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Abstract—Vision-based tactile sensors have gained extensive
attention in the robotics community. The sensors are highly
expected to be capable of extracting contact information i.e.
haptic information during in-hand manipulation. This nature of
tactile sensors makes them a perfect match for haptic feedback
applications. In this paper, we propose a contact force estimation
method using the vision-based tactile sensor DIGIT [1], and
apply it to a position-force teleoperation architecture for force
feedback. The force estimation is carried out by (1) building a
depth map for DIGIT gel’s surface deformation measurement,
and (2) applying a regression algorithm on estimated depth data
and ground truth force data to get the depth-force relationship.
The experiment is performed by constructing a grasping force
feedback system with a haptic device as a leader robot and a
parallel robot gripper as a follower robot, where the DIGIT
sensor is attached to the tip of the robot gripper to estimate the
contact force. The preliminary results show the capability of using
the low-cost vision-based sensor for force feedback applications.

I. INTRODUCTION

Tactile sensors have gained extensive attention over the past
years in the robotics community. Compared with conventional
Force Torque sensors (FT sensors) which focus on precise
measurement of contact forces, tactile sensors are inspired
by human cutaneous perception and have advantages such as
capturing surface deformation, detecting texture distribution,
and detecting incipient slip [2]. Such multi-modal perception
ability makes tactile sensors a suitable candidate to enhance
the dexterity and performance of robotic hands [3].

Tactile sensor designs have several variations, each utilizing
different sensing modalities. For example, BioTac® uses a
pressure transducer to detect vibrations as small as a few
nanometers for contact sensing [4], and the soft magnetic
skin developed by Shen et al. detects normal and shear force
through the change of magnetic flux densities [5]. On the
other hand, vision-based tactile sensors provide cost-efficient
but promising solutions for tactile sensing [6]. In vision-based
tactile sensors, contact information is extracted by performing
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computer vision algorithms on streamed image sequences from
a camera (or cameras) mounted inside the sensors, which
makes the sensor easy to access, and easy to implement [7].

The applications of vision-based tactile sensors can be
summarised as complementing robot tactile perception and
enhancing the autonomous manipulation skills of robotic grip-
pers to achieve human-like in-hand dexterity. In [8], a library
of tactile skills was developed by utilizing force, slip, and
visual information from a Finger Vision sensor. Similarly,
[9], an end-to-end approach for tactile-based insertion with
deep probabilistic ensembles and model predictive control
was evaluated in contact-rich assembly tasks. Moreover, Yuan
et al. have successfully estimated object hardness through a
sophisticated surface deformation analysis algorithm [10].

However, the full potential of the vision-based sensors
should not be limited to autonomous in-hand robotic appli-
cations. As the design of tactile sensors is deeply influenced
and inspired by the intrinsic human capability of haptic
sensation, it makes a perfect match for haptic applications i.e.
teleoperation with force feedback. Teleoperation with force
feedback is also known as bilateral control systems, in which
a leader device and a follower device are dynamically coupled
to reflect physical interactions from the follower to the leader
and vice versa [11]. The research of bilateral control has a
long history since the idea was first proposed by Goertz in the
1940s [12]. Throughout the development of bilateral control, it
has been experimentally applied to space robotics, telesurgery,
and hazardous material handling [13].

Bilateral control with force feedback is a direct control strat-
egy that aims for ideal and seamless kinematic and dynamic
coupling of leader and follower robots. It can be categorized
into two control architectures: (1) position-position architec-
ture, and (2) position-force architecture [14]. In the simplest
case, position-position architecture implements proportional-
derivative (PD) controllers on both leader and follower sides
and tracks each other. In this sense, users will feel the
follower robot’s driving forces as force feedback. However,
the structure will present not only the surface contact force
but also the inertia and other dynamic forces that drive the
follower robots in free space. These extra forces’ impact on
the control becomes severe when the leader and follower have
substantially different dynamic properties.

To mitigate the undesired forces during free space move-
ment, a position-force architecture is applied. In the control
architecture, a force sensor is usually attached to the tip of
the follower robot and it is used to measure contact force for
feedback. The architecture only feedbacks the external forces
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acting between the follower robot and the environment and
this makes the user’s force perception clear. To enhance the
stability of position-force architecture, feedback scaling, or
passivity theory are used in general [15].

In this paper, we adopt this position-force bilateral control
for force feedback in robotic gripper teleoperation. The aim
of this paper is to show the capability of vision-based tactile
sensors on haptic (force) feedback applications. We use a
vision-based tactile sensor for normal force estimation and
integrate it with a position-force bilateral control system. The
contributions of this paper are summarized as follows:

1) A polynomial regression-based force estimation is per-
formed to build a mapping of force value and measured
depth value from vision-based tactile sensor DIGIT [1].

