
����������
�������

Citation: Moos, J.; Hansel, K.;

Abdulsamad, H.; Stark, S.; Clever, D.;

Peters, J. Robust Reinforcement

Learning: A Review of Foundations

and Recent Advances. Mach. Learn.

Knowl. Extr. 2022, 4, 276–315.

https://doi.org/10.3390/make4010013

Academic Editors: Ausif Mahmood

and Andreas Holzinger

Received: 30 December 2021

Accepted: 16 March 2022

Published: 19 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

machine learning &

knowledge extraction

Review

Robust Reinforcement Learning: A Review of Foundations and
Recent Advances
Janosch Moos 1,*,† , Kay Hansel 2,*,† , Hany Abdulsamad 2, Svenja Stark 2, Debora Clever 1,3 and Jan Peters 2

1 Institute for Mechatronic Systems in Mechanical Engineering, Technical University of Darmstadt,
64287 Darmstadt, Germany; debora.clever@tu-darmstadt.de

2 Intelligent Autonomous Systems in Computer Science, Technical University of Darmstadt,
64289 Darmstadt, Germany; hany.abdulsamad@tu-darmstadt.de (H.A.); svenja@robot-learning.de (S.S.);
jan.peters@tu-darmstadt.de (J.P.)

3 ABB AG, 68309 Mannheim, Germany
* Correspondence: janosch.moos@tu-darmstadt.de (J.M.); kay.hansel@tu-darmstadt.de (K.H.)
† These authors contributed equally to this work.

Abstract: Reinforcement learning (RL) has become a highly successful framework for learning in
Markov decision processes (MDP). Due to the adoption of RL in realistic and complex environments,
solution robustness becomes an increasingly important aspect of RL deployment. Nevertheless,
current RL algorithms struggle with robustness to uncertainty, disturbances, or structural changes
in the environment. We survey the literature on robust approaches to reinforcement learning and
categorize these methods in four different ways: (i) Transition robust designs account for uncertainties
in the system dynamics by manipulating the transition probabilities between states; (ii) Disturbance
robust designs leverage external forces to model uncertainty in the system behavior; (iii) Action robust
designs redirect transitions of the system by corrupting an agent’s output; (iv) Observation robust
designs exploit or distort the perceived system state of the policy. Each of these robust designs alters
a different aspect of the MDP. Additionally, we address the connection of robustness to the risk-based
and entropy-regularized RL formulations. The resulting survey covers all fundamental concepts
underlying the approaches to robust reinforcement learning and their recent advances.

Keywords: reinforcement learning; robustness; min-max optimization

1. Introduction

In recent years RL research has started shifting towards deployment on realistic
problems. In an effort to mimic human learning behavior, RL utilizes trial and error-based
designs contrary to traditional control designs [1,2]. In control, the optimal behavior is
derived from analytical reasoning of physical constraints [1,3–6]. Such designs are known as
white-box models. RL, on the other hand, assumes a black-box approach where the system
is unknown. The agent continuously observe the system’s response through interactions.
The observed data drives the optimization of the agent’s behavior to achieve a given
objective [1,2]. However, the solutions to standard RL methods are not inherently robust to
uncertainties, perturbations, or structural changes in the environment, phenomena that are
frequently observed in real-world settings.

Definition 1. Robustness—in the scope considered in this survey—refers to the ability to cope
with variations or uncertainty of one’s environment. In the context of reinforcement learning
and control, robustness is pursued w.r.t. specific uncertainties in system dynamics, e.g., varying
physical parameters.

For example, a common manifestation of this phenomena is encountered when evalu-
ating policies trained in simulation on the real environment. Even for advanced simulators,

Mach. Learn. Knowl. Extr. 2022, 4, 276–315. https://doi.org/10.3390/make4010013 https://www.mdpi.com/journal/make

https://doi.org/10.3390/make4010013
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/make
https://www.mdpi.com
https://orcid.org/0000-0003-2484-3830
https://orcid.org/0000-0002-8448-4510
https://doi.org/10.3390/make4010013
https://www.mdpi.com/journal/make
https://www.mdpi.com/article/10.3390/make4010013?type=check_update&version=2

Mach. Learn. Knowl. Extr. 2022, 4 277

the deviations between environments gives rise to the sim-to-real gap. This gap leads to a
significant drop in real-world performance. Still, the high cost of real physical interactions
incentives training in simulation. However, a simulation rarely captures all physical aspects
of the real system. Therefore, the transition between simulation and reality entails a high
risk of performance loss [7–11].

Robustness has been studied extensively in optimization and optimal control [12–14].
Robust optimization adopts a nested optimization architecture [13,15,16]. The inner prob-
lem is governed by a set of uncertain problem parameters known as uncertainty set. The
outer problem provides optimal solutions robust to all variations within this uncertainty set.
However, the nesting architecture leads to conservative solutions and consequently corre-
sponds to worst-case design. Optimal control—a practical application of optimization—also
utilizes this architecture for robustness. In optimal control, the system dynamics are de-
scribed through differential equations [4,5,17]. As in simulations, these equations can only
approximate the real system behavior. With increasing complexity of modern systems,
determining close approximations becomes challenging [4,5,17]. A well-known approach
in robust optimal control is H∞-control [18–22]. Robustness is achieved by describing
approximation errors or parameter changes in the environment as disturbances. The sys-
tem’s sensitivity to its maximum disturbances is then minimized. Robust RL has drawn
inspiration not only from robust optimization but also from H∞-control [7,23–25].

Formulations based on robust optimization are closely related to game theory. In
two-player zero-sum games, a protagonist, i.e., an agent or controller, minimizes an objec-
tive function, while an opposing player maximizes the same objective. This competitive
framework known as a mini-max game corresponds to the worst-case design. The relation
of H∞-control to mini-max games was shown through a linear quadratic formulation of
the differential game [26–29]. Generalized, differential games extend optimal control to
multiplayer environments [30,31]. In the single-player case, this framework reverts back to
classical optimal control [32]. As such, differential games provide a game-theoretic view of
optimal control. Solutions to games are equilibria between the participating players [33].
This concept is a foundation of convergence guarantees in robust designs.

RL leverages the mini-max game to introduce the adversarial reinforcement learning
framework. This two-player zero-sum formulation represents a special case of multi-agent
reinforcement learning (MARL) in fully competitive environments [34–36]. Most research fo-
cuses on the deployment of RL in competitive games instead of robustness. The framework,
however, is also valid for robust RL. The core difference is the formulation of the opposing
player, the adversary. Controlling uncertainty and disturbances through the adversary
produces robust protagonists [9,37].

Robustness is constrained to the variations of the inner optimization problem. As
such, the adversary’s domain becomes the dictating factor in robust RL. Each robust RL
approach targets a different aspect of the MDP. We survey the literature on robust RL and
categorize the approaches in four different ways, as follows. (i) RL classically describes
the system dynamics as a deterministic or stochastic transition function [1]. Generally,
this function is assumed invariant during training. Methods following the transition ro-
bust design consider uncertainties in the function itself. Therefore, the uncertainties are
modeled as an uncertainty set. An adversary taking control of this set simulates uncertain
dynamics [23–25,38–54]. Modeling uncertainty in the dynamics directly is a natural choice.
However, transition robust design imposes a set of specific assumptions and constraints
to remain tractable. (ii) Uncertainties in the system dynamics are equally expressible as
disturbing forces—an inspiration taken from optimal control. Disturbance robust design
adopts this perspective to formulate perturbing adversaries. These adversaries apply
external forces as a source for uncertainty in the system dynamics [7–9]. (iii) Action ro-
bust design, instead, implies disturbances as perturbations of the agent’s actions. The
opposing policies are modeled as part of a joint policy that governs the decision-making
process [11,55–57]. The joint action is the linear interpolation of the opposing decisions.
The mixing parameter regulates the strength of the adversary. (iv) Observation robust

Mach. Learn. Knowl. Extr. 2022, 4 278

design exploits the susceptibility of neural networks to input perturbations. The recent
developments inspire these methods in image-based deep learning [58,59]. The adversary
leverages the vulnerability to distort the protagonist’s perception. As a consequence, the
decision-making process is redirected to a worst-case transition [60–65]. The protagonist
perceives the shift in transitions as changing dynamics. Hence, transition and disturbance
robust designs target elements around the environment. Contrary, action and observa-
tion robust designs aim for elements surrounding the decision-making process. Aside
from direct robust formulations, we discuss literature on the connection of robustness
to risk-based and entropy-regularized RL formulations. Mathematical proofs show the
equivalence of certain risk-based and entropy-regularized RL formulations to transition
robust designs [66–69].

First, we discuss the basics of optimization, optimal control, and reinforcement learn-
ing. We clarify how these research fields connect and relate with each other. Further, the
extension to multi-agent environments and MARL is explained. We present our understand-
ing of robust reinforcement learning separated into the four aforementioned categories.
We discuss several extensions and concepts proposed in each category over the past two
decades. As most research has been presented in the context of transition robust design,
this part is significantly larger than the other categories. Finally, we shortly introduce
the connections of robustness to risk-based and entropy-regularized formulations. This
survey centers around the core ideas and mathematical framework behind each approach.
We cover a large research body of both reinforcement learning and control theory. As
such, notations of both topics can be found in this paper. In Table 1, the similarities in
the notations we used are clarified. Not all work in robustness is covered in this survey.
However, our goal is to provide new aspiring researchers with a solid foundation on robust
RL, detailing the fundamental idea behind the four categories and their possible extensions.

Table 1. A list of the most important notations used in this survey.

Item Definition

State s ∈ S
Action a ∈ A

Reward r
Stochastic Transition Matrix P

Transition probability p(s′ | s, a)
Horizon T

Uncertainty U
Objective J

Bellman Operator τ
History h ∈ H

Parameter θ
Value Function V

Q Function Q
Policy/Strategy π
Discount Factor γ

Expectation E
Variance Var

Identity Matrix I
Probability Distribution P

Learning Rate α
Adversary A
Protagonist P

2. Preliminaries

The concepts behind robust reinforcement learning are not unique to RL—rather, they
are multidisciplinary. Closely related research areas are optimization, optimal control, and
game theory. Ideas and concepts from these areas have been repurposed and built upon.
This chapter summarizes the fundamentals, i.e., optimization, optimal control, and rein-

Mach. Learn. Knowl. Extr. 2022, 4 279

forcement learning. The relations to each other and to game theory are highlighted. We aim
to provide a better understanding of the core ideas and their interdisciplinary application.

2.1. Optimization

Optimization provides mathematical tools for solving problems in various areas, e.g.,
control theory, decision theory, and finance [70–72]. In general, an objective function J(x)
is optimized by finding the correct design parameters x ∈ X. Typically, the domain X
represents a subset of a Euclidean space X ⊆ Rn [71]. The problem is formulated as

min
x

J(x), (1)

s.t. h(x) = 0,

g(x) ≥ 0,

where the vectors h(x) and g(x) represent equality and inequality constraints, respec-
tively. In reality, however, the optimization problem must often deal with uncertainties
and perturbations [16,73]. Possible causes can be changes in environmental parameters,
e.g., angle, temperature, or material. Furthermore, the optimization must be able to han-
dle measurement and approximation errors due to the approximation of real physical
systems [73].

Robust optimization approaches tackle these issues by considering a deterministic
uncertainty model [13–16,74,75]. The general assumption considers an extended objective
J(x, ζ) with an additional vector of uncertain problem parameters ζ ∈ Rm. This objective is
commonly known as robust counterpart. The vector ζ belongs to a given uncertainty set Uζ

and is not exactly specified. As such, the optimization problem

min
x

sup
ζ∈Uζ

J(x, ζ), (2)

is extended to a bi-level optimization problem. A bi-level problem corresponds to a game,
where a protagonist tries to minimize the objective J(x, ζ). Meanwhile an adversary controls
ζ to achieve the worst possible outcome for the protagonist. The approach, however, does
not consider the benefits of any available distributional information on the problem. Thus,
the outcome of the worst-case scenario in Equation (2) is too conservative [73,75].

Stochastic optimization (SO) takes advantage of such distributional information. In
comparison to Equation (2), SO treats ζ not as a vector from an uncertainty set. Rather,
ζ is a random variable drawn from a known distribution P [70,72,73]. The objective is
reformulated as

min
x

Eζ∼P[J(x, ζ)], (3)

where the protagonist seeks to minimize the expectation of uncertain parameters. SO
captures a less conservative risk attitude of the outcome than robust optimization given a
stochastic domain. While risk—exposure to uncertain outcomes of a known probability
distribution—is captured in both approaches, neither address ambiguity, i.e., the probability
distribution itself is subject to uncertainty [75,76].

The distributional robust optimization [77] aims to handle both situations. The approach
keeps the potentially uncertain probability distribution P in a known set of distributions
UP [74,75]. Due to the a priori known UP, the distributionally robust optimization problem
is formalized as

min
x

sup
P∈UP

Eζ∼P[J(x, ζ)], (4)

which again results in a bi-level optimization problem similar to robust optimization. In
this scenario, however, an adversary chooses the worst possible distribution P ∈ UP. This

Mach. Learn. Knowl. Extr. 2022, 4 280

way, the distributionally robust counterpart captures not only the decision maker’s risk
attitude but also an aversion towards ambiguity [75].

The basic concept for optimization see Equation (1) is a core part of optimal control
and reinforcement learning. Both aim to optimize a payoff function, which is defined by
the underlying environment surrounding the controller or agent. Robust approaches in RL
further utilize the concept of robust optimization see Equation (2) or distributional robust
optimization see Equation (4)—either directly or from a game-theoretic point of view.

2.2. Optimal Control

Optimal control is a practical application of optimization for dynamic (variational)
systems. Such optimization problems are generalized in the calculus of variations (CV)
formulated as

min
x

J(x), J(x) =
∫ b

a
L(x(t), ẋ(t), t)dt

s.t. x(a) = xa, x(b) = xb.

J(x) is an objective or cost function optimized w.r.t. any variable x. The problem is con-
strained by the conditions x(a) = xa and x(b) = xb on the start- and endpoint, respectively.
The Lagrangian L(x(t), ẋ(t), t) describes the cost at each point in time. Works published
by Bolza [78], McShane [79], Bliss [80], Cicala [81] turned out to be important foundations
for the adaption of CV to optimal control. In more detail, optimal control aims to calculate
optimal trajectories by minimizing an objective function under differential constraint equa-
tions describing the system dynamics [1]. Thus, the optimal control problem can be written
in the form

min
u

J(u), J(u) = Φ(x(t f), t f) +
∫ t f

0
L(x(t), u(t))dt, (5)

s.t. ẋ(t) = f (x(t), u(t)),

xi(0) = xi,0 = const.,

d(x(t f), t f) = 0,

g(x(t), u(t)) ≥ 0,

known as Bolza form. The goal here is to optimize the cost function J(u) w.r.t. the control
variable u(t). The first-order differential constraints ẋ(t) describe the system dynamics
given a current state x(t) and control u(t). Constraints on the terminal state are given by
d(x(t f), t f) with final time t f which is often written as x(t f) = xt f . Optionally, control
and state-space constraints are defined as g(x(t), u(t)). As in CV, the Lagrange term
L(x(t), ẋ(t), t) describes the cost at each point in time while the Mayer term Φ(x(t f), t f)
represents the constant cost in the terminal state [71]. This approach of using first-order
differential equations became known as the state-space formulation of control [4]. With the
maximum principle Pontryagin [82] formulated the Hamiltonian

H(x(t), t, u(t), λ(t)) = L(x(t), t, u(t)) + λ(t)T f (x(t), u(t)) + η(t)T g(x(t), u(t)) (6)

for optimal control. The Maximum Principle is an approach for solving such non-classical
variational problems (see Equation (5)) by transforming the problem into nonlinear sub-
problems [5]. Pontryagin [82] states that for a minimizing trajectory satisfying the Euler-
Lagrange equations there exists a control u maximizing the Hamiltonian.

