so that the relationship of given the sample of the class variable is simplified to:

p(yj |x1, ...xn) =
p(yj)

Qn
i=1 p(xi|yj)

p(x1, ...xn)
(2.9)

When p(x1, ...xn) is constant as given input, the following classification rule is shown:

p(yj |x1, ...xn) / p(yj)
nY

i=1

p(xi|yj) (2.10)

ŷ = argmax
yj

p(yj)
nY

i=1

p(xi|yj) (2.11)

Maximum A Posteriori (MAP) is applied to estimate p(yj) and p(xi|yj) in the solving the
optimization problem, which is deeply related to maximum likelihood. The various of
naive Bayes classifiers depend on the assumptions of the distribution of p(xi|yj). Although
the assumptions of naive Bayes classifiers is oversimplified, it performs well in many
practical situations such as document classification and spam filtering. Due to decouple of
the class conditional feature distribution helps to alleviate the problems caused by the
curse of dimensionality.

Gaussian Naive Bayes

A key component of Gaussian Naive Bayes is the assumptions of the distribution of p(xi|yj).
The likelihood of the samples is assumed to be Gaussian:

p(xi|yj)⇠G(µ,�) (2.12)

Maximum likelihood is utilized to estimate the parameters µ and �.
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�.�.�. Normalizing Flows

Normalizing flows[6, 7, 3] represent a family of methods that derives the flexible learn-
able probability distributions, which which allow us to surpass the limitations of simple
parametric forms. The idea behind Normalizing Flows[7] is that operate by pushing a
simple density through a serie of transformations to produce a richer, potentially more
multi-modal distribution—like a fluid flowing through a set of tubes. The density of the
sample can be evaluated by converting the sample back to the original simple distribu-
tion, and then calculating the product of the density of the inverse-transformed sample
under this distribution and the relative volume change caused by the inverse-transformed
sequence[3]. The expressive power of flow-based models and operation of flows in our
method are introduced later.

Basics and Property

Considering x as a D-dimensional sample from a random variable with a known and
tractable probability density function p(x). The idea behinds flow-based modeling is to
express x as a transformation T of u which is a random variable in the latent space with
tractable distribution p(u):

x = T(u) (2.13)

where u is sampled from p(u):
u⇠ p(u) (2.14)

When the transformation T is invertible and both T and T
1 are di�erentiable, transfor-

mation T is defined as di�eomorphisms. In additional, u is required D-dimensional as
well as x, the probability density function of of x is computed:

p(x) = p(u)|detJT(u)|�1 (2.15)

The partial derivatives of Jacobian matrix JT(u) 2 RD⇥D is given in [6, 7, 3]with respect
to u: 2

6664

@T1
@u1

· · · @T1
@uD

...
. . .

...
@TD
@u1

· · · @TD
@uD

3

7775
(2.16)
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Identically, the probability density function of of x is obtained with terms of the Jacobian
of T�1:

p(x) = p(T�1(x))|detJT�1(x)| (2.17)

where the transformation of variable of u is expressed:

u = T
�1(x) (2.18)

Transformation T is considered as warping the space RD in order to mold the density
p(u) into p(x)[7]. An important property of di�eomorphism transformation is that they
are composable. Given T1, ...., Tk be a set of invertible and dierentiable transformations,
then their composition is defined as:

T = T1 � T2 � · · · � Tk (2.19)

Its inverse of composition are derived as:

T
�1 = T�1

k � T�1
k�1 � · · · � T

�1
1 (2.20)

Moreover, the determinant of the Jacobian is given by:

detJTk�Tk�1�···�T1(u) = detJT1(u)
KY

k=2

detJTk(Tk�1(u) � Tk�2(u) � · · · � T1(u)) (2.21)

Complex transformations to be represented by the composition of transformations which
consists of a set of simpler transformations[3]. In practice, the determinant of the Jacobian
of every simpler transformation can be computed easily.