2) Position-Force bilateral control that utilizes force esti-
mation from DIGIT is implemented for force feedback
in a teleoperated grasping system.

3) The force feedback performance of the proposed system
is evaluated by conducting preliminary experiments on
rigid object contact and a teleoperated in-hand pivoting
task.

II. POSITION-FORCE ARCHITECTURE AND FORCE
ESTIMATION BY VISION-BASED TACTILE SENSOR

In this section, the implemented position-force architecture
is described and the details of the force estimation algorithm
is given.

A. Position-Force Architecture

Fig. 1 shows the position-force architecture, in which tactile
sensor DIGIT is used to substitute conventional FT sensor,
and xh, xl, xfd, xf , fl, fld, fs, denotes for human command
position, leader position, follower desired position, follower
position, leader force, leader desired force, measured force
from DIGIT sensor, respectively. Here the leader robot is
the gripper of the Omega 7 haptic device (Force Dimension)
and the follower robot is a parallel robotic gripper by PAL
robotics. The data communication is achieved through the ROS
framework. The control law of the position-force architecture
is given as follows,

fld = fs,

xfd = xl

(1)

where, the leader robot is force controlled to track measured
force from the DIGIT sensor fs, and the term xfd is an input
to the position controller of the follower robotic gripper as a
reference position to track. Through this position control, the
gripping force can be modulated by teleoperation.

B. Force Estimation by Polynomial Regression and Depth Map
from DIGIT

This section explains the details of how the depth maps
are extracted from DIGIT RGB images. The depth map is
defined as the deformation level of each pixel on the gel
surface. The process is shown in Fig. 2. To get the depth
map, we first train a three-layer Multi-Layer Perceptron (MLP)
that learns a mapping from RGBXY values to surface normal

values represented as nx,ny , and nz , respectively. We used
the Adam optimizer with a learning rate of 0.001 to minimize
the MSELoss. In addition, a dropout rate of 0.05 is included.
We collect 40 RGB images by pressing a steel ball on the gel
to train the MLP model. The steel ball has a diameter of 6
mm, and theoretically, the hemispherical shape enables us to
extract surface normals in all directions [6]. Surface normal
image has a linear relationship with the surface gradients as
described by the following equations,

Gx =
nx

nz
, Gy =

ny

nz
(2)

where, Gx, and Gy represent image gradients in the X and
Y directions, respectively. By applying this equation, we can
obtain the surface gradients from surface normal images.
Given the surface gradients, by using a fast Poisson solver
with Discrete Sine Transform (DST), we can finally build the
depth map of the gel surface, similar to prior work by Wang
et al. [16], and Paloma et al [17].

Once the depth map is generated, we select the maximum
depth value from the depth map. This maximum depth value
corresponds to the maximum surface deformation of the
DIGIT gel during contact. Then, by building a regression
model to map the gel deformation and ground truth contact
force, we can later estimate the contact force in real time.
This process is similar to using Young’s modulus to estimate
the counter force from an object with respect to surface
deformation level.

To acquire the mapping between depth values and force
values, we programmed the Omega 7 haptic device to press
downwards (Z direction) with a constant displacement at each
press. A rigid cylinder shape probe with a 5 mm radius and
a curved surface facing down is attached to the tip of the
device which is in direct contact with the DIGIT gel. The
force value is read from the Omega 7 haptic device, and the
depth value is read from the DIGIT sensor. The orange dots
in Fig. 3 show the collected force data with respect to depth
value when pressing the DIGIT gel. Then we applied a least-
square regression with 3 degrees polynomial to fit the data.
The 3 degrees polynomial is defined as

p(x) = p1x
3 + p2x

2 + p3x+ p4 (3)

where pn denotes for coefficients. Once we get p(x), we can
use it for real-time force estimation. The result of polynomial
fit is shown by a blue line in Fig. 3, where the R-square
measurement is 0.9987. The estimated force is then published
as a ROS topic with a 30HZ refreshing rate which is the same
as the camera’s Frames Per Second (FPS).

III. EXPERIMENTS AND RESULTS

In this section, we evaluate the preliminary performance of
the force feedback with a vision-based tactile sensor by con-
ducting rigid object contact and in-hand pivoting experiments.

A. Rigid object contact and force feedback

A rigid object contact experiment is conducted to show
the force feedback capability. In the experiment, an operator
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Fig. 1. Position-Force architecture and its integration with DIGIT tactile sensor.