Hamilton-JACOBI-Bellman Equation

In optimal control Bellman [83] introduced an optimal return or value function

Mach. Learn. Knowl. Extr. 2022, 4 281

V(x(t), t) = min
u

(
Φ(x(t f), t f) +

∫ t f

t
L(x(tτ), τu(τ))dτ

)
, (7)

V(x(t f), t f) = Φ(x(t f), t f),

to define some performance measure from state x(t) and time t to a terminal state x(t f)
under optimal control u(t) [5]. The value function—an extension of the Hamilton-Jacobi
equation—takes the form of a first-order nonlinear partial differential equation

∂V(x(t), t)
∂t

= −min
u

H(x(t), t, u(t), λ̄(t)), (8)

λ̄(t) =
∂V(x(t), t)

∂x
,

later known as Hamilton–Jacobi–Bellman equation (HJB) [71,83,84]. The HJB equation was
originally presented in the context of dynamic programming (DP). DP solves optimal
control discretized w.r.t. states and actions [83]. Due to the discretization, DP becomes
infeasible in higher dimensional spaces known as the curse of dimensionality [1,5].

Discretized w.r.t. time the HJB equation is commonly known as Bellman equation (see
Equation (14)) and is a fundamental concept of RL (see Section 2.3). The time discretization
causes a sequence of states for which Bellman [85] proposed a Markovian framework
known as Markov decision process. It represents a discrete stochastic version of the optimal
control problem [1,85].

2.2.1. Robust Control

Parallel to dynamic programming [83], Kalman et al. [86] proposed a more control
theory-driven approach known as linear quadratic regulator control (LQR). LQR formed the
foundation for the linear quadratic Gaussian control (LQG) [86–88]. The goal of control theory
remains to find a controller that stabilizes a dynamic system. In these systems, robustness
against modeling errors, parameter uncertainty, and disturbances in an environment has
long been a big challenge. As such, a robust controller stabilizes a system under these
uncertainties and disturbances. While optimal control already accounted for disturbances,
it is still not robust under modeling errors and parameter uncertainty [12]. Since the 1980s,
research tackling robustness became more prominent under the name robust control [5].
During that time, a new form of optimal control called H∞-control emerged, based on
sensitivity minimization [18–22]. For this survey, we want to focus on H∞-control as it
provides interesting relations to game theory and robust reinforcement learning.

H∞-control generally optimizes finite linear time invariant dynamical systems de-
scribed by the following linear constant coefficient differential equations

ẋ = Ax + Bu + Ew,

y = Cx + Du + Fw,

where x describes the system state vector and u denotes a control vector with a disturbance
given in w. A, B, E, C, D, and F are real constant matrices. In the Laplace space the relation
of system output y and control u is given as a linear transfer function

Y(s) = G(s)U(s).

Such a linear system can be reshaped to the form depicted in Figure 1a. The dynamics of
this system are defined as [

z
y

]
= P

[
w
u

]
=

[
P11 P12
P21 P22

][
w
u

]
,

where a stable transfer matrix P represents the plant. The vector signal w contains noise,
disturbances and the reference signal, while z includes all controlled signals and tracking

Mach. Learn. Knowl. Extr. 2022, 4 282

errors. The measurement and control signals are represented by y and u, respectively. The
linear transformation z = Tzww is governed by the transformation matrix

Tzw = P11 + P12K(I − P22K)−1P21.

Optimal H∞-control is defined as to find all admissible controllers K such that

‖Tzw‖∞ := sup
w

‖z‖2
‖w‖2

= sup
ω

σmax[Tzw(jω)], (9)

is minimized, where σmax corresponds to the largest singular value. By definition, a
controller is admissible if it internally stabilizes the system [12]. This formulation represents
a worst-case design as it minimizes the system’s sensitivity to the worst possible case
of disturbances.

Plant

K

y

z

u

w
Plant

K

∆

y

z 0

z

u

w 0

w

Tzw

(a) (b)

Figure 1. (a) A plant without model uncertainty, where w is a vector signal containing external
noise, disturbances, and the reference signal. The system output is given in z. Measurements are
represented by y, while u is the control signal. (b) A plant with all possible model uncertainty
expressed as ∆. Here w0 depicts external noise, disturbances, and the reference signal. Now w is
a signal representing parameter perturbations and model uncertainty. The system output is again
described with z0 and z. Measurement and control signals are given by y and u, respectively. Both
plants are stabilized by a controller K [12].

Robust stability, however, is only given if a controller K stabilizes the system not
only under noise and disturbances but also under parameter perturbation and model
uncertainties as depicted by ∆ in Figure 1b. According to the small gain theorem, this system
is deemed stable for any perturbation in ∆ with ‖∆‖∞ < 1/γ if the controller ensures that
‖Tzw‖∞ ≤ γ with some γ > 0 [12,27]. Coming from robust optimization, ∆ represents a
known uncertainty set containing all possible disturbances and parameter perturbations of
the nominal plant.

Relations to Game Theory

An important observation is that the H∞-control problem minimizes the maximum
norm. Reformulating Equation (9) under the small gain theorem represents a cost function
of the form

J(u, w) := ‖z‖2
2 − γ2‖w‖2

2 ≤ 0,

where z depends on u and w. Using this cost function, an optimal value function V∗ is
formulated as

V∗ = min
u

max
w

∫ ∞

0

(
zT(t)z(t)− γ2wT(t)w(t)

)
dt. (10)

Mach. Learn. Knowl. Extr. 2022, 4 283

As such, H∞-control represents a mini-max optimization problem or a mini-max game.
Generally, mini-max games are zero-sum games, where the controller and the disturbances
or uncertainties are each represented as one player. While H∞-control is in the frequency
domain, robust control in the time domain corresponds to a differential game. Basar and
Bernhard [27] show the connection between H∞-control and differential games in more
detail in their book.

2.2.2. Differential Games

Game theory has its roots with Von Neumann and Morgenstern [89] defining various
types of games, settings, and strategies [31]. The differential game, however, was only
later introduced by Isaacs [30]. These differential games provide a unique game-theoretic
perspective on optimal control. In general, a differential game is written as a multi-objective
optimization problem representing a situation where N players act in the same environment
with different goals or objectives. We will refer to these players as agents. The objectives
are defined as a payoff [90] or cost function [33] for each agent i, with

Ji = Φi(x(t f), t f) +
∫ t f

0
Li(x(t), u1(t), . . . , ui(t), . . . , uN(t))dt.

Note that the payoffs are written in Bolza form, similar to optimal control (see Equation (5)).
The Lagrangian of each agent i depends on the whole set of all agents. Isaacs [90] proposed
two kinds of games. The game of kind describes discrete and the game of degree continuous
cost functions. The former, in most cases, describes an objective of a yes–no type of possible
payoffs, e.g., win or loss of a game.

The system dynamics in a multi-objective optimization problem are written as a
first-order differential equation

ẋ(t) = f (x(t), u1(t), . . . , uN(t)),

depending on the world’s state x and the agents’ actions u1, . . . , uN [90]. An agent follows
either a pure or mixed strategy determining which action ui to choose from a set of actions the
agent is given for each state [90]. Pure strategies are of the exploiting deterministic type. In
each state, the agent chooses the best possible action without exploration. Mixed strategies,
in contrast, are stochastic and thus also incorporate exploration. The agent maintains a
distribution over the given action set for each state and draws samples to determine the
next action to execute. An agent playing mixed strategies always wins against an agent
playing w.r.t. pure strategies because of its deterministic behavior. In multi-objective
optimization, the set of strategies is expressed as

φ(x(t), t) = {φ1(x(t), t), . . . , φN(x(t), t)}.

Approaches to solving such a game depend on the available information for each agent.
Commonly, each agent is aware of the current value of the state, the system parameters, and
the cost function. The strategies of the adversaries, however, are unknown [33]. Another
important piece of information is how the agents interact with each other. In game theory,
there are different types of games determining the interaction of agents. A cooperative game
refers to a situation where a subset of agents acts in unison to reach a mutually beneficial
outcome. This setting can be extended to all agents acting in unison to reach a common
goal that corresponds to a fully cooperative or team game. Respectively, a non-cooperative game
represents a situation without cooperation. Each agent chooses its actions regardless of the
cost inflicted to other agents [31,37,89,91,92]. The solutions to these types of games provide
a balance between the independent interest of the agents called equilibrium [31,90,91].

2.2.3. Nash Equilibrium

In non-cooperative games, however, convergence to a globally optimal equilibrium
is not guaranteed, which instead requires Nash equilibria [91]. In a Nash equilibrium, it

Mach. Learn. Knowl. Extr. 2022, 4 284

is guaranteed that each agent deviating from the equilibrium increases its costs. In turn,
agents acting optimally w.r.t. the equilibrium get their costs lowered. A strategy set φ∗ is a
Nash equilibrium if

Ji(φ
∗
1 , . . . , φ∗N) ≤ Ji(φ

∗
1 , . . . , φ∗i−1, φi, φ∗i+1, . . . , φ∗N),

holds for each objective Ji(φ1, . . . , φN), where φi is any admissible strategy for agent i. There
are methods utilizing this property, e.g., the value function approach (dynamic program-
ming) or the variational approach (analytic, see calculus of variations) [33]. However, the
existence of a Nash equilibrium is not guaranteed for all non-cooperative games.

Another challenge in general non-cooperative games is the lack of information, as
agents do not exchange information about their strategies. Hence, the agents cannot be
sure that their adversaries act w.r.t the Nash equilibrium. The resulting optimal strategy
for an agent might therefore not necessarily follow the Nash equilibrium. An intuitive
but excessively pessimistic approach is the assumption that every other agent behaves
adversarially. This approach corresponds to a situation where an agent’s cost is maximized
by all of its adversaries. An agent thus aims to minimize its maximum cost, the basic idea
behind mini-max games. Such problems are defined in the following form

max
∀φj\φi

Ji(φ1, . . . , φi−1, φ∗i , φi+1, . . . , φN) ≤ max
∀φj\φi

Ji(φ1, . . . , φi−1, φi, φi+1, . . . , φN),

which does not take the payoffs of the other agents into account for agent i [31,33,35,90].

2.2.4. Two-Player Zero-Sum Game

An extreme case is the two-player zero-sum game where two agents play against each
other as adversaries such that the objectives Ji are directly opposed

J(u1, u2) := J1(u1, u2) = −J2(u1, u2).

The sum of the objectives of both agents amounts to zero [31,90,91]. As shown in Figure 2,
the Nash equilibrium corresponds to a saddle point solution in a two-player zero-sum
game. So we can rewrite the Nash equilibrium to become

J(u∗1 , u2) ≤ J∗(u∗1 , u∗2) ≤ J(u1, u∗2).

If this equation holds, there is a Nash equilibrium [27,90,91]. Further, if a Nash equilibrium
exists, this equilibrium is equivalent to the solution of a mini-max optimization for two-
player games [33]. Additionally, the existence of a Nash equilibrium is guaranteed if mixed
strategies are allowed. Therefore, the two-player zero-sum game guarantees the existence
of a mini-max solution for mixed strategies [93]. However, this property does not hold for
N > 2 player games.

A special variant of the zero-sum game is the game against nature. It describes a
situation in which one agent’s actions correspond to environmental disturbances (nature)
that other agents must overcome. Thus, nature and the agents work on completely different
action spaces [37]. In terms of optimal control, this situation comes closest to H∞-control as
a worst-case design under uncertainties and disturbances. It is also possible to give nature
control over the parameters of the environment to incorporate modeling errors and thus
more closely represent robust control.

Mach. Learn. Knowl. Extr. 2022, 4 285

Nash Equilibrium

J1(u∗
1,u∗

2) = −J2(u∗
1,u∗

2)

J1(u∗
1 +∆u1,u∗

2)

J2(u∗
1,u∗

2 +∆u2)

Figure 2. The figure illustrates a Nash equilibrium in a two-player zero-sum game. The protagonist
minimizes the objective minu1 J1(u1, u2) while the adversary counteracts through maximization
maxu2 J2(u1, u2). In this equilibrium, each player achieves an optimal payoff when following the
optimal action (u∗1 , u∗2). (i) In case 1, the protagonist deviates from the optimal action with ∆u1.
The adversary pursues the optimal action. Consequently, the protagonist gets a higher payoff. The
adversary, on the other hand, reaches a better objective. (ii) In case 2, the protagonist follows the
optimal action. However, the adversary changes his action by ∆u2. As a result, the protagonist
achieves better outcomes—the opponent’s outcomes decrease. Therefore, the Nash equilibrium
corresponds to a solution in which both players achieve the best possible outcome w.r.t. each other. A
change in the policy causes a loss and should be avoided.

2.3. Reinforcement Learning

Despite the long history of research and success in optimal control, it differs con-
siderably from human control (Table 2). Instead of defining the environment’s behavior
mathematically and designing a system from scratch to control said behavior, humans
learn to control by repetitively interacting with their environment. This human approach to
control is adopted in reinforcement learning. An agent learns to map certain situations or
states in an environment to actions while maximizing its short and or long-term reward [1].
Still, reinforcement learning is based on ideas from optimal control. Every action the
agent takes has an impact on the environment and, in most cases, causes a change of the
environments’ state. Such change in turn is observed and acted upon.

Table 2. Similarities in the notations of reinforcement learning and optimal control. Here the transfer
function of reinforcement learning is formulated in discrete time while the dynamics in optimal
control are in continuous time.