Sampling from the model and evaluating the model’s density are the important operations
for a flow-based model[7]. when we sampling from the model, prior distribution p(u) is
sampled for computing of the forward transformation T. we evaluate the model’s density,
inverse transformation T

�1 and its Jacobian determinant must be obtained. In practice
parameterizing flows can be implemented by deep neural networks.

Coupling Layer

The coupling layer[8, 9] in auto-regressive networks[10, 11] is defined more expressive
transformations.To obtain the tractability of Jacobian determinant and simple computation
in parameter learning, the architecture of the coupling layer is decisive to achieve the a
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Figure �.�.: The transformation of coupling layer.

family of bijections. Considering a�ne transformations, [12] and [13] provide formulas for
the inverse and determinant when using diagonal matrices. Inverting triangular matrices
at test time is reasonable in terms of computation[8]. With a triangular weight matrix
and a bijective activation function it greatly limits the architecture which is designed.
Choosing of depth and non-linearity is pessimistic. The triangular Jacobian function is
premeditated to ensure the computation of diagonal elements of the Jacobian easily.

Suppose x 2 RD be divided into two parts such as x1:d�1 2 Rd and xd:D 2 RD�d and
a bijection h(·; ✓) : RD�d ! RD�d, parameterized by ✓. The transformation based on
coupling layer is defined:

g(x) =

(
y1:d�1 =x1:d�1

yd:D =h(xd:D; ✓)
(2.22)

where the resulting function g is called a coupling flow and the parameters ✓ are defined
by any arbitrary function [8]. A coupling flow is invertible when h is invertible:

g�1(x) =

(
x1:d�1 =y1:d�1

xd:D =h�1(yd:D; ✓)
(2.23)

The coupling architecture is shown in 2.3: Block triangular Jacobian matrix is defined a:

Jg(x) =

2

4 Id 0

@yd:D
@x1:d�1

@yd:D
@xd:D

3

5 (2.24)
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where Jacobian for coupling transformations is a lower and which Id 2 RD⇥D is the
identity matrix. Therefore, Log determinant can be obtained by:

log|detJg(x)| = log|
DY

i=d+1

@yi

@xi
| =

DX

i=d+1

@yi

@xi
(2.25)

GestureFlow Model

Our method based on the coupling layer. The pipeline of GestureFlow model is shown in
Fig. 2.4. The pipeline of GestureFlow model consists of training block and inference block.
In training loop block model libraries is generated from recording data, which derives
gesture label and threshold to classify the action of human. In inference loop block model
new gestures label is generated from the new human action.

Figure �.�.: Training and Inference pipeline base on our GestureFlow model.

T-SNE

T-SNE[14] based on [15, 1] is proposed to solve an important problem of visualization of
high-dimensional data in many di�erent domains and deals with data of widely varying
dimensionality. In Figures 2.5 visualizations of 6,000 handwritten digits from the MNIST
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dataset is shown with t-SNE. Stochastic Neighbor Embedding (SNE) starts by converting
the high-dimensional Euclidean distances between datapoints into conditional probabilities
that represent similarities[1].

Figure �.�.: Visualizations of 6,��� handwritten digits from the MNIST dataset[��]
.

The idea behind the T-SNE is minimizing the sum of the Kullback-Leibler divergences
between the conditional probabilities pj|i and qj|i:

KL|P |Q| =
X

i

X

j

pijlog
pij
qij

(2.26)

where P represent probability distribution in the high-dimensional space and Q probability
distribution in the low-dimensional space.
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pj|i is given by:

KL|P |Q| = exp(�||yi � yj ||2)P
k 6=l exp(�||yk � yl||2)

(2.27)

qj|i is defined:

KL|P |Q| = exp(�||xi � xj ||2/2�2)P
k 6=l exp(�||xk � xl||2/2�2)

(2.28)

where yi, yj , yk and yl are the map points, xi, xj , xk and xl are given datapoints. T-SNE
visualizes is helpful for visualization of the distribution of each gesture action in our
dataset before we train the data.