(a) RGB Image (b) Normal Image (c) Depth Image

1.0 0.30.6 0.0237 0.02310.0234

Fig. 2. Construction of a depth image from an RGB image. First, through
MLP, an RGB image (a) is transformed into a normal image (b), then
by calculating image gradients and applying a fast Poisson solver, we can
construct a depth image.

Fig. 3. Polynomial fit of collected data.

controls the leader device to grasp a rigid object once without
force feedback and once with force feedback. We treat the
user’s hand position xh as the desired position. As Fig. 4
shows, in the beginning, the operator moves freely, then in the
region (a) the operator has contact with a rigid object without
any force feedback, which leads to a large deviation from the
desired position. In region (b), the operator contacts the rigid
object with force feedback from the DIGIT sensor. The mean
value of the desired position in region (b) is 0.0121 m, and
the mean value of the actual position is 0.0127 m. Hence, the
mean error is 0.0006 m. The operator could maintain surface
contact without large positional deviation and can feel the rigid
object’s location. In the free space movement, due to the nature
of position-force architecture, no follower dynamics are felt by
the operator.

Fig. 4. Comparison of the desired position and actual position in a rigid
object contact experiment. Region (a) represents without force feedback, and
region (b) represents with force feedback

B. In-hand pivoting

A preliminary experiment of teleoperated in-hand pivoting
is carried out to evaluate the performance of the proposed
force feedback architecture. In-hand pivoting is an important
dexterous manipulation skill in robotics. Through in-hand
pivoting, a robotic grasping system can perform repositioning
tasks and hence compensate for environmental uncertainties
and imprecise motion execution [18]. Humans rely on haptic
sensations to perform this dexterous task, and in this prelimi-
nary experiment, we evaluate the haptic feedback performance
of the proposed architecture for such a teleoperated dexterous
task.

In this experiment, as Fig. 5 shows, the experiment task
is to pivot a grasped cylinder marker from a horizontal
position (Fig. 5a) to align with the bottom left corner of the
DIGIT sensor (Fig. 5c). The surface friction can be controlled
by controlling the distance between the gripper fingers, i.e.
wider finger distance reduces friction hence the object will
pivot because of gravity. Throughout the experiment, visual
feedback with a fixed point of view is given (Fig. 5). We
evaluated two conditions, Visual + Force feedback and Vi-
sual feedback. Three subjects participated in the experiment.
During the experiment, subjects pivot the object 5 times for
each condition. Task completion time and success rate are
measured.

The experimental result is shown in Fig. 6. The blue and
red plot represents the box chart of task completion time for
the Visual + Force feedback condition and the Visual feedback
condition, respectively. The median value of the visual + force
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(a) (b) (c)

Fig. 5. A successful pivoting of a cylinder marker to target orientation.
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Fig. 6. Box plot of pivoting completion time and task success rate for two
feedback conditions. The red line represents the task success rate.

feedback is 13.75, and the visual feedback condition is 15.37.
The task success rate is 86.7% and 40.0%, respectively. The
experimental results indicate that by using force feedback,
subjects complete the pivoting with a higher success rate and
slightly faster median completion time. However, in visual +
force feedback, some trials required a higher completion time.
This may be due to the subjects needing more time to adjust
the grasping according to the perceived force, which requires
further analysis in the future. The results also imply that the
proposed position-force system can display the force feedback
for operators, and proves the potential of tactile sensor DIGIT
for such a force feedback application.

IV. CONCLUSIONS AND FUTURE WORKS

Vision-based tactile sensors that aim to enhance the dex-
terity of robotic manipulation systems have gained extensive
attention in the community. While the nature of the tactile
sensors makes them a good candidate for in-hand manipulation
tasks, the sensors can potentially be applied to haptic feedback
in teleoperation. This paper proposes a force feedback method-
ology by integrating a position-force architecture and a vision-
based tactile sensor DIGIT for contact force measurement. The
force measurement is performed by learning a depth estimation
model, followed by building a polynomial regression model
that maps the relationship between force and depth. In a rigid
object contact experiment, the operator can feel the force
feedback and maintain surface contact. In the preliminary
experiment of in-hand pivoting, by using force feedback the
subjects are able to complete the pivoting task with a faster
median time and a higher success rate. The preliminary ex-
perimental results indicate that the vision-based tactile sensor

DIGIT can be integrated with a teleoperation system to provide
force feedback. It would be interesting to further enhance the
sensor performance with multi-point contact in future work.
Moreover, the integration of haptic feedback and other sensing
modalities such as shear force estimation, as well as surface
slip prediction [19] can be explored in the future.
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