Reinforcement Learning Optimal Control

State s State x
Action a Control u
Reward r Cost c

Observations o Measurements y
Transition s′ ∼ p(s′|s, a) Dynamics ẋ = f (x, u, w)

2.3.1. Single Agent Reinforcement Learning

A fundamental concept for the environment was introduced through Bellman’s re-
search with the development of the Markov decision process. A schematic of this math-
ematical framework describing the interplay of an agent and its environment is shown
in Figure 3. A key assumption behind the MDP is the Markovian nature of the system,
commonly known as the Markov property. This property states that a fully observed state
is statistically sufficient. In a statistically sufficient state, the transition probability can be
determined only based on the observation and taken action without knowing the history of
previous states, i.e., the transition probability is conditionally independent of the transition

Mach. Learn. Knowl. Extr. 2022, 4 286

history. In the standard formulation, we assume a fully observable MDP where the agent
can fully observe the state of the environment at each time step [1,2,9,34,85,94–96]. As
described in Section 2.2.1, the MDP was designed to tackle a discretized version of the
state space formulation of optimal control w.r.t. time [85]. The MDP is defined by the
tupleM := (S ,A, r,P , γ), where all possible states of the environment are represented
by S ∈ Rn. On the other hand, A ∈ Rm contains all possible actions of the agent, re-
spectively. The system dynamics are described by a deterministic or stochastic transition
function P : S ×A → S mapping each set of state s ∈ S and action a ∈ A to a new state
s′ ∈ S . By this definition, the transition function of a finite state MDP can also be seen
as a 3-dimensional matrix containing a probability for each (s′, s, a)-tuple. For a specific
state s this matrix reduces to a 2-dimensional matrix. Each row then describes a probability
distribution p: S ×A× S → [0, 1] over next states s′ corresponding to a specific action as
defined by

p(s′|s, a) =̇ Pr{st = s′|st−1 = s, at−1 = a} =
∫

r∈r
p(s′, r|s, a).

The actions are rewarded by a continuous function r: S ×A → R. As an example let us
assume a system with two possible states s1, s2 and two possible actions a1 and a2. Further,
we assume to be in state s1. Then the transition matrix for state s1 can be written as

Ps1 =

[
p(s1|s1, a1) p(s2|s1, a1)
p(s1|s1, a2) p(s2|s1, a2)

]
.

As many papers in this survey assume a finite state space, we will use the terms transition
function and transition matrix interchangeably. The full stochastic dynamics are then defined
with a probability function p: S × r× S ×A → [0, 1] formulated as

p(s′, r|s, a) =̇ Pr{st = s′, rt = r|st−1 = s, at−1 = a}.

Environment

Agent

s t+1

r t+1

s tr ta t

Figure 3. Schematic representation of the Markov decision process. Transitions are depicted in a
discrete-time formulation to define variables at every time step. Each state is composed of a vector of
observations or sensory inputs of the agent. The agent can choose an action from a given action-space
at every step, which is evaluated through a reward function.

In cases where the observed state no longer fully describes the true state of the
environment, the observed state loses its property of being statistically sufficient. For
example, the observed state may be identical in two different states of the environment.
Such scenarios can often occur in real-world applications. To track the true state, the agent
must maintain a belief that contains knowledge of past states to estimate which of the true
states is represented by the observed state [97,98]. A standard MDP formulation is solved
based on statistically sufficient belief states representing this belief. This concept is known
as partial observable Markov decision processes (POMDP) [97,98].

In a fully observable MDP setting, reinforcement learning aims to find an optimal
deterministic policy π∗: S → A. From its origin, the optimal policy formulates an optimal
control at each time step, maximizing the expected return of the objective function

J(π) = Eπ

[
T

∑
t=0

γtrt

]
, (11)

Mach. Learn. Knowl. Extr. 2022, 4 287

where γ ∈ [0, 1) describes the discount factor reducing the influence of future rewards.
The horizon T is defined as the maximum time of operation, possibly infinite, or the time
required to reach a final or terminal state. In the infinite horizon case, the optimal policy
becomes stationary [2].

Converging to an optimal policy π∗, however, is, in theory, only guaranteed if every
action is executed infinitely often in each state [1]. A greedy policy exploiting the best
action logically is a reasonable choice as it maximizes the known rewards. Nevertheless,
there is no guarantee that the known actions are best as some actions might not have
been tested yet. Actions that have not been explored have no estimate for their long-term
reward and, as a result, will never be chosen. Exploring new actions carries the risk of
lowering the short-term reward, but, in turn, the long-term reward may rise eventually.
Finding admissible solutions requires a fine trade-off between exploring the unknown and
exploiting the known, commonly referred to as exploration vs. exploitation dilemma [1]. A
common approach is using a stochastic policy π: S ×A → R+ sampling an action from
a distribution in a given state a ∼ π(a|s). As each action in a state is initially given a
probability π(a|s) ≥ 0, exploration is guaranteed. Still, any stochastic policy can converge
to a stationary deterministic policy π∗, fully exploiting the system to gain the maximum
reward [1,2].

The question remains on how to evaluate each action. Using the immediate reward is
possible but contains no information about the future. An action might be attractive for now
but leads to a low series of rewards in the future. A common concept most reinforcement
methods are based on is the value function or simplified HJB Equation [1,83,85]. Even
though the value function cannot be calculated directly, [83] shows that it can be estimated
backward from the final to the initial state for the discrete-time setting. Hence, the state-
value function V and action-value or Q-function Q are defined as

Vπ(s) = Ea∼π(a|s)[Q
π(s, a)], (12)

Qπ(s, a) = r(s, a) +Es′∼P(s′ |s,a)
[
Vπ(s′)

]
. (13)

As the name suggests, the optimal state-value function V∗ describes the maximum value
one can get from state s onwards. In turn, the optimal action-value function Q∗ represents
the maximum value one can get if action a is chosen in state s.

Bellman [83] introduced the key for a large variety of RL algorithms in the form of
dynamic programming for finite space MDPs. Even though dynamic programming was
developed in the context of optimal control, one might argue that it is a shared part of the
history of optimal control and reinforcement learning [1]. This algorithm breaks down
the backward estimation into subproblems. Each subproblem only considers the reward
between two consecutive states in a trajectory. The true value function can then be found
by recursively solving the subproblems. Thus, a policy π∗ will be optimal if it behaves
greedy w.r.t. this function [1,2]

Vπ(s) = Eπ

[
r + γEπ

[
H

∑
k=t+1

γk−1rk

]]
. (14)

This solution requires finite state spaces as it keeps a lookup table for the values in every
state. As the lookup table grows exponentially with the number of state variables, each
variable introducing a new dimension, dynamic programming carries the risk of the curse
of dimensionality. Methods derived from dynamic programming directly using the same
table-based formulation are commonly known as tabular methods and suffer from the
same problem. The RL community tackled the curse of dimensionality using function
approximators [1,99–102]. Still, as we will see in Section 3.1, dynamic programming is often
used as a foundation to show convergence guarantees under different MDP formulations.
One concept regularly used in reinforcement learning for optimizing value functions is the
temporal difference (TD) Error. The TD Error, described by

Mach. Learn. Knowl. Extr. 2022, 4 288

δt = rt + γV(s′)−V(s), (15)

is the difference between the current estimate of the value function V(s) and a new sample
rt + γV(s′) from interacting with the environment. One can optimize the value estimate by
minimizing the TD Error. Other common approaches utilize parametric policies π(θ): S ×
A → R+ instead, where the parameters are updated based on gradient descent w.r.t. the
objective Jθ (see Equation (11)) [99,103–108].

2.3.2. Multi Agent Reinforcement Learning

Reinforcement learning, as we have discussed to this point, assumed a lone agent in
a fixed, stationary environment. This secluded view of a learning environment is often
unrealistic. Agents often have to interact with other agents in the same environment,
and the environment might not be stationary [95]. The crucial assumption of the Markov
property is violated through the existence of the other agents as soon as their policies
are non-stationary [34,109]. These additional agents cause the environment to become
non-stationary and non-Markovian from the perspective of a single traditionally trained
agent [110]. A straightforward approach to training these agents in multi-agent environ-
ments is called independent learners. Each agent utilizes the simple assumption that no other
agents exist or treats them as stationary, causing the environment to be stationary again [93].
For independent learners, the optimal policy π∗ is stationary and deterministic, which for
standard MDPs is undominated. Undominated means that this policy achieves the highest
possible reward from any state amongst all possible policies. This property no longer
exists in the case of multiplayer environments as the performance of any policy highly
depends on the other player’s choices. A deterministic policy will never be optimal in a
multiplayer environment as it is unable to react to other players or opponents and is prone
to be exploited [34]. A simple example is rock, paper, scissors. An agent who is deterministic
by constantly choosing the same action will always be defeated by his opponent, while an
optimal stochastic policy at least breaks even [34]. A more reasonable approach is joint action
learners taking information of their opponents into account [111]. As the multi-agent system
exhibits the nature of a game-theoretic framework, the Nash equilibrium (see Section 2.2.3)
is certainly a possible solution. In this equilibrium, an optimal policy is defined as the best
response to all other policies if they act after the equilibrium [34]. Due to the guarantees of
the Nash equilibrium in two-player zero-sum games, the adversarial setting is the easiest
case of multi-agent reinforcement learning.

The stochastic game, as introduced by Shapley [112], provides an extension of game
theory to MDP environments. Hence, the stochastic game or Markov game is a natural
extension of the reinforcement learning framework to multi-agent systems [95,113,114].
The Markov game is defined by a tupleM := (S ,A1, . . . ,Ak, r1, . . . , rk,P , γ) with a set of
states S ∈ Rn, and a collection of action sets A1, . . . ,Ak each ∈ Rn. Each set of actions
is assigned to a single agent in the environment. The transition function is extended to
the form P : S ×A1 × . . .×Ak → S depending on the current state s ∈ S and a chosen
action ai ∈ Ai of each agent. This function can again be formulated as a probability
p: S × A1 × . . . × Ak × S → [0, 1]. Instead of a single reward function, each agent i is
given its own reward function ri : S ×A1 × . . .×Ak → R. As before, γ ∈ [0, 1) denotes the
discount factor [9,34,36,95]. The state-value function V and Q-function Q are then rewritten
from the perspective of agent i as

Vπ1,...,πk
i (s) = Eπ1,...,πk

[
T

∑
t=0

γtri t | s0 = s

]
, (16)

Qπ1,...,πk
i (s, a1, . . . , ak) = ri(s, a1, . . . , ak) +Es′∼P(s,a1,...,ak)

[
Vπ1,...,πk

i (s′)
]
, (17)

where ri t = ri(st, a1t, . . . , akt) [11,34].
The Markov game describes a series of matrix games, where each matrix game or

subgame represents a state of the Markov game. In the case of two agents, these subgames

Mach. Learn. Knowl. Extr. 2022, 4 289

are defined by a matrix r where each component rij contains the instantaneous reward for
an action i of agent 1 and action j of agent 2 [95]. This matrix game has to be solved at each
stage of the Markov game. As a generalized formulation, the matrix game is defined by a
tupleM := (n,A1, . . . ,An, r1, . . . , rn) with n players where each player i is given an action
set Ai and a payoff function ri. The payoffs are visualized as an n-dimensional matrix
r [93].

These types of games require stochastic policies as any adaptive agent may learn to
exploit deterministic behavior as described in Section 2.3.2. In fact, optimal behavior is
achieved when the agent is in a Nash equilibrium, where the agent’s policy is the best
response to every other policy in the equilibrium. That means any deviation from that policy
results in a decrease in reward [34]. Since only two-person zero-sum games guarantee the
existence of a Nash equilibrium at every stage of the game, they are the only case with a
tractable solution [34,115,116].

For two-player zero-sum cases, the definition of the Markov game can be reduced to a
tupleM =

(
S ,A, Ā, r,P , γ

)
. The collection of action spaces is reduced to A ∈ Rn for the

agent and Ā ∈ Rm for its adversary, respectively. Due to the nature of zero-sum games,
both agents optimize a single reward function r ∈ R in opposite directions as described in
Section 2.2.1 [9,95]. On this basis, the state-value and Q-function are simplified to

Vπ,π̄(s) = Eπ,π̄

[
T

∑
t=0

γtrt | s0 = s

]
,

Qπ,π̄(s, a, ā) = r(s, a, ā) +Es′∼P(s,a,ā)
[
Vπ,π̄(s′)

]
,

where rt = r(st, at, āt) [11]. Since the protagonist maximizes the reward, this definition is
equivalent to the generalized form in Equations (16) and (17) when using V1 and Q1. A
schematic for this environment is shown in Figure 4.

Environment

Protagonist

Adversary

s t+1

r t+1

s̄ tr̄ t

s tr ta t

ā t

Figure 4. Schematic representation of the two-player zero-sum Markov game. Transitions are
depicted in a discrete-time formulation to define variables at every time step. Each state is composed
of a vector of observations or sensory inputs of the agents. The agents can choose an action from
their respective action spaces evaluated through a reward function at every step. For the specific
two-player zero-sum case as depicted here, r̄t = −rt.

Littman [95] was one of the first to tackle two-player zero-sum games using reinforce-
ment learning in a multi-agent learning approach. He proposed a new variant of Q-learning,
which, in the standard form, tries to approximate the Q-function. This approximation mini-
mizes the error between the Q estimate in the current state and the observed reward plus
the Q estimate of the following state. Instead of a maximum Q estimate depending only
on a single agent, he proposed a mini-max update depending on the maximizing action of
one agent and the minimizing action of its opponent [95]. His training environment was
designed as a two-player soccer game with a rectangular position grid. Littman [95] tested
four different scenarios. Two agents were trained using standard Q-learning (independent
learner) and two using mini-max Q-learning (joint action learner). In both cases, one agent

Mach. Learn. Knowl. Extr. 2022, 4 290

was trained with an opponent choosing random actions and one with an identical copy of
himself. All trained agents performed well in a test match against an opponent choosing
random actions. However, the results showed that the joint action learner trained against
a random opponent performed worse than the independent learner counterpart. Since
the independent learner was not taken advantage of by the purely random opponent,
its optimization was more effective compared to the joint action learners’ optimization
having an optimal opponent in mind. In another experiment, Littman kept the trained
independent, and joint action learners fixed to train a new challenger for each of the four
agents. Unsurprisingly the result changed dramatically, with both independent learners
not winning a single game while the joint action learners still won ∼35% of the games. The
joint action learner, who was trained against itself, performed better than the one against a
random opponent [95].

Uther and Veloso [35] picked up on Littman’s work to further investigate multi-agent
reinforcement learning techniques in a two-player zero-sum setting they described as an
adversarial environment. Their work introduced the term of adversarial reinforcement
learning as a special variant of MARL. One insight of their work is the big disadvantage
of mini-max Q-learning assuming an optimal opponent, i.e., pessimistic behavior. They
proposed incorporating a modeled probability distribution over the opponent’s actions in
each state to take advantage of an opponent’s suboptimal behavior [35]. However, a huge
problem of tabular methods like Q-learning that maintain a table of Q values for each state–
action pair is the massive explosion of possible states with increasing numbers of agents.
Uther and Veloso [35] discussed two solutions for this problem. The first generalizes over
similar states using function approximators, effectively reducing the number of samples
required to have an estimate for each possible state. The second solution is watching
the opponent to gather more samples from the same amount of moves to converge more
quickly to good estimates of the Q values in the table [35].

These approaches presented in [34,35,95] boost the performance of reinforcement
learning in two-player games compared to independent learning approaches, but they
do not tackle a central issue of reinforcement learning—robustness. Still, they are major
milestones for significant contributions to the research of solving two-player games and
beyond [117–126]. It is known from robust optimization and robust control that the two-
player zero-sum game equivalent to a mini-max formulation can be used to gain robustness
against parameter perturbations and modeling errors. The question here is how the
adversary must be designed to gain robustness against specific environmental variations.
This topic will thoroughly be discussed in the following chapter.