�.�. Openpose

Openpose[16, 17, 18, 19] is designed to jointly learn part locations and their association via
two branches of the same sequential prediction process. It can realize posture estimation
of human body movements, facial expressions, and finger movements. It is suitable for
single and multiple people, and has excellent robustness. Many research community
applies the OpenPose in many vision and robotics topics such as person re-identification
[20], 3D pose estimation [21], 3D human mesh model generation [22], Human-Computer
Interaction [23] and GAN-based video retargeting of human faces [24] and bodies [25].
Moreover, OpenPose and PAF-based network architecture [16] ienclosed by Deep Neural
Network (DNN) module are comprehended in OpenCV library [26].

�.�.�. Network Architecture

[16] proposes the network architecture, shown in 2.6. In blue block shows the prediction of
the a�nity field that encodes the association between parts iteratively. In beige block shows
detection confidence maps. The iterative prediction architecture, following [27] which
improves the prediction of successive stages, t 2 1, ..., T , with intermediate supervision at
each stage.The network depth has increased relative to [17].

Compared to original approach, [16] reduce the computation of model but remains the
receptive field. Due to the 7x7 convolutional layers of original approach [16] utilizes
3 consecutive 3x3 kernels, obviously the number of operations for the former also are

��



decreased. In addition, it concatenates the output of each of the 3 convolution kernels ,
following an approach similar to DenseNet [28].

Figure �.6.: The architecture of the multi-stage CNN consists of the prediction of PAFs Lt

and con�dence maps St. For each subsequent stage, merge the predictions
of each stage and its corresponding image features at the same time. Con-
volutions of kernel size � from the original approach [��] are replaced with �
layers of convolutions of kernel � which are concatenated at their end[�6].

�.�.�. System

Body and foot detection, hand detection and face detection are important bolcks of
OpenPose which can alternatively use the original body-only models [17] trained on
COCO and MPII datasets. According to the output of the body detector, the recommended
facial bounding box can be roughly estimated from certain parts of the body (especially
ears, eyes, nose and neck). Similarly, it uses arm key points to generate hand bounding box
suggestions. [19] explain the hand keypoint detector algorithm, while the facial keypoint
detector has been trained in the same fashion as that of the hand keypoint detector. The
library also performs 3D triangulation by non-linear Levenberg-Marquardt refining the
results of multiple synchronized camera views [29], and also includes 3D keypoint pose
detection.

Figure 2.7 shows datasets which are collected based on openpose.
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(a) come on (b) right up

(c) left up (d) huge

Figure �.�.: � types of human skeleton gestures in our datasets, such as come on, right
up, left up and left up.
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�. Related Work

�.�. Skeleton-based action recognition

Gesture recognition is an ideal example of multidisciplinary research. There are di�erent
tools for gesture recognition, based on the approaches ranging from statistical modeling,
computer vision and pattern recognition, image processing, connectionist systems, etc.
[30]