3. Robustness in Reinforcement Learning

Despite the success and attention classic reinforcement learning has received over the
last years, it often struggles with robustness and generalization. This problem is mainly
caused by agents overfitting to the specific training environment, which is a major challenge
at deployment time. Training of reinforcement learning agents is often done in simulation
due to the high cost of interaction with physical systems. In turn, the simulation is an
imperfect representation of reality containing modelling errors and imprecise parameters.
The difference between simulation and reality is often too large to handle for the trained
policy during transition. Even policies trained on the real system directly do not perform
well under previously unencountered uncertainties or disturbances. Even slight deviations
in the environment’s parameters e.g., mass or friction can have significant impact on a
policies’ performance. Such changes are a common occurrence in test scenarios and can be
the difference between success and failure [7–9]. As shown in Section 2.2 it is possible to
leverage the idea of two-player zero-sum games or mini-max solutions to gain robustness
to disturbances and environmental parameter variations. Further, Xu and Mannor [127]
show that supervised learning algorithms robust to noise and disturbances also provide
desirable generalization properties. Even though, it is not clear how this proof holds in
reinforcement learning, it is believed that there is a similar connection [11].

Mach. Learn. Knowl. Extr. 2022, 4 291

Our main interest lies in the robustness of reinforcement learning to parameter varia-
tions of the environment. Considering the fundamental definition of the MDP as a tuple
M := (S ,A, r,P , γ) , there are multiple options available where additional uncertainty can
be placed. Any change in the environment’s states is a reaction to the agent’s actions de-
scribed by the transition function P . Thus, arguably the most intuitive choice is robustness
to uncertainty in the transition function such that not only the transitions are uncertain but
also the function itself is subject to uncertainty. Based on the concept of robust optimization,
introducing an uncertainty set over transition functions P ∈ UP , one can formulate a
robust MDP [23–25]. As robust optimization is defined as a mini-max optimization, the
uncertainty set can be seen as an action space for an adversary in a two-player zero-sum
game. The adversary is governing the system’s dynamics in the form of the transition
function [128]. A similar formulation has also been presented for uncertainty in the reward
function [23–25].

While intuitive from the perspective of the MDP formulation, uncertainty in the tran-
sition function is not the only way to achieve robustness against environmental parameter
variations and disturbances. Another approach leverages the idea of robust control by
formulating parameter uncertainty as disturbances in the environment represented by an
adversary. This adversary would then apply forces to the protagonists body to simulate
changes e.g. in mass, gravity or friction [7–9].

Similar to how disturbances can describe a change in certain environmental param-
eters such as friction, a change in these parameters can also describe a disturbance. A
common ground between disturbances and parameter variations is that both cause a
change in the environment’s behavior. The agent can no longer rely on the transition
probabilities being fixed for any given state–action pair. During our research, we identified
a similarity in all approaches to robustness against changing system dynamics caused by
parameter uncertainty, disturbances, and modeling errors. The key component the different
approaches aim for is variability in the transition probabilities. As such, an adversary can
also be designed to manipulate the protagonists actions directly. Manipulating the actions
alters the transition probabilities from the perspective of the originally chosen action. The
agent perceives this alteration as an unexpected, possibly undesirable transition between
states [11,55,56].

The same effect is achieved by manipulating the protagonist’s observation of states.
By tricking the protagonist into wrong beliefs about the environment’s current state, the
protagonist maneuvers itself into unexpected worst case situations [62,63,129].

Over the last years, promising results to parameter robustness have been published
using these four basic approaches. We will discuss the different ideas in detail in this
section, including some of their variations presented over the years. We try to show how
the approaches connect to the basic concepts introduced in the previous section and other
related research to the best of our understanding.

3.1. Transition and Reward Robust Designs

Given the underlying stochastic nature of an MDP, every interaction between agent
and environment causes a shift in the environment’s state. This change is governed by
the transition probability model P . A consequence of this stochastic process is the risk of
potentially encountering critical states. To minimize this risk in traditional RL, Heger [76]
adopted a two-player framework similar to Littman [95]. In Heger [76], however, the
adversary takes control over P and hence is modeled in the environment. This framework
provides a guaranteed minimum performance by considering transitions with the worst
outcome at each time step. As a result, the optimal agent behaves risk-averse but also very
conservatively [23]. However, this approach abandons the underlying stochastic proper-
ties of the environment, replacing the stochastic nature with a deterministic worst-case
design [23]. Further, Heger [76] does not seek robustness w.r.t. to errors in the approxi-
mation, disturbances, or other outside influences. Instead, the goal should be to derive
optimization approaches that are robust against these external uncertainties while also

Mach. Learn. Knowl. Extr. 2022, 4 292

retaining the underlying stochastic nature of the environment. As such, robust reinforce-
ment learning rather considers a layered approach of robust stochastic optimization. This
consideration first gained attention in the 1970s where it was applied in Markov decision
processes with imprecisely known transition probabilities (MDPIP) [23,128,130,131]. The un-
known transition matrix P is assumed to be fixed and lies within a known uncertainty set
of possible transition matrices UP . In the case of an infinite horizon T = ∞ with discrete
finite state S and action A spaces, the MDPIP framework can be formulated as a zero-sum
stochastic game between protagonist and adversary [112]. Thus, compared to [76], the
goal is then changed to optimizing over the worst possible transition matrix P instead of a
single worst-case transition, a mini-max problem of the form

max
π∈Π

min
P∈UP

EP ,π

[
T

∑
t=0

γtrt

]
. (18)

In this formulation, optimization over UP is still a deterministic process, but the optimiza-
tion over π remains stochastic as each P ∈ UP is a stochastic transition matrix. In general,
however, it is NP-hard to find an optimal memoryless policy for Equation (18) with brute
force [132]. In contrast to a two-player simultaneous game in which both agents interact
simultaneously, the protagonist first tries to maximize the expected return. Then, based
on the protagonist’s action, the adversary selects the worst possible transition matrix P
within an uncertainty set UP . The interaction of this two-player game is shown in Figure 5.
Intuitively, due to this additional information, the behavior of an optimal policy for the ad-
versary becomes static. Each time the adversary encounters the (s, a)-pair, it will select the
same transition matrix Pa

s out of UP a
s . Thus, it is also possible to find an optimal stationary

policy for the protagonist, which behaves deterministically [128,130]. Nevertheless, finding
a solution for statically behaving adversaries is computationally expensive.

Pā(s t+1 | s t,a t)

Environment

Adversary

Protagonist

s t+1

r t+1

s tr ta t

Figure 5. Schematic representation of methods following a transition robust design. The framework
considers adversaries taking control of the transition function. The adversary selects a transition
function—here described as distribution—from a predefined uncertainty set. This decision is based
on the current state of the environment and the action chosen by the protagonist.

Therefore, Bagnell et al. [23] considered a two-player zero-sum dynamic game of
complete information defined by

1
T

T

∑
t=1

max
π∈Π

min
P∈UP

γtr, (19)

as a lower bound for the static game. The gap between the solution of the dynamic game
Equation (19) and the static game Equation (18) goes to zero if the horizon T goes to
∞ [23,24]. In the case of the dynamic game, the adversary’s policy is not restricted to
remaining static during the game. The adversary is thus able to explore the uncertainty
set to find the worst possible transition matrix for each (s, a)-pair. Finding a solution for
general uncertainty sets, however, is still NP-hard [45].

Mach. Learn. Knowl. Extr. 2022, 4 293

To improve tractability, Nilim and El Ghaoui [24] and Iyengar [25] have modeled the
uncertainty set as a Cartesian product of individual (s, a)-dependent uncertainty sets

UP = {
⊗

(s,a)∈S×A
UP a

s | UP a
s ⊆ R|S|+ }. (20)

Here, R|S|+ represents the probability simplex for each (s, a) that describes the uncertainty of
state s given action a [24]. This property (Equation (20)) is known as the (s, a)-rectangularity
property. Intuitively, it permits the adversary to select a transition matrix from UP a

s without
considering transition matrices from other state–action pairs. This property provides
the foundation of the robust Markov decision processes (RMDP), defined by a tupleM :=
(S ,A, r,UP , γ).

Initially, uncertainty sets were constructed based on polytopes or interval
matrices [23,128,130,131]. Inspired by game theory, Bagnell et al. [23] have proven that
there are optimal stationary deterministic policies both for the protagonist and for the ad-
versary if the uncertainty set is a compact and convex polytope. Therefore, the authors have
stated that there has to be a robust value iteration to find optimal policies. However, solving
this bi-level optimization problem is computationally expensive [23]. Although these sets
can satisfy the (s, a)-rectangularity property, they are not statistically accurate enough to
represent uncertainties [24,25]. For this reason, Nilim and El Ghaoui [24] and Iyengar [25]
have constructed uncertainty sets, which are described by likelihood or entropy bounds,
which also have a significantly lower computational effort. Using these bounds and an
estimated or known reference distribution P0 is a natural way to construct statistically
accurate uncertainty sets. Although these sets are not convex, Nilim and El Ghaoui [24]
and Iyengar [25] have finally proven that the robust dynamic programming algorithm will
find an optimal stationary deterministic policy for all uncertainty sets as long as the (s, a)-
rectangularity property is satisfied. Moreover, given this uncertainty set, the complexity of
solving the problem is only slightly higher than for a classical MDP with a fixed transition
matrix [24,25].

Subsequently, Wiesemann et al. [45] has presented a generalization of the (s, a)-
rectangular uncertainty set

UP = {
⊗
s∈S
UP s | UP s ⊆ R|S|×|A|+ },

which is known as (s)-rectangularity. Robust dynamic programming algorithms constraint
to this less restrictive property can still find optimal stationary policies. While optimal
policies are deterministic in Equation (20), now they may as well be stochastic [45].

A slightly different setting from standard robust MDPs is presented by Lim et al. [44],
who aim to solve the robust MDP in the presence of an unknown adversary, meaning
that the full extent of nature’s ability to change is unknown. An MDP described by the
tuple M := (S ,A, r,UP , γ) with finite state S and action space A is considered. As in
standard robust MDPs, a possibly history dependent compact uncertainty set UP (s, a) over
transition matrices P(s, a) is defined for every state–action pair. However, only a subset F
of state–action pairs is truly adversarial while all others behave purely stochastically, i.e.,
with a fixed P(s, a), as in non-robust MDPs. By optimizing a regret, one can determine a
policy as good as the mini-max policy without knowing either F or P(s, a). Such solutions
slightly deviate from the common solution to robust MDPs as they are more optimistic and
hence indirectly address a major issue of robust approaches based on worst-case analysis.

The worst-case analysis is prone to produce overly conservative policies that achieve
only mediocre performance across all possible model parameters in exchange for increasing
the worst-case performance [39]. As such, in cases where the nominal model parameters
already provide a reasonable representation of the real physical system, a non-robust
approach leads to higher-performing policies on that system. In other words, applying
worst-case analysis to problems with only a small sim-to-real gap may lead to worse

Mach. Learn. Knowl. Extr. 2022, 4 294

performance. Xu and Mannor [39], therefore, propose a trade-off as a weighted sum
between a nominal and a robust performance criterion. In their paper, the authors consider
an MDP with an uncertain reward function r ∈ Ur. The performance criteria are then
defined as the expected return at step t for their respective parameters

Pt(π, s) = Eπ

[
T−1

∑
i=t

r̄(si, ai)|st = s

]
,

Rt(π, s) = min
r∈Ur

Eπ

[
T−1

∑
i=t

r(si, ai)|st = s

]
,

where r̄ is the nominal reward, P is the nominal criterion, and R is the robust criterion.
Therefore, the weighted sum is

cλ
t (s) = max

π∈Π
[λPt(π, s) + (1− λ)Rt(π, s)],

with λ ∈ [0, 1] being the weighting parameter. A policy π is said to be Pareto efficient if it
obtains the maximum of Pt(π, s) among all policies with a certain value of Rt(π, s). Xu
and Mannor [39] show that this problem can then be solved using parametric linear pro-
gramming for the whole set of Pareto efficient policies. Unfortunately, this approach only
considers uncertainties in the reward function. In the case of uncertain transitions, as pre-
sented in [23,24], the authors, Xu and Mannor [39], prove that a solution is not Markovian
and, as such, may be intractable. However, the idea of trading-off nominal and robust per-
formance has been adopted for a robust policy optimization algorithm for unknown, noisy
system dynamics with possibly noisy observations [52]. The algorithm is based on multi-
objective Bayesian optimization, where the objectives represent a nominal performance
measure f1(θ) and a robust performance measure f2(θ), with θ being the policy parameters.
The solution to this optimization problem is defined as a Pareto set Θ∗ that contains all
parameters θ∗ with θ∗ ∈ Θ∗ iff ∃i = 1, 2, such that fi(θ

∗) > fi(θ)∀ θ ∈ Θ [52]. Their work
has shown that the underlying concept of a trade-off between nominal and robust perfor-
mance is viable for uncertain transition functions.

A different realization of such trade-offs is presented in [41]. The authors propose
a chance constraint formulation based on risk assessments for the expected performance
of a policy. Assuming that the transition function p and reward function r are drawn
from probability distributions f (p) and f (r), Delage and Mannor [41] define the chance
constraint optimization problem as

max
y∈R,π∈Π

y

s.t. Pr,p

(
Eπ

[
∞

∑
t=0

γtr(st)

]
≥ y

)
≥ 1− ε,

which describes the risk-adjusted discounted performance of an uncertain MDP. The
constraint in the optimization guarantees with a probability of 1− ε that the expected
performance of π will be greater or equal to y given r ∼ f (r) and p ∼ f (p). For ε = 0, this
problem becomes equivalent to the worst-case analysis of robust MDPs [41]. In this sense,
the presented approach relaxes the constraint of worst-case analysis, which is to guarantee
minimum performance at all times.

While the trade-off in [39,52] is an intuitive counter to the conservatism of the worst-
case analysis, other research targets the rectangularity assumption as the main source of
the problem [42,47,48]. The rectangularity assumption is the necessary assumption that the
uncertainty in each state is uncoupled from all other states as general coupled uncertainty
sets are intractable [42,47,48]. The consensus is that defining tractable uncertainty sets with
coupled uncertainty across states mitigates the problem of overly conservative solutions.

Mach. Learn. Knowl. Extr. 2022, 4 295

Mannor et al. [42] initially proposed the idea of lightning does not strike twice (LDST).
The algorithm targets systems where the parameters of transition and reward function
deviate from their nominal representations p̄s, r̄s only in a small number of states s. This
consideration is made under the assumption that a deviation has a low probability. The
total number of states allowed to deviate from their nominal parameters is hence bounded
by D [42]. Following the example of [24], the authors consider a stationary and a time-
variant model for applying LDST. In the stationary model, all deviations from the nominal
parameters are chosen at the beginning of an episode and kept fixed thereafter. The
resulting optimization problem is defined as

max
π∈Π

min
(p,r)∈UD

Eπ

[
T

∑
t=1

γt−1r(st, at)

]
,

UD ={(p, r) ∈ Ur,P | ∑
s∈S
I(ps ,rs) 6=(p̄s ,r̄s) ≤ D},

where ps and rs refer to state-specific representations of the transition and reward function.
Accordingly, the time-variant model describes a sequential game, where the deviation is
chosen upon entering the corresponding state. It follows that the optimization is then
defined as

max
a1∈A

min
(p1,r1)∈Us1

. . . max
aT∈A

min
(pT ,rT)∈UsT

E
[

T

∑
t=1

rt(st, at)

]
,

s.t.
T

∑
t=1
I(pt ,rt) 6=(p̄t ,r̄t) ≤ D.