There are many skeleton-based action recognition based on di�erent probabilistic graphical
models have been used for recognizing human gestures and activities. [31] studies on
action recognition mainly focus on recognizing actions from RGB videos recorded by 2D
cameras (Weinland, Ronfard, and Boyerc 2011). [32] present translation-scale invariant
Image mapping and multi-scale deep CNN for human action recognition from 3D skeleton
sequences extracted from depth data. For learning feature representations and model long-
term temporal dependencies automatically, [33] propose an end to-end fully connected
deep LSTM network for skeleton based action recognition. [34] a view adaptive recurrent
neural network (RNN) with LSTM architecture, which enables the network itself to
adapt to the most suitable observation viewpoints from end to end. [35] pointed out
that the method based on the recent recurrent neural network (RNN) mainly focuses
on the time evolution of body joints and ignores the geometric relationship. [35] using
geometric relationships between joints for motion recognition which propose a novel
viewpoint transformation layer and temporal dropout layers are utilized in the RNN based
network to learn robust representations. [36] corporate the joint and bone information in
skeleton data for action recognition tasks. [36] represent the skeleton data as a directed
acyclic graph (DAG) based on the kinematic dependency between the joints and bones in
the natural human body, which design directed graph neural network is to extract the
information of joints, bones and their relationships and make prediction based on the
extracted features. [37] indicate the sparse skeleton information alone is not su�cient to
fully characterize human motion that limits makes several existing methods incapable
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of correctly classifying action categories which exhibit only subtle motion di�erences.
[37] propose a novel framework for employing human pose skeleton and jointcentered
light-weight information jointly in a two-stream graph convolutional network, namely,
JOLO-GCN. [38] denotes current state-of-the-art methods for action recognition are
strongly supervised, i.e., rely on providing labels for training. [38] proposes unsupervised
training, the decoder and the encoder self-organize their hidden states into a feature
space which clusters similar movements into the same cluster and distinct movements into
distant clusters. [39] propose “Music Gesture,” a keypoint-based structured representation
to explicitly model the body and finger movements of musicians when they perform music.

�.�. Lifelong Learning

Lifelong learning capabilities are crucial for computational systems and autonomous agents
interacting in the real world and processing continuous streams of information.[40]. [41]
extends learning without forgetting by preserving important low dimensional feature
representations of previous tasks. For each task, an undercomplete autoencoder is op-
timized end-to-end, projecting features on a lower dimensional manifold. [42] show
that sequential fine tuning renders the network unable to properly generate images from
previous categories (i.e. forgetting). [42] propose Memory Replay GANs (MeRGANs), a
conditional GAN framework that integrates a memory replay generator. [43] introduce a
new training strategy, iCaRL, that allows learning in such a classincremental way: only
the training data for a small number of classes has to be present at the same time and
new classes can be added progressively.

�.�. Normalizing Flow

Whitening transformations [44] transform data into white noise—are the clearest in-
tellectual predecessor to the use of normalizing flows. [45] were perhaps the first to
use whitening as a density estimation technique rather than for feature pre-processing,
calling the method Gaussianization. [46] studies Gaussization from the perspective of the
di�usion process and establish a connection with statistical mechanics-specifically, the
Liouville equation is used to describe the flow rate. [47] introduce the modern concept that
can be considered as normalizing flow: introduce the term normalized flow and generally
define flow as a combination of K simple maps. The idea of composition saw its recent
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emergence in machine learning starting with [48], who the first to realize that the use of
deep neural networks to parameterize flows may result in fairly general and expressive
distribution classes. [49] view copulas as rudimentary flows, where Use the empirically
estimated marginal cumulative distribution function to independently transform each
dimension. Optimal transportation and Wasserstein metric [50] can also be formulated
based on the conversion of metric ("measured transportation"). The triangular mapping (a
concept closely related to autoregressive flow) can prove to be a limited solution to a class
of Monge–Kantorovich problems [51]. Normalizing Flows were popularised by [8] in the
context of variational inference which have become a ubiquitous part of modern neural
networks [52]. However, the framework is defined in Tabak and VandenEijnden [46].
[53] explores it for clustering and classification, and density estimation [54, 48, 55]. [56]
discussing limited and infinitely flows (as we and collating the latest results of density
estimation. [?]. A�ne coupling: Two simple forms of coupling functions were proposed
by [8]. A�ne coupling functions are used for [57, 58]. [59] proposed an invertible non-
linear squared transformation. [60] proposed the Flow++ model, which contains some
improvements, including more expressive coupling functions. Variations based on the
combination of transformers have been used in the Variations based on the combination
of transformers have been used in the following models: NAF [61], block-NAF [62], and
Flow++ [60].
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�. Experiments

In this chapter, we evaluate and discuss comparison between baseline model and Gesture-
Flow model in 2- and 3-dimensional coordinate and compare their prediction performance
with confusion matrix. The summary of the evaluation is concluded in the this chapter.

�.�. Comparison GestureFlow model with baseline model in � di-
mensional coordinates

�.�.�. Evaluation on human skeleton data

Based on the openpose framework, we collect 5 types of two-dimensional static actions of
human skeleton. The types of our dataset consist of come on, right up, left up, huge and
noise(random action) gesture.

In our experiments, our dataset as input contains two types. The two-dimensional absolute
coordinate position of the human skeleton is used as input data in training process. Our
actions are based on the upper body, the 10 points of the human skeleton are considered
as well as the dimension of data is 20. Moreover, human skeleton also are processed as
joint angles as input data as well as the dimension of data is 6.

Figure 4.1 shows the the prediction accuracy of the baseline and GestureFlow model based
on 40 samples of each type of human skeleton action in absolute coordinate. Figure 4.1a,
Figure 4.1b and Figure 4.1c demonstrate the results of prediction which stay in awful
situation.
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(a) Fully Connected Neural Network (b) Support Vector Machine

(c) GestureFlow Model

Figure �.�.: The newly collected skeleton data which are in absolute coordinate. we
evaluate datasets in the baseline model(Fully Connected Neural Network and
Support Vector Machine) and GestureFlow with confusion matrix.

Therefore, we introduce data preprocessing to convert absolute coordinates into joint
angles. Extract the features we need from the data. Figure 4.2 shows the evaluation results
for the prediction task on the baseline model and GestureFlow model and the best results
are achieved with data preprocessing compare to absolute coordinate. In figure 4.2a the
prediction OF FCM achieves good results among datasets right up, huge and noise while it
performs worse output among datasets come on and left up. Figure 4.2b shows the good
prediction of SVM except the datasets come on. In figure 4.2c our proposed GestureFlow
model achieves significantly better scores across considered metrics in confusion matrix
and the best recognition of random human gesture actions.
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(a) Fully Connected Neural Network (b) Support Vector Machine

(c) GestureFlow Model

Figure �.�.: The newly collected skeleton data which are processed into joint angle. we
evaluate datasets in the baseline model(Fully Connected Neural Network and
Support Vector Machine) and GestureFlow with confusion matrix.

Normalizing flow has a powerful expression function for kernel density estimation. How-
ever, in our case, using only Gaussian distribution for maximum likelihood estimation
cannot satisfy our demand. Figure 4.2c compares Gaussian Naive Bayes classification
for the two di�erent datasets situation. The above evaluation shows that Gaussian Naive
classification can successfully make a good prediction without human noise action and
indicates that human noise action make our classification less accuracy. The proposed
GestureFlow model make our classification more accurate, and the Gaussian distribution
cannot be content to solve our problem.
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(a) Gaussian Naive Bayes classi�cation
without noise datasets

(b) Gaussian naive Bayes classi�cation with
noise datasets

Figure �.�.: The newly collected skeleton data which are processed into joint angle. we
evaluate datasets in Gaussian Naive Bayes classi�cation with human noise
action and without human noise action.

In order to compare the original data set and the generated data of the model from
high-dimensional mapping to low-dimensional distribution. Figure 4.4 illustrates data
distribution from di�erent state. Before learning process, figure 4.4a and 4.4b show no
connection from hidden state between the distribution of noise action and the distribution
of other actions in the visualization state of T-SNE. In figure 4.4c noise action distribution
can be related to other action distribution. Therefore, we can use the threshold to infer
the labels of other actions without retraining the model.
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(a) Visualization of recorded datesets distri-
bution based on framework Openpose
by using T-SNE

(b) Visualization of generate data dis-
tribution from GestureFlow model
which learns from absolute coor-
dinates datasets of human body’s
two-dimensional skeleton by using
T-SNE