Rather than the number of states, here, the number of decision stages in which deviations
occur is bounded by D. It is, in this case, also possible to visit the same state multiple
times, where each time the parameters are different. Their experiments show improved
performance compared to not only worst-case robust policies but also to nominal non-
robust policies.

In [47], the authors propose the concept of k-rectangular uncertainty sets, of which LDST
is a special case. The k-rectangularity is a generalization of the standard rectangularity
concept while capturing the computational difficulty of uncertainty sets. If the projection P
of an uncertainty set onto S ′ ⊂ S is one of at most k different possible sets, the uncertainty
set is considered k-rectangular. Here k describes the upper bound of an integer that
compactly encodes the coupling of uncertainty among different sets [47]. If S ′ ⊂ S is a
nonempty subset of states, then the projection P of an uncertainty set U onto S ′ is defined as

PS ′U=̂
{

pS ′ | ∃pS\S ′ :
(

pS\S ′ , pS ′
)
∈ U

}
.

Mannor et al. [47] define an uncertainty set as k-rectangular if | US∗ |≤ k ∀ S∗ ⊆ S , where
k is an integer. The term | US∗ | denotes the class of conditional projection sets, defined for
all S ′ ⊂ S \ S∗ as

US∗=̂
{
US∗(pS ′ : ∀S ′ ⊂ S \ S∗, ∀pS ′ ∈ PS ′U)

}
.

This definition limits the number of sets the class of projection sets can contain to k sets.
Mannor et al. [47] noted that k-rectangularity generalizes the standard rectangularity con-
cept such that the standard rectangularity equals 1-rectangularity. With LDST being a
special case of k-rectangularity, the authors focused simulations on a comparison to LDST
showing further improvements in performance. Their work is a first attempt at provid-
ing coupled uncertainty sets flexible enough to overcome conservatism while remaining
computationally tractable for the wider applicability of robust MDPs.

Mach. Learn. Knowl. Extr. 2022, 4 296

Another concept for tractable coupled uncertainty is factor matrix uncertainty sets [48].
A factor matrix W = (ω1, . . . , ωr) comprised of r factors is defined, where each factor is
chosen from a corresponding uncertainty setWi [48]. The factors are chosen independently
to retain tractability despite coupled uncertainty such that W ∈ W withW =W1 × . . .×
Wr is a Cartesian product. This property is referred to as (r)-rectangularity [48]. Each factor
ωi represents a probability distribution over the next state st+1 ∈ S . It follows the factor
matrix uncertainty set UP ⊆ RS×A×S+ as

UP =

(

n

∑
i=1

ui
stat ωi,st+1

)
statst+1

∣∣∣∣∣∣W = (ω1, . . . , ωr) ∈ W

s.t.

n

∑
i=1

ui
stat = 1, ∀ (st, at) ∈ S ×A,

∑
st+1∈S

ωi,st+1 = 1, ∀i ∈ [n],

with ui
stat being coefficients for the convex combination

Pstat =
n

∑
i=1

ui
stat ωi,

describing all possible transitions probabilities for a specific state–action pair. Goyal and
Grand-Clement [48] show that ifW is a Cartesian product, any (s,a)-rectangular uncertainty
set can be reformulated as (r)-rectangular uncertainty set. The authors further propose
a robust value iteration algorithm based on (r)-rectangular uncertainty sets for finite-state
MDPs. The provided experiments show significantly less conservative behavior compared
to the (s)-rectangular approach in [45] while still achieving improved robust performance
w.r.t. nominal non-robust MDPs.

A third viable solution to the conservatism problem of worst-case analysis is a dis-
tributional robust design (see Section 2.1). Robust MDPs take uncertainties related to
the assumed transition probability model into account. Nevertheless, potential ambigui-
ties within the matrix P itself remain untouched. The distributional robust optimization
framework adds these uncertainties in P itself. The focus shifts to distributions DP over
transition probability matrices that, on average, lead to the worst-case models P ′ ∼ DP but
tolerate deviations. Consequently, less conservative agents are implied by this formulation.
From a different perspective, a common interpretation of this distributional information
is that of a prior in Bayesian formulations [40,46,53]. A prior incorporates an additional
layer of uncertainty and prevents overfitting to, in this case, a deterministic worst-case
optimization over possible transition matrices. A typical choice of prior information is that
all distributions DP ∈ UD are within a certain range ε of a nominal distribution DP ,0. This
range is defined by some difference measure D, i.e., Kl-Divergence or Wasserstein metric,

UD = {DP | D(DP ‖DP ,0) ≤ ε},

giving rise to a ball of possible distributions surrounding the nominal distribution [38,43,49–51,53,54].
Other approaches define the ambiguity set in terms of constraints on the first and second
moments of distributions. The first constraint ensures that the first moment lies within an
ellipse, while the second criterion enforces that the second-moment matrix lies within a
positive semi-definite cone [41,43]. Such constraints may, for example, be confidence regions
placing more plausible transition matrices into higher confidence intervals [40,41,43,46].
Further works include ambiguity sets based on a reproducing kernel Hilbert space metric [133]
or near-optimal Bayesian ambiguity sets [134]. While this survey will not further detail
distributional approaches, we advise the reader to look into [135] for a comprehensive
review focusing solely on distributional robust optimization.

Mach. Learn. Knowl. Extr. 2022, 4 297

So far, it has been shown that robust MDPs can be solved using a robust dynamic
programming approach under convergence guarantees [24,25]. Dynamic programming,
however, becomes intractable in large state-space, a common occurrence for practical
problems due to the curse of dimensionality. Solutions to this problem have already been
researched for non-robust MDPs as linear and non-linear function approximations. While
non-linear function approximations, such as deep neural networks, are more versatile,
there are no longer guarantees of convergence to global optimal value functions [136].
Linear approximations, on the other hand, retain convergence guarantees while mitigating
the curse of dimensionality [136]. One of the first approaches applying linear function
approximation to robust MDPs is presented by Tamar et al. [10]. The authors propose a
robust variant of approximate dynamic programming (ADP). Given a standard robust MDP
with an uncertain transition function and a known uncertainty set UP , the Q-function is
derived as

Qπ(s, a) = inf
p∈P

Eπ,p

[
∞

∑
t=0

γtr(st, at)

]
.

This Q-function is then approximated by Q̃π(s, a) = φ(s, a)Tω, where ω ∈ Rk are
weights related to a feature representation φ(s, a) ∈ Rk of the states and actions. Op-
timizing over the linear approximation of the Q-function yields a greedy policy φ∗ω(s) =
arg maxa φ(s, a)Tω for a given ω. Tamar et al. [10] further provide convergence guarantees
within certain conditions. Only recently, Badrinath and Kalathil [136] showed further de-
velopment in linear approximations for robust MDPs. The authors derive a robust variant
of least squares policy evaluation and least squares policy iteration by defining an approximate
robust TD(λ) operator as a more general model-free learning framework, an aspect lacking
in [10].

A similar effort has been pursuit by Abdullah et al. [137]. It is argued that most robust
learning algorithms fail to extend to a generalized robust learning framework as they are
often bound to exploitation of task-specific or other properties such as low-dimensional
discrete state and action spaces. To mitigate this problem, Abdullah et al. [137] propose
Wasserstein robust reinforcement learning (WR2L). The algorithm is designed to work in both
discrete and continuous spaces as well as in low and high dimensional problems. Their
framework relies on the Wasserstein metric, which, compared to other metrics measuring
distance between distributions, such as the KL-Divergence, is a genuine distance, exhibiting
symmetry. Assuming a possibly unknown reference dynamics model P0, a set of candidate
dynamics P is defined as the ε-Wasserstein ball around P0, where ε ∈ R+ denotes the
degree of robustness. This set represents the action space of an adversary in a two-player
zero-sum game similar to uncertainty sets. Following this notion, the optimization problem
is described as

max
π

min
P

Eπ,P

[
T−1

∑
t=0

γtr(st, at)

]
s.t. Eπ,P

[
W2

2 (p(· | s, a), p0(· | s, a))
]
≤ ε,

for all possible candidate dynamics P bounded by the expected Wasserstein distance.
Abdullah et al. [137] show promising results for improved robustness compared to nominal
non-robust RL and other robust algorithms in both low- and high-dimensional MuJoCo
Robotics environments [138].

A well-fitting but rarely used methodology when encountering uncertainties in RL,
whether internal or external, is a Bayesian treatment. One of the traditional Bayesian for-
mulations of RL is posterior sampling methods. While such sampling methods are typically
designed in low-dimensional tabular settings, solutions like the uncertainty Bellman equation
(UBE) [139] scale posterior sampling methods up to large domains [140]. The extension to
robust MDPs is presented as the uncertainty robust Bellman equation (URBE) [140]. Following

Mach. Learn. Knowl. Extr. 2022, 4 298

the insights of [24], the recursive robust Q-function of a robust MDP with finite horizon
T is

Q(st, at) = r(st, at) + γ inf
p∈UP

∑
st+1∈S ,
at+1∈A

π(at+1 | st+1)p(st+1 | st, at)Q(st+1, at+1).

Accordingly, Derman et al. [140] derive a posterior of this Q-function

Q̂(st, at) = r(st, at) + γ inf
p∈ÛP

∑
st+1∈S ,
at+1∈A

π(at+1 | st+1)p(st+1|st, at)Q̂(st+1, at+1),

for a posterior uncertainty set ÛP (ψ) with ψ being state–action-dependent confidence
levels. This uncertainty set is constructed for each episode based on the observed data from
all previous ones. It follows a solution ω to the URBE

ωst ,at = vst ,at + γ2 ∑
st+1∈S ,
at+1∈A

π(at | st)E[p(st+1 | st, at)]ωst+1,at+1 ,

with

vst ,at := Q2
max ∑

st+1∈S

Var[p(st+1 | st, at)]

E[p(st+1 | st, at)]
.

This approach offers a trade-off between robustness and conservatism for robust policies.
Derman et al. [140] propose a DQN-URBE algorithm for which they show that it can adapt
significantly faster to changing dynamics online compared to existing robust techniques
with fixed uncertainty sets. A slightly out-of-scope approach is ensemble policy optimization
(EPOpt) [141], an algorithm that uses an ensemble of simulated source domains represent-
ing different parameter settings and slight variations of the true target environment. These
source domainsM(φ) contain parameterized stochastic transition and reward functions
Pφ, rφ whose parameters are drawn from a distribution Dφ. The goal is to learn an optimal
policy π∗θ(s) with good performance for all source domains while simultaneously adapting
Dφ to approximate the target domainW better. The algorithm is split into two alternating
steps: (i) given a source distribution, find a robust policy; (ii) gather data from the target
domain using said robust policy and adapt the source distribution [141]. There are two
nested evaluation metrics for the parameterized policy πθ

Jπ(θ, φ) = Eτ̃

[
T−1

∑
t=0

γtr(st, at) | φ

]
, JDφ

(θ) = Eφ∼Dφ
[Jπ(θ, φ)],

optimized for the conditional value at risk (cVaR) to find soft robust policies following
the work of [142]. The adaption step of the source domain distribution is defined as a
Bayesian update using data acquired by applying the current policy to the target domain.
Experiments on the OpenAI hopper environments [143] show no performance losses over
a wide range of torso masses. While the source domains were specifically chosen to
include the target domain in these experiments, further experiments have shown that even
badly initialized sets of source domains only require a few iterations to adapt to the target
domain [141].

All of the discussed approaches follow the traditional discrete-time reinforcement learn-
ing paradigm. However, a few approaches aim for continuous-time designs [7,144,145]. As
one of the first to derive a robust reinforcement learning approach, Morimoto and Doya [7]
rely heavily on the concept of H∞-control and differential games (see Section 2.2). Their
approach will be discussed in more detail in Section 3.2 in the context of the disturbance
robust design. Mankowitz et al. [144], however, focus on uncertainties in the transition
function, presenting a robust variant of maximum a posteriori policy optimization (MPO).

Mach. Learn. Knowl. Extr. 2022, 4 299

Instead of optimizing the squared TD error, the authors propose an optimization of the
worst-case squared TD error

min
π

(
r(st, at) + γ inf

p∈UP
[Q(st+1, at+1)]−Q(st, at)

)2
,

with UP being a state–action-dependent uncertainty set. To further deal with the problem
of overly conservative policies, Mankowitz et al. [144] suggest an entropy regularization
of the robust Bellman operator from [25]. Most approaches consider uncertainties only
in transitions, actions, observation, or disturbances. Lutter et al. [145], instead, propose a
robust procedure akin to dynamic programming for continuous state–action spaces and
continuous-time formulations, which accounts for perturbations in states, actions, observa-
tions, and model parameters all at once. The authors present their algorithm as robust fitted
value iteration (rFIR), a robust variant of their previously presented algorithm continuous
fitted value iteration (cFIR). Assuming a priori known or learned transition dynamics that are
non-linear to the system state but affine to the action, and a separable reward function, the
optimal policy and perturbations are analytically calculable in closed-form for each type
of perturbation. A separable reward function is a function that decomposes into the sum
of an action-dependent and a state-dependent reward function, where both summands
are non-linear, positively defined, and strictly convex [145]. Following that assumption,
Lutter et al. [145] extend the policy evaluation step of the cFIR algorithm to a closed-form
mini-max optimization.

3.2. Disturbance Robust Designs

Even though uncertainty in transition matrices is arguably the most intuitive choice
for achieving parameter robustness, other intriguing and promising approaches have
been proposed over the years. It is known from robust control that parameter changes
or modeling errors can be also be described as disturbance forces during state-transitions
of the environment [7,12]. For example, a shift in surface friction is represented as a
disturbance force applied to the contact points of the agent with that surface. A decrease
in friction eases movement across contact surfaces equivalent to a pushing force, while
increases in friction act similar to opposing forces.

This concept was applied by the control community in the context of H∞-control. As
in H∞-control, the disturbance robust design can be represented as a two-player zero-sum
game. The adversary’s action space is that of external forces (see Figure 6). In H∞-control,
a controller is stable under all disturbances w < 1/γ if the maximum H∞-norm of the
closed-loop transfer function ‖Tzw‖∞ ≤ γ (see Section 2.2.1). Solving the problem in
Equation (9) corresponds to finding a control u in a dynamic system ẋ = f (x, u, w) that
satisfies the constraint

V =
∫ ∞

0
(zT(t)z(t)− γ2wT(t)w(t))dt ≤ 0,

under all possible disturbances w with the initial state x(0) = 0. Minimizing this value
function V under the maximum disturbance is equivalent to solving a differential game
with an optimal value function

V∗ = min
u

max
w

∫ ∞

0
(zT(t)z(t)− γ2wT(t)w(t))dt.

From there, the Hamilton–Jacobi–Isaacs equation (HJI)

0 = min
u

max
w

[zT(t)z(t)− γ2wT(t)w(t) +
∂V∗

∂x
f (x, u, w)],

Mach. Learn. Knowl. Extr. 2022, 4 300

is derived as a condition for the optimal value function. On this basis, Morimoto and
Doya [7] formulate robust reinforcement learning for a continuous-time dynamic system
ẋ = f (x, u) with an augmented value function

V(x(t)) =
∫ ∞

t
e−

i−t
τ q(x(i), u(i), w(i))di.

Here q(t) = r(x(t), u(t)) + b(w(t)) is the reward function augmented by b(w(t)) for
withstanding disturbances. Their formulation relies on the contributions made in [84] for
the continuous-time variant of reinforcement learning. The parameter τ denotes a constant.
The optimal value function is derived as a solution of an HJI variant

1
τ

V∗ = max
u

min
w

[r(x, u) + b(w) +
∂V∗

∂x
f (x, u, w)].

Morimoto and Doya [7] propose an actor–disturber–critic architecture for a model-free im-
plementation where the policies are defined as u(t) = Au(x(t); vu) + nu(t) and w(t) =
Aw(x(t); vw)+ nw(t), respectively. Here Au and Aw are function approximators with param-
eter vectors vu and vw and additive exploration noise nu and nw. Morimoto and Doya [7]
derive closed-form updates for both policies. It is further proven that this new paradigm
coincides with the analytic solution of the H∞-control in the linear case. Experiments on a
non-linear dynamical system show robust behavior against weight and friction changes
while nominal RL approaches fail.

Pinto et al. [8,9] utilize disturbances in reinforcement learning not only for robustness
but also sample efficiency in real-world learning. In their earlier work [8], the authors
propose an adversarial framework of two real-world robots for learning grasping tasks. It
is known that mining good and hard samples leads to faster convergence and better perfor-
mance. Pinto et al. [8] show that the existence of a destabilizing adversary helps to reject
weak notions of success, meaning that actions resulting in only a loose grip on the object
are rejected, leading to faster and better learning. Besides learning quality, their framework
also increases the robustness of grasping positions. This work is further extended in [9] into
a formal robust reinforcement learning framework. Pinto et al. [9] propose a two-player
zero-sum Markov game between a protagonist π(·|s) and a destabilizing adversary π̄(·|s)
defined by the tupleM :=

(
S ,A, Ā,P , r, γ

)
. Designing the Markov game with continuous

action and state spaces and utilizing neural networks for non-linear function approxima-
tion allows for a broad variety of applications. The reward function is defined from the
protagonist’s perspective as

R = Es0,a∼π(s),ā∼π̄(s)

[
T−1

∑
t=0

rt(st, at, āt)

]
.

Moreover, Pinto et al. [9] deploy an iterative update procedure where protagonist and
adversary alternate between being updated and being kept fixed over every n steps. Experi-
ments show robustness against adversarial disturbances and variations in mass and friction
across various OpenAi Gym environments, including complex robot walking. Even in
the absence of any parameter changes or disturbances the algorithm has shown improved
performance compared to a trust region policy optimization (TRPO) [107] baseline. However,
no theoretical guarantees have been provided [11].

Mach. Learn. Knowl. Extr. 2022, 4 301

Environment

P (s t+1 | s t,a t, ā t)

Protagonist

Adversary

s t+1

r t+1

s̄ tr̄ t

s tr ta t

Controls

ā t

External Forces

Figure 6. Illustration of the underlying concept of disturbance robust designs. Uncertainties in the
system dynamics are modeled as disruptive forces. These forces represent an additional condition on
the transition probabilities. As such, the transition function shifts according to the adversarial action
to produce worst possible outcomes for the protagonist.

3.3. Action Robust Designs

So far, we have discussed a substantial amount of research on robust MDPs in the
context of transition and reward uncertainty. While the amount of research on that topic
is impressive, a majority is presented in the tabular case for mainly low-dimensional
finite spaces [23–25,39,42,45]. Few contributions have touched upon linear [10] and non-
linear function approximation, while especially non-linear approximations have only
been addressed in recent years. It further is often unclear how to obtain mentioned
uncertainty sets [11]. There have been further advances to non-linear robust reinforcement
learning in the context of disturbance-based robustness but partly without any theoretical
guarantees [9,11]. Tessler et al. [11] instead argue that a more natural approach to introduce
robustness is action perturbations. Naturally, a deviation in the action space also simulates
environmental changes to a certain extend. Consider a magnitude reduction for a chosen
continuous action that encodes some force or speed. Such a reduction has the same effect as
increasing friction or introducing an opposing force. As such, action perturbations change
the expected behavior of an environment. A schematic representation of the methods
discussed in action robust designs is shown in Figure 7.

Following this general idea, Tessler et al. [11] propose two types of action robust MDPs,
the noisy action robust MDP (NR-MDP) and the probabilistic action robust MDP (PR-MDP).
Both MDPs are defined by the tupleM := (S ,A, r,P , γ) with some joint policy πmix(π, π̄)
between the protagonist π and adversary π̄. In the case of the NR-MDP, the action space A
denotes a compact and convex metric space for the joint actions to ensure that the mixture
actions are valid. The reason behind proposing two different MDP formulations lies in the
inherent nature of robustness they are encoding.

Environment

Protagonist

Adversary

s t+1

r t+1

s t

r t

s̄ t

r̄ t

a t

ã t

Figure 7. The underlying concept behind action robust designs. The framework considers two
different scenarios: (i) The protagonist action is distorted by the adversary through immediate
gradient optimization; (ii) A joint action is defined as an linear combination of protagonist and
adversarial actions.

Mach. Learn. Knowl. Extr. 2022, 4 302

The NR-MDP is designed to represent constant interrupting forces applied to the
agent, e.g., through unexpected weight of a robot arm constantly applying a downward
force. This constant force takes on the form of adversarially chosen noise added by the
adversary through the joint policy. As such, Tessler et al. [11] define a noisy joint policy
πmix
N ,η(π, π̄) as

πmix
N ,η(a|s) = Eb∼π(·|s)

b̄∼π̄(·|s)
[Ia=(1−η)b+ηb̄] ∀s ∈ S , a ∈ A,

where η scales the impact of the constant disturbance applied by the adversary. It follows
the optimal η-noisy robust policy as

π∗N ,η ∈ arg max
π∈Θ(Π)

min
π̄∈Π

Eπmix
N ,η(π,π̄)

[
T

∑
t=0

γtr(st, at)

]
,

with at ∼ πmix
N ,η(π(st), π̄(st)), where Θ(Π) is a set of stationary stochastic policies and Π

is a set of stationary deterministic policies. The optimal policy will then be robust w.r.t.
any bounded perturbations added by the adversary. Naturally, by choosing η = 0, the
NR-MDP collapses back to the standard non-robust MDP.

In contrast, the PR-MDP describes interruptions of the protagonist’s movements
through e.g., sudden pushes. In this type of MDP, there is a certain probability η that the
adversary takes control over the decision-making process to perform a worst-case action.
This probability is encoded into the probabilistic joint policy πmix

P ,η(π, π̄) defined as

πmix
P ,η(a|s) = (1− η)π(a|s) + ηπ̄(a|s) ∀s ∈ S .

The optimal probabilistic robust policy is given by

π∗P ,η ∈ arg max
π∈Θ(Π)

min
π̄∈Π

Eπmix
P ,η (π,π̄)

[
T

∑
t=0

γtr(st, at)

]
,

with at ∼ πmix
P ,η(π(st), π̄(st)). For their experiments, Tessler et al. [11] introduce a robust

variant of deep deterministic policy gradient (DDPG) [101] based on the soft policy iteration
to train two deterministic policy networks, for protagonist and adversary, respectively.
Similar to standard DDPG, a critic is trained for estimating the Q-function of the joint policy.
The experiments showed that with few exceptions, their approaches performed better than
a baseline in several MuJoCo robotics environments, while with increasing probability,
random noise is applied instead of the chosen action. Surprisingly their approaches also
outperformed the baseline during the absence of any perturbations. Compared to the
classical robustness approach based on known uncertainty sets, the PR-MDP and NR-MDP
approach does not require any knowledge on the uncertainty sets as they are implicitly
given through η. However, this advantage also restricts the MDPs as they cannot handle
any worst-case perturbations. Tessler et al. [11] further show that the PR-MDP is a specific
case of the robust MDP formulation.

A similar idea as the PR-MDP was presented by Klima et al. [55], who extended TD
learning algorithms by a new robust operator κ to improve robustness against potential
attacks and perturbations in critical control domains. The approach has similarities to
mini-max-Q learning in two-player zero-sum games as proposed by Littman [95] but
does not assume a minimization over the opponent’s action space. Instead, attacks are
defined to minimize over the protagonist’s action space, such that both policies learn but
not enact simultaneously. Klima et al. [55] formalize this idea by replacing the mini-max
simultaneous actions with stochastic transitions between multiple controllers with arbitrary
objectives to take control in the next state s′. This formulation is similar to an adversary

Mach. Learn. Knowl. Extr. 2022, 4 303

taking control with probability η in the PR-MDP setting. The value of the next state s′ then
depends on who is in control. Thus, the TD Error (see Equation (15)) changes to

δt = rt + γ
(
(1− η)max

a
Q(st+1, a) + η min

a
Q(st+1, a)

)
−Q(st, at),

with η either known a priori or estimated by the agent. This framework allows learn-
ing of robust policies in the presence of an adversary without ever executing critical
adversarial actions on the system as only the future estimate is affected by the adversary.
Klima et al. [55] apply this approach to off-policy Q(κ)-learning and on-policy expected
SARSA(κ) as follows

Vκ
Q(s) = (1− η)max

a
Q(s, a) + η min

a
Q(s, a),

Vκ
SARSA(s) = (1− η)Ea∼π [Q(s, a)] + η min

a
Q(s, a),

where both algorithms are in between the worst-case design and risk-sensitivity.
Klima et al. [55] show that the algorithms converge to the optimal Q function Q∗ and
the robust Q function Q∗κ . Both algorithms, Expected SARSA(κ) and Qκ-learning, are
compared to nominal Q-learning, SARSA, and Expected SARSA. All experiments show
improved performance and robustness compared to the baseline methods.

In general, worst-case scenarios, in which an adversary attempts to minimize the
expected return, do not automatically cause the agent to experience catastrophic but highly
unlikely events as the adversary does not actively pursue such outcomes. Pan et al. [56]
argue that a robust policy should not only aim to maximize the expected return but
also be risk-averse. The authors improve the framework of Pinto et al. [9] to provide
increasingly harder challenges such that the protagonist learns a policy with minimal
variance in its rewards. Pan et al. [56] present the risk-averse robust adversarial reinforcement
learning algorithm (RARARL) assuming a two-player zero-sum sequential game, where the
protagonist and adversary take turns in controlling the environment. The protagonist takes
a sequence of m actions followed by a sequence of n actions chosen by the adversary. The
game is formulated as a tuple of the formM := (S ,A, r,P , γ) with S defining a possibly
infinite state space while the agents share the same action space A. Pan et al. [56] introduce
a risk-averse term −λVark[Qk(s, a)] to the Q-function of the protagonist as

Q̂(s, a) = Q(s, a)− λVark[Qk(s, a)],

where Vark[Qk(s, a)] is the variance of the ensemble of k Q-functions Qk(s, a) and λ is a
constant. Similarly, the objective for the adversary is formulated with a risk-seeking term as

ˆ̄Q(s, a) = Q̄(s, a) + λ̄Vark[Q̄k(s, a)].

The variance for an action a is calculated according to

Vark[Qk(s, a)] =
1
k

k

∑
i=1

(
Qi(s, a)− 1

k

k

∑
l=1

Ql(s, a)

)
,

where Qi is realized as the ith head of a Q-value network. The same formula is applied for
the adversary using Q̄. The models of the ensemble are trained across different sets of data.
Pan et al. [56] utilize an asymmetric reward function to increase the probability of catas-
trophic events. Good behavior receives small positive rewards while catastrophic outcomes
result in highly negative rewards. An important observation is that the protagonist needs
to be trained separately first to achieve rudimentary control as the protagonist is otherwise
unable to keep up with the adversary. Pan et al. [56] show that by introducing risk-averse
behavior in the presence of a risk-seeking adversary, far fewer catastrophic events occur
during the test phase.

Mach. Learn. Knowl. Extr. 2022, 4 304

While most robust designs formulate some bi-level optimization problem for which
a Nash equilibrium needs to be found, Tan et al. [57] propose a new perspective in the
context of action robust design. In their paper, Tan et al. [57] discuss the importance of
robustness in deep reinforcement learning for the validity of DRL, especially in safety-
critical applications. The authors approach robustness from the perspective of adversarial
attacks [59,146] to deep neural networks as they are known from image classification. It
has been discovered that neural networks are highly susceptible to perturbations of their
input vectors [147]. Tan et al. [57] project adversarial attacks onto action robust control
for bounded white-box attacks on the protagonist’s actions. The robust optimization is
defined as

max
θ

Es,a

[
min
δt∈B

r(st, at + δt)

]
,

where δ denotes the adversarial attack on the action space. The inner optimization problem
is solved by projected gradient descent, while the outer problem is optimized through stan-
dard policy gradient techniques [57]. An important factor in this formulation is that the
adversarial perturbations δ on the action space are optimized until convergence for each
episode of the training process. The approach has been shown to improve the performance
of DRL based controllers in OpenAi Gym environments. Using adversarial attacks to
formulate a robust reinforcement learning framework, however, is not new. Prior works
have utilized this very idea in the context of an AI’s perception of its environment [60,62].

3.4. Observation Robust Designs

Adversarial attacks on observations in reinforcement learning are closely related to
generative adversarial networks (GAN) [58]. GANs are a framework for estimating generative
models via an adversarial process. The approach describes a mini-max game between a
discriminative model (DM) and a generative model (GM). The goal is to train generative models
capable of creating data indistinguishable from a given data set. The GM generates samples
that get mixed into the true data set while the adversary tries to identify the artificially
created data of the GM. As such, the GM minimizes the probability of samples being
distinguished from the true data, while the DM maximizes the probability of correctly
separating true from generated data [58]. Loosely speaking, a GM is trying to trick a
classifier into falsely classifying generated samples as true samples. However, considering
the nature of classification tasks with more than two classes, there is no way to determine
a truly worst-case classification as there is only right and wrong. This problem does not
exist in reinforcement learning, i.e., control tasks, where a worst-case action or state can
be identified.

In a similar fashion to GANs, adversarial attacks on observations aim to trick a
protagonist into perceiving the true state of the environment as another (see Figure 8).
The goal is to warp the protagonist’s perception to the point that the perceived state
causes the protagonist to act adversarial to its own interest [62]. Interestingly, such an
approach is not aimed at robustness against sensory errors or sensor noise but against
perturbations in the environmental parameters. The protagonist is forced into unwanted
and unexpected transitions of the environment states, which can be seen as a change of the
system dynamics. A significant advantage of adversarial attacks, compared to the max–min
formulation most research has followed thus far, is the need for equilibrium solutions in the
max–min formulation [62]. Adversarial attacks are optimized for each step of the learning
process such that from the perspective of the protagonist, a traditional single-player MDP
still exists. As such, traditional RL algorithms can be applied [60,62].