(c) Visualization of generate data distri-
bution from GestureFlow model which
learns from Joints angle of human
skeleton datasets of human body’s two-
dimensional skeleton by using T-SNE

Figure �.�.: Visualization of original and generate data by using T-SNE(� represent come
on action, � represent left up action, � represent right up action, � represent
huge action , � represent noise action)
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�.�.�. real-time prediction

To evaluate the performance of GestureFlow model in real-time, figure 4.9e shows the
real-time results for the GestureFlow model prediction task on human gesture action. Our
approaches outperform in real-time. The correct label can be recognized for the same
action of human beings in di�erent positions.
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(a) the human gesture action:come on (b) the human gesture action:left up

(c) the human gesture action:right up (d) the human gesture action:huge

(e) the human gesture action:noise

Figure �.�.: real-time prediction for human gesture action
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Our proposed Gesture model can derive the new label for the human gesture action
without retraining the model through the threshold. Compared to the baseline model it
perform less computational. Otherwise, when baseline is applied in new human gesture
action classification, it must be retrained with new label. Figure 4.6 shows the prediction
results for new human gesture action. Apparently, it takes a good advantage compared to
the baseline model.

(a) the human gesture action: use left hand
to point something

(b) the human gesture action: use right
hand to point something

(c) the human gesture action: still

Figure �.6.: real-time prediction for human new gesture action without retraining the
model
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�.�. Comparison GestureFlow model with baseline model in �
dimensional coordinates

We have discussed the evaluation of the prediction results of the human skeleton pose
based on the two-dimensional coordinates of the baseline model and the GestureFlow
model. Furthermore, we need to evaluate the prediction results of the model human
skeleton movement based on three-dimensional coordinates. The three-dimensional
absolute coordinate position of the human skeleton are processed as joint angles as input
data as well as the dimension of data is 8.

�.�.�. Evaluation on human skeleton data

In figure 4.7 the predictive performance of three models gets evaluated, namely the FCM,
SVM and the GestureFlow model, which are learned from preprocessing datasets(joint
angles). There is no doubt that the prediction performance of the baseline model is greatly
improved when the datasetS is transformed from 2D to 3D, and the gestureflow model
still maintains its excellent prediction performance. Our models outperform the other
models on this task without retraining the performs better.
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(a) Fully Connected Neural Network (b) Support Vector Machine

(c) GestureFlow Model

Figure �.�.: The newly collected skeleton data are evaluated in the confusion matrix
of the baseline model(Fully Connected Neural Network and Support Vector
Machine) and GestureFlow Model respectively.

In figure 4.8, the visualization of original dataset and the generated data of the model
is showed. Compared to 2-dimensional datasets, the distribution of orignal datasets of
3-dimensional remains the same state. Furthermore, in figure 4.8b the model which learns
from 3-dimensional joints angle, implies the the hidden state from generate data in each
action.

��



(a) Visualization of recorded datesets distri-
bution based on framework Openpose
by using T-SNE

(b) Visualization of generate data distri-
bution from GestureFlow model which
learns from joints angle of human skele-
ton datasets of human body’s two-
dimensional skeleton by using T-SNE

Figure �.8.: Visualization of original and generate data distribution by using T-SNE(�
represent come on action, � represent left up action, � represent right up
action, � represent huge action , � represent noise action)