Mach. Learn. Knowl. Extr. 2022, 4 305

Environment

Protagonist

Adversary

s t+1

r t+1

s̃ t

r t

s t

s̄ t

r̄ t

a t

Figure 8. Illustration of observation robust designs. The adversary distorts the states or the protago-
nist’s perception of the states. As consequence, the protagonist makes detrimental decisions. The
design relies on the vulnerability of neural networks to input perturbations.

Huang et al. [60] has presented early results in the context of image-based reinforce-
ment learning for Atari games using the fast signed gradient method (FSGM) [59] to find the
worst possible actions. However, these results focus on the vulnerability of deep neural
networks to perturbations in high-dimensional image data, where this vulnerability has
been found initially [62]. Pattanaik et al. [62] show that this vulnerability is not restricted to
high dimensions but also applies to standard lower-dimensional state observations known
from control environments such as the Cartpole or Hopper. Further, while the objective
function used in [60] for the FSGM to identify adversarial attacks leads to a decrease in the
probability of taking the best possible action, it does not necessarily increase the probability
of taking the worst possible action [62]. As such, Pattanaik et al. [62] propose a more
efficient objective function

J(s, π∗) = −
n

∑
i=1

pi log π∗i (ai | s), (21)

as the cross-entropy loss between the optimal policy of the protagonist π∗i (ai | s) and
an adversarial probability distribution pi = P(ai). The adversarial distribution has a
probability of 1 if ai is the worst possible action and 0 otherwise. The FSGM is incorporated
as an additional step into traditional RL methods that identifies the worst possible perceived
state according to the objective function in Equation (21) before queering the protagonist
for the next action. Experiments on several OpenAi Gym and MuJoCo environments
have shown that the presented approach adds robustness to environmental parameter
perturbations in double deep q networks (DDQN) [148] and DDPG. However, despite the
promising results, a theoretical connection of these adversarial attacks to robustness against
parameter perturbations has not been provided [62].

Parallel work by Mandlekar et al. [61] not only includes white-box adversarial attacks
on the input space but also on the dynamics. The authors propose an extension of the train-
ing process in TRPO with a curriculum learning-based procedure that considers physically
plausible perturbations. The approach targets dynamic systems of the form

st+1 = f (st, at; µ) + ν,

ot = g(st) + ω,

where µ, ν, and ω correspond to the dynamic noise, process noise, and observation noise,
respectively. While ν and ω directly perturb the state or observation of the dynamical
system, µ represents the uncertainty of the physical parameters of the model, e.g., mass
and friction. During learning, the frequency with which perturbations occur in the system
is increased over time through a parameter δ following the curriculum learning paradigm.
Through this process, the agent becomes increasingly more robust to both modeling errors
and adversarial perturbations of the input space. In contrast to [62], Mandlekar et al. [61]
use the full gradient to optimize the adversarial attacks. They argue that the FSGM is
designed for high-dimensional image spaces and may cause scaling issues when applied in

Mach. Learn. Knowl. Extr. 2022, 4 306

low-dimensional dynamic systems. Experiments on the MuJoCo robotics simulator show
significant robustness improvements compared to nominal TRPO across all environments.
While better results are achieved for adversarial perturbations during training, even random
perturbations already show significant improvement.

A more formal approach is presented in the form of state-adversarial MDPs (SA-MDP) [64].
The SA-MDP is defined as a tupleM := (S ,A,B, r,P , γ), where the protagonist’s obser-
vations are perturbed by a bounded function ν(s) ∈ B(s). With these perturbations, the
authors aim for robustness against sensory errors and sensor noise. Naturally, the protago-
nist policy is then described as π(a | ν(s)). The SA-MDP produces a bi-level optimization
problem for which finding a solution is challenging. However, leveraging stochastic gradient
langevin dynamics [149] allow for a separate optimization of the inner problem up to a
local optimum first. As a consequence, a possibly large gap to the global optima remains.
This gap is bounded by the total variation distance DTV(π(· | s), π(· | ŝ)) or KL-Divergence
DKL(π(· | s) || π(· | ŝ)), where ŝ ∈ B(s) is the perturbed state observation, using convex
relaxations for neural networks [150]. These bounds then allow for an outer optimization
of an inner lower or upper bound, which provides robustness certificates for guaranteed
minimum performance. The total variation distance and KL-Divergence are integrated
as a robust policy regularization for various traditional DRL algorithms, such as DDPG,
proximal policy optimization (PPO) [108], and deep q networks (DQN) [100].

Further extending existing work in robustness guarantees and certification bound
algorithms from computer vision, Lütjens et al. [65] propose the certified adversarially-robust
reinforcement learning (CARRL) to solidify the value of deep reinforcement learning in
safety critical domains. Certification bounds theoretically provide guaranteed deviation
bounds on the output of a neural network given an input perturbation. For Deep Learning,
these bounds are relevant mainly because they guarantee bounded output even when
non-linear activation functions are used. CARRL extends classical deep reinforcement
learning algorithms such as DQN to guarantee protection against adversarially perturbed
observations or sensor noise. In CARRL, the agent does not rely on the given observed state
but rather assumes that the observed state is corrupted. Lütjens et al. [65] instead propose
to exploit the possibility that the true state lies somewhere within an ε-ball Bp(sadv, ε) =
{s : ‖s− sadv‖p ≤ ε} around the assumed corrupted observed state sadv. Based on the
parameter ε, an upper and lower bound, the certification bounds, are calculated for the
predicted Q value. Assuming that the training process induces the network to converge to
the optimal value function given the lower bound, CARRL handles perturbed observations.
While for ε = 0 CARRL reduces to nominal DQN, an increase in ε corresponds to an
increasingly conservative behavior of the policy. Experiments have shown that the proposed
method outperforms nominal DQN on benchmarks with perturbed observations.

Most of the work evolving around observation robust designs considers that the adver-
sary has direct access to the protagonist’s observations, which Gleave et al. [63] argue is a
critical assumption not present in realistic situations. An example given by Gleave et al. [63]
is autonomous driving, where pedestrians and other drivers can take actions that affect an
AI’s input but cannot directly manipulate any sensor data. Gleave et al. [63] instead pro-
pose adversarial policies acting in a multi-agent environment. This environment is described
by a classical two-player zero-sum Markov game of the form M :=

(
S ,A, Ā, r,P , γ

)
where S denotes a finite state space while A ∈ r and Ā ∈ r̄ denote the finite action space
of protagonist and adversary. This formulation is not designed to target the protagonist’s
observations specifically. The experiments are designed as MuJoCo robotics simulations,
where the protagonist and adversary are the same type of robot, just with different goals.
The authors consider a win–loss reward function typically known from games such as chess
or go. The protagonist wins if he successfully completes a given task while the adversary
wins by preventing the completion of the given task such that the reward function is given
as r : S × A× Ā × S → R with r̄ = −r. An interesting result and the reason why this
work is placed into observation robust design is the unique approach of winning of the
trained adversaries. Instead of solving the game for two evolving players, Gleave et al. [63]

Mach. Learn. Knowl. Extr. 2022, 4 307

investigate the players learning behavior for a fixed opponent in MuJoCo robotics simula-
tions. First, the authors show that even without directly manipulating the protagonist’s
perception, an adversary can be trained with PPO that decimates a fixed protagonist’s
performance simply by being present in the observations. These results further solidify
what is known about the vulnerability of neural network policies to adversarial settings.
Second, Gleave et al. [63] present a fine-tuning of the protagonist for a fixed adversary
to improve the robustness properties of the protagonist policy against such adversarial
settings. However, as either one of the players is kept fixed, the learning process will
eventually overfit to the fixed opponent and thus be again susceptible to new attacks [63].

Especially for neural network input and hence observation robustness, research has
proven how vulnerable neural network policies are to adversarial attacks and settings.
Reaching a better understanding of adversarial training and behavior is crucial in achieving
robustness, security, and a better understanding of deep reinforcement learning [63].

3.5. Relations to Maximum Entropy RL and Risk Sensitivity

While research in robust reinforcement learning has progressed far and issues re-
garding conservatism, the construction of ambiguity sets, and, in part, convergence have
been addressed. The latter still remains a concern, i.e., the existence of multiple Nash
equilibria destabilizes convergence to meaningful robust policies. In recent years, however,
an interesting alternative has been proven to provide robust properties. With their research,
Eysenbach and Levine [68] and Eysenbach and Levine [69] have investigated the relation-
ship between maximum entropy reinforcement learning (MaxEnt RL) and robustness. This
research dates back to work by Grünwald et al. [66], where it was shown that maximizing
the entropy of a distribution is equivalent to maximizing the worst-case log-loss in predic-
tion problems, which also translates to conditional distributions [68]. In [68], these insights
are extended to reinforcement learning for certain classes of uncertain reward functions.
The objective of MaxEnt RL is given as an extension of the classical reinforcement learning
objective by an entropy term

max
π∈Π

Eπ

[
T

∑
t=1

r(st, at)

]
+ Hπ [a | s]

=max
π∈Π

Eπ

[
T

∑
t=1

r(st, at)− log π(at | st)

]

=max
π∈Π

min
r′∈Ur

Eπ

[
T

∑
t=1

r′(st, at)

]
.

The term Hπ refers to the Shannon entropy. This objective is therefore equivalent to the
reward robust objective given an uncertainty set Ur. This uncertainty set is specified by the
definition of the entropy term in the objective, which, in this case, relates to logarithmic
functions due to the Shannon entropy

Ur = {r′(s, a) = r(s, a)− log π(a | s) | π ∈ Π}.

However, given other entropy formulations, the definition for the uncertainty set changes [68].
These results have further been extended to consider uncertainties in the dynamics [69].
First, the authors propose a different definition of the uncertainty set for the reward robust
objective as all functions r′(st, at) satisfying the constraint

E
[

T

∑
t=1

log
∫

exp
(
r(st, at)− r′(st, at)

)
dat

]
≤ ε,

where ε > 0 is some positive constant. For adversarial dynamics, the authors then consider
an MDP with a transformed reward function r′(st, at) = 1/T log r(st, at) + H(st+1 | st, at),

Mach. Learn. Knowl. Extr. 2022, 4 308

where the entropy for the state transition probability is taken into account. It follows
that the MaxEnt RL objective now defines a lower bound on the robust objective for
adversarial dynamics from an uncertainty set UP comprising functions p′(st+1 | st, at)
satisfying the constraint

E π(at |st),
p(st+1 | st ,at)

[
T

∑
t=1

log
∫ ∫

exp
(
log p(st+1 | st, at)− log p′(st+1 | st, at)

)
datdst+1

]
≤ ε.

According to Eysenbach and Levine [69], Ziebart [151], this definition can be interpreted
as all dynamics p′(st+1 | st, at) sufficiently close to the original dynamics. For both cases,
the authors provide formal proofs that these relations hold. Considering the difficulty of
solving bi-level optimization problems like those defined in robust reinforcement learning,
MaxEnt RL becomes an attractive and easier-to-solve alternative while still providing
robustness properties to a certain extend.

Further alternatives for achieving robustness have been found in the context of risk
sensitivity. Contrary to the robust MDP, the risk-sensitive MDP [152–154] does not consider
any uncertainty in its parameters. Instead, the objective aims to optimize some risk measure
of the cumulative cost [67]. As in standard MDPs, early approaches build upon the
dynamic programming approach with finite state and action spaces [152–156]. Since
then, research has progressed to more refined formulations with continuous spaces, such
as Linear Quadratic Gaussian control [157,158] and relative entropy policy search [159].
A connection of risk-sensitive MDPs to robust MDPs has been found for two specific
formulations, iterated risk measures and expected exponential utility functions [67].

Osogami [67] has found that robust MDPs, whose uncertainty is governed by a
parameter 0 ≤ α ≤ 1, such that the uncertainty set UP over the transition functions p is
described by

UP =

{
0 ≤ p(st+1 | st, at) ≤

1
α

p0(st+1 | st, at)

∣∣∣∣∣ ∀st+1 ∈ S , ∑
st+1∈S

p(st+1 | st, at) = 1

}
,

equivalent to risk-sensitive MDPs with an iterated conditional tail expectation (ICTE) as objec-
tive. Here, p0(st+1 | st, at) refers to the nominal transition function. As such, Osogami [67]
states that

max
π

min
p∈UP

Ep[r(π)] = max
π

ICTEN
α [r(π)],

where the ICTE involves N recursive applications of cVaR, with r(π) = ∑T
t=1 r(st, at)

being the cumulative reward. Osogami [67] further extends his proofs to simultaneous
transition and reward uncertainty and a more general class of robust MDPs using coherent
risk measures. Xu and Mannor [40] also state that the Coherent Risk Measure is equivalent
to a distributionally robust formulation. For specific details, we refer the reader to [67].

The second equivalence to robust MDPs is discussed for expected exponential utility
functions [67]. The exponential utility function is defined as

U(r) = exp(γr(π)),

where the risk-sensitivity factor γ governs the resulting shape of the function, as convex,
linear, or concave. As such, this factor also determines the behavior of the optimization
as risk-seeking, neutral, or risk-averse [158,159]. Minimizing the expectation of this utility
function is equivalent to minimizing the entropic risk measure (ERM)

max
π

1
γ

logE[exp(γr(π))] = max
π

E[exp(γr(π))],

for a risk-sensitivity factor γ > 0. The relation to robust MDPs relies on the property of the
ERM to be expressed as

Mach. Learn. Knowl. Extr. 2022, 4 309

1
γ

logE[exp(γr(π))] = max
q∈Uq0

Eq0 [r(π)]− γKL(q ‖ q0),

where q0 is a probability mass function for r(π). Further, Uq0 denotes a set of probability
mass functions, whose support is contained in the support of q0 [67,160]. Osogami [67]
then derives that risk-sensitive MDPs, which minimize the expected exponential utility, are
equivalent to robust MDPs with the objective

max
π

min
p∈Up0

Eπ,p

[
r(π)− γ

T−1

∑
t=1

KL(p(st+1 | st, at) ‖ p0(st+1 | st, at))

]
.

This formulation has also been extended to simultaneous transition and reward uncertainty [67].
Even though there exist restrictions on the involved uncertainty sets, as in the MaxEnt RL
approach, this connection of risk-sensitivity and robustness provides efficient and easier to
solve alternative algorithms to achieve parameter robustness.

4. Conclusions

The great success of RL in recent years is evidence of how far theoretical research has
progressed. Using a trial and error-based design, RL mimics human learning behavior [1,2].
Current research shifts the attention to the deployment in realistic environments. Classic
RL methods, however, experience deficiencies in robustness to uncertainties, perturbations,
or structural changes in the environment—a consequence of realistic problems.

4.1. Summary

Our survey provides a comprehensive summary of robust RL and its underlying
foundations. Therefore, we cover multidisciplinary concepts of optimization, optimal
control, and game theory. We conduct a literature review on robust RL and separate
methods in four different categories: (i) transition robust design, (ii) disturbance robust
design, (iii) action robust design, and (iv) observation robust design. Each category targets
a different aspect of the MDP formulation.