�.�.�. real-time prediction

To evaluate the performance of GestureFlow model in real-time with 3-dimensional
coordinate, figure 4.9 shows the real-time results for the GestureFlow model prediction
task on human gesture action and we visualize the human skeleton gesture action in 3-
dimensional coordinate. Compared to the real-time prediction of human skeleton gesture
in 3-dimensional coordinate, in 2-dimensional coordinate GestureFlow model perform
better.
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(a) the human gesture action: come on
(b) �-dimensional visualization of the

humanupper body skeleton gesture
action: come on

(c) the human gesture action: right up
(d) �-dimensional visualization of the

humanupper body skeleton gesture
action: right up

(e) the human gesture action: left up
(f) �-dimensional visualization of the

human upper body skeleton gesture
action: left up

Figure �.�.: real-time prediction for human gesture action
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(a) the human gesture action: huge
(b) �-dimensional visualization of the hu-

man upper body skeleton gesture action:
huge

(c) the human gesture action:noise
(d) �-dimensional visualization of the hu-

man upper body skeleton gesture action:
noise

Figure �.�.: real-time prediction for human gesture action

Our proposed Gesture model can also derive the new label for the human gesture action
in 3-dimensional coordinate without retraining the model through the threshold. Figure
4.6 shows the prediction results for new human gesture action.
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(a) the human gesture action:the human
gesture action: use left hand to point
something

(b) �-dimensional visualization of the hu-
man upper body skeleton gesture action:
use left hand to point something

(c) the human gesture action: use right hand
to point something

(d) �-dimensional visualization of the hu-
man upper body skeleton gesture action:
use right hand to point something

Figure �.��.: real-time prediction for human new gesture action without retraining the
model
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(a) the human gesture action: still
(b) �-dimensional visualization of the hu-

man upper body skeleton gesture action:
still

Figure �.��.: real-time prediction for human new gesture action without retraining the
model
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�. Results

This thesis aimed to design and investigate an human skeleton gesture action detection
based on Normalizing Flow. Inspired by coupling layer, we derived the GestureFlow model
to classify the human skeleton gesture action. Then, we compared the GestureFlow model
to compare with the baseline model. Based on these models, we studied the e�ects of the
noise action on the others human gesture action. The following benefits of GestureFlow
model are listed: Firstly, our proposed method is based on a small number of samples that
can obtain new sample labels without retraining the model, it demands less computa-
tional compared to Baseline model. Secondly, compared with the baseline model and the
prediction accuracy rate is better and perform more stable.
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6. Outlook

In this study, we achieved significant improvements in human skeleton gesture recognition
with Normalizing Flows. On the one hand, if there is not enough information about the
current state (including situations related to the high risks posed), GestureFlow can be
enabled to help the robot to understand the interaction task. On the other hand, human
users are provided with the opportunity to express their preferences.

6.�. Time series human action prediction

Our work does not consider time series human action prediction. [63] extends the
Normalizing Flows framework to learn stable Stochastic Di�erential Equations. In real
human-robot interaction, human actions are continuous and related to event. Our work
is only based on the recognition of the static movements of the human skeleton. while
we need to consider the hidden state of human continuous actions. It makes the models
better comparable.

6.�. Human-Robot interaction

In a deeper perspective, the application of GestureFlow is advance improvement in the
interaction between robots and humans. Gestureflow recognizes that human actions
express human intentions to the robot through the state machine, and the existing action
labels help the robot to respond accordingly. Figure 6.1 shows the interactive actions
outcome by the robot after recognizing human actions. In essence, we hope and encourage
further user research with non-experts to further apply our method.
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(a) hello action (b) shake hand action

Figure 6.�.: Pybullet simulation environment for Human-Robot interaction.
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A. Some Appendix

Hyperparameter Value

Dataset size 500

Network Layer Sizes 21

Learning rate 0.01

Batch size 100

Number of optimization epochs per batch 100000

Activation Functions ReLU

optimizer adam

Table A.�.: Hyperparameters of GestureFlow used in our experiments
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Hyperparameter Value

Dataset size 500

Network Layer Sizes 2

Learning rate 0.01

Batch size 100

Number of optimization epochs per batch 100000

Activation Functions ReLU

optimizer adam

Table A.�.: Hyperparameters of FCM used in our experiments

Hyperparameter Value

Dataset size 500

Learning rate 0.01

Batch size 100

Table A.�.: Hyperparameters of SVM used in our experiments
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