Transition robust methods define an uncertainty set of possible transition
functions [23–25,44,45]. For finite-state MDPs, convergence guarantees are given [24,25].
However, to remain tractable, the strict assumption of rectangularity is required. A conse-
quence is overly pessimistic policies. Modern contributions center around the deficiencies
of traditional transition robust RL. Tackling the pessimistic behavior is done in three differ-
ent ways. First, the authors in [39,41,52] propose a trade-off between robust and non-robust
performance. In a multi-objective optimization scheme, the importance of robust perfor-
mance is lowered in favor of the non-robust performance measures. Another set of works
identifies the rectangularity property as the source of pessimistic behavior [42,47,48]. They
propose a non-rectangular set of coupled uncertainty that remains tractable. The non-
rectangularity effectively restricts worst-case outcomes to more realistic cases. Thirdly, as a
combination of stochastic and robust optimization, distributional robust methods weaken
the worst-case formulation. Instead of a definite worst-case transition function, the adver-
sary only chooses a worst-case distribution over transition functions. The additional layer
of uncertainty prevents convergence to overly pessimistic policies [38,40,43,46,49–51,53,54].
Additionally, literature addresses the restriction of traditional transition robust designs to
finite-state MDPs. As the dimensionality of state and action spaces grows, the classical
methods suffer from the curse of dimensionality. Modern systems are rarely describable as
low-dimensional discrete problems. Propositions include linear and non-linear function
approximations, e.g., approximate dynamic programming [10,136].

Disturbance robust designs rely on external forces to express uncertainty in the system
dynamics. Methods utilize this relation to define disturbing adversaries [7–9]. A core
advantage is the removal of explicit uncertainty sets. However, more recent contributions
are only demonstrated empirically without mathematical guarantees [8,9]. Compared to
the other categories, the distribution robust design lacks scientific contributions.

Mach. Learn. Knowl. Extr. 2022, 4 310

Action robust designs, instead, imply disturbances as perturbations of the agent’s ac-
tions. Literature introduces two variations of action robust designs. Each depicts a different
type of external disturbance. Probabilistic action robust MDPs consider sudden disrupting
forces. The PRMDP simulates rare but catastrophic events, e.g., crashes in autonomous
driving [11,55,56]. Noisy action robust MDPs, on the other hand, describe continuous
perturbations of actions to simulate changes in physical parameters [11]. Both variants
define a joint policy as a linear interpolation between the protagonist’s and adversary’s
policy. Further, recent work adopts the concept of adversarial attacks to produce action
robust agents [57]. Adversarial attacks are mainly known from input perturbations in deep
learning [161,162].

Observation robust designs leverage the vulnerability of policies to input perturba-
tions [61–64,145]. The adversary exploits this vulnerability to distort the protagonist’s
perception. Consequently, the decision-making process is redirected to produce worst-case
transitions. Most works define adversarial attacks as direct optimization of the observa-
tion or state space. As such, the presented methods effectively separate the optimization
procedure. Instead of utilizing an adversarial RL formulation, the robust policy is ob-
tained through classical RL algorithms [61–64]. Another work focuses on limiting an
agent’s response to adversarial attacks to provide robustness guarantees and certification
bounds [65].

Aside from the core contributions, we covered literature on tightly connected areas.
The authors in [7,144,145] discuss robust RL methods for continuous-time problems. Risk-
based and entropy-regularized RL exhibit a strong connection to the transition robust
design. In [66–69], the authors prove an equivalence of risk-sensitive MDPs to robust
MDPs. Further, Osogami [67] shows a similar equivalence when optimizing expected
exponential utility functions [158,159].

4.2. Outlook

Robust RL has proposed various designs and approaches over the past two decades.
Starting with promising mathematical guarantees, astonishing results on a few realistic and
complex problems have been made in recent years. However, the shift towards applicability
research is just beginning and is not yet complete. While surveying the literature on robust
RL and the interdisciplinary connections to other areas, we found three major issues.

First, no coherent baseline exists for comparing different robust RL methods. Most
research is benchmarked against non-robust methods. Therefore, an important objective for
future research is the development of a common baseline—including a set of benchmark
tasks and evaluation of pre-existing methods.

Second, the presented literature misses a consistent measure for robustness. Recent
experiments mainly center around variations of a few physical parameters of the environ-
ments. However, realistic problems are rarely restricted to variations of single parameters.
Developing a metric to assess adaptability to uncertainty across large sets of system param-
eters and disturbances is important.

The third is the tractability and the entailing portability to realistic and complex sys-
tems. Convergence guarantees are only given for strictly constrained frameworks—mostly
in transition robust methods. With the extension to high dimensional problems with non-
linear function approximation, these guarantees are mostly invalid. Therefore, especially
w.r.t. equilibrium solutions, it remains an open research to push robust methods to realistic
and complex systems. In turn, some of the presented literature pursues practically driven
research. While the results are promising, these works lack mathematical evidence.

Continued research of adversarial policies and robustness may provide a better under-
standing of deep RL [63]. Xu and Mannor [127] further state that robustness could yield
desirable generalization properties. As such, there are still various directions in which
research in robustness needs to progress—as well as opportunities for contribution.

Mach. Learn. Knowl. Extr. 2022, 4 311

Author Contributions: Writing—original draft preparation, J.M. and K.H.; writing—review and
editing, J.M. and K.H.; visualization, J.M. and K.H.; supervision, H.A., S.S., D.C. and J.P. All authors
have read and agreed to the published version of the manuscript.

Funding: We acknowledge support by the German Research Foundation (DFG) through the Trilateral
French–Japanese–German Research Project on Artificial Intelligence CHIRON.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Acknowledgments: We thank Joe Watson from the Intelligent Autonomous System group at TU
Darmstadt for his constructive feedback and support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction, 2nd ed.; MIT Press: Cambridge, MA, USA, 2018.
2. Puterman, M.L. Markov Decision Processes: Discrete Stochastic Dynamic Programming; John Wiley & Sons: Hoboken, NJ, USA, 2014.
3. Franklin, G.F.; Powell, J.D.; Emami-Naeini, A.; Powell, J.D. Feedback Control of Dynamic Systems; Addison-Wesley: Reading, MA,

USA, 1994.
4. Bennett, S. A brief history of automatic control. IEEE Control Syst. Mag. 1996, 16, 17–25.
5. Bryson, A.E. Optimal control-1950 to 1985. IEEE Control Syst. Mag. 1996, 16, 26–33. [CrossRef]
6. Kirk, D.E. Optimal Control Theory: An Introduction; Courier Corporation: Chelmsford, MA, USA, 2012.
7. Morimoto, J.; Doya, K. Robust Reinforcement Learning. In Advances in Neural Information Processing Systems 13; Leen, T.K.,

Dietterich, T.G., Tresp, V., Eds.; MIT Press: Cambridge, MA, USA, 2001.
8. Pinto, L.; Davidson, J.; Gupta, A. Supervision via Competition: Robot Adversaries for Learning Tasks. In Proceedings of the 2017

IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017.
9. Pinto, L.; Davidson, J.; Sukthankar, R.; Gupta, A. Robust Adversarial Reinforcement Learning. In Proceedings of the 34th

International Conference on Machine Learning (ICML), Sydney, Australia, 6–11 August 2017.
10. Tamar, A.; Xu, H.; Mannor, S. Scaling up robust MDPs by reinforcement learning. arXiv 2013, arXiv:1306.6189.
11. Tessler, C.; Efroni, Y.; Mannor, S. Action Robust Reinforcement Learning and Applications in Continuous Control. In Proceedings

of the 36th International Conference on Machine Learning (ICML), PMLR, Long Beach, CA, USA, 9–15 June 2019.
12. Zhou, K.; Doyle, J.C. Essentials of Robust Control; Prentice Hall: Upper Saddle River, NJ, USA, 1998.
13. Ben-Tal, A.; El Ghaoui, L.; Nemirovski, A. Robust Optimization; Princeton University Press: Princeton, NJ, USA, 2009.
14. Hansen, L.P.; Sargent, T.J. Robustness; Princeton University Press: Princeton, NJ, USA, 2016.
15. Ben-Tal, A.; Nemirovski, A. Robust convex optimization. Math. Oper. Res. 1998, 23, 769–805. [CrossRef]
16. Ben-Tal, A.; Nemirovski, A. Robust optimization–methodology and applications. Math. Program. 2002, 92, 453–480. [CrossRef]
17. Safonov, M.G. Origins of robust control: Early history and future speculations. Annu. Rev. Control 2012, 26, 173–181. [CrossRef]
18. Zames, G. Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate

inverses. IEEE Trans. Autom. Control 1981, 26, 301–320. [CrossRef]
19. Doyle, J. Analysis of feedback systems with structured uncertainties. In IEE Proceedings D-Control Theory and Applications; IET:

London, UK, 1982.
20. Zames, G.; Francis, B. Feedback, minimax sensitivity, and optimal robustness. IEEE Trans. Autom. Control 1983, 28, 585–601.

[CrossRef]
21. Doyle, J.C.; Glover, K.; Khargonekar, P.P.; Francis, B.A. State-space solutions to standard H2 and H∞ control problems. IEEE

Trans. Autom. Control 1989, 1691–1696. [CrossRef]
22. Van Der Schaft, A.J. L 2-gain analysis of nonlinear systems and nonlinear state feedback H∞ control. IEEE Trans. Autom. Control

1992, 37, 770–784. [CrossRef]
23. Bagnell, J.A.; Ng, A.Y.; Schneider, J.G. Solving Uncertain Markov Decision Processes; Carnegie Mellon University, the Robotics

Institute: Pittsburgh, PA, USA, 2001.
24. Nilim, A.; El Ghaoui, L. Robust control of Markov decision processes with uncertain transition matrices. Oper. Res. 2005, 53,

780–798. [CrossRef]
25. Iyengar, G.N. Robust dynamic programming. Math. Oper. Res. 2005, 30, 257–280. [CrossRef]
26. Glover, K.; Doyle, J.C. State-space formulae for all stabilizing controllers that satisfy an H(infinity)-norm bound and relations to

risk sensitivity. Syst. Control Lett. 1988, 11, 167–172. [CrossRef]
27. Basar, T.; Bernhard, P. H∞-Optimal Control and Related Minimax Design Problems: A Dynamic Game Approach; Birkháuser: Boston,

MA, USA, 2008.
28. Limebeer, D.J.N.; Anderson, B.D.O.; Khargonekar, P.P.; Green, M. A Game Theoretic Approach to H∞ Control for Time-varying

Systems. SIAM J. Control Optim. 1992, 30, 262–283. [CrossRef]

http://doi.org/10.1109/37.506395
http://dx.doi.org/10.1287/moor.23.4.769
http://dx.doi.org/10.1007/s101070100286
http://dx.doi.org/10.1016/j.arcontrol.2012.09.001
http://dx.doi.org/10.1109/TAC.1981.1102603
http://dx.doi.org/10.1109/TAC.1983.1103275
http://dx.doi.org/10.23919/ACC.1988.4789992
http://dx.doi.org/10.1109/9.256331
http://dx.doi.org/10.1287/opre.1050.0216
http://dx.doi.org/10.1287/moor.1040.0129
http://dx.doi.org/10.1016/0167-6911(88)90055-2
http://dx.doi.org/10.1137/0330017

Mach. Learn. Knowl. Extr. 2022, 4 312

29. McEneaney, W.M. Robust control and differential games on a finite time horizon. Math. Control Signals Syst. 1995, 8, 138–166.
[CrossRef]

30. Isaacs, R. Differential Games I: Introduction; Technical Report; Rand Corp: Santa Monica, CA, USA, 1954.
31. Owen, G. Game Theory; Academic Press: Cambridge, MA, USA, 1982.
32. Ho, Y.; Bryson, A.; Baron, S. Differential games and optimal pursuit-evasion strategies. IEEE Trans. Autom. Control 1965, 10,

385–389. [CrossRef]
33. Starr, A.W.; Ho, Y.C. Nonzero-sum differential games. J. Optim. Theory Appl. 1969, 3, 184–206. [CrossRef]
34. Littman, M.L. Value-function reinforcement learning in Markov games. Cogn. Syst. Res. 2001, 2, 55–66. [CrossRef]
35. Uther, W.; Veloso, M. Adversarial Reinforcement Learning; Carnegie Mellon University: Pittsburgh, PA, USA, 1997.
36. Shoham, Y.; Leyton-Brown, K. Multiagent systems: Algorithmic, Game-Theoretic, and Logical Foundations; Cambridge University

Press: Cambridge, UK, 2008.
37. LaValle, S.M. Robot Motion Planning: A Game-Theoretic Foundation. Algorithmica 2000, 26, 430–465. [CrossRef]
38. Charalambous, C.D.; Rezaei, F. Stochastic uncertain systems subject to relative entropy constraints: Induced norms and

monotonicity properties of minimax games. IEEE Trans. Autom. Control 2007, 52, 647–663. [CrossRef]
39. Xu, H.; Mannor, S. The robustness-performance tradeoff in Markov decision processes. In Advances in Neural Information

Processing Systems (NIPS); MIT Press: Cambridge, MA, USA, 2006.
40. Xu, H.; Mannor, S. Distributionally robust Markov decision processes. In Advances in Neural Information Processing Systems (NIPS);

Curran Associates, Inc.: Red Hook, NY, USA, 2010.
41. Delage, E.; Mannor, S. Percentile optimization for Markov decision processes with parameter uncertainty. Oper. Res. 2010, 58,

203–213. [CrossRef]
42. Mannor, S.; Mebel, O.; Xu, H. Lightning does not strike twice: Robust MDPs with coupled uncertainty. arXiv 2012, arXiv:1206.4643.
43. Hu, Z.; Hong, L.J. Kullback-Leibler Divergence Constrained Distributionally Robust Optimization. Available at Optimization

Online. 2013. Available online: https://asset-pdf.scinapse.io/prod/2562747313/2562747313.pdf (accessed on 12 March 2022).
44. Lim, S.H.; Xu, H.; Mannor, S. Reinforcement learning in robust markov decision processes. In Advances in Neural Information

Processing Systems (NIPS); Curran Associates, Inc.: Red Hook, NY, USA, 2013.
45. Wiesemann, W.; Kuhn, D.; Rustem, B. Robust Markov Decision Processes. Math. Oper. Res. 2013, 38, 153–183. [CrossRef]
46. Yu, P.; Xu, H. Distributionally robust counterpart in Markov decision processes. IEEE Trans. Autom. Control 2015, 61, 2538–2543.

[CrossRef]
47. Mannor, S.; Mebel, O.; Xu, H. Robust MDPs with k-rectangular uncertainty. Math. Oper. Res. 2016, 41, 1484–1509. [CrossRef]
48. Goyal, V.; Grand-Clement, J. Robust Markov Decision Process: Beyond Rectangularity. arXiv 2018, arXiv:1811.00215.
49. Smirnova, E.; Dohmatob, E.; Mary, J. Distributionally robust reinforcement learning. arXiv 2019, arXiv:1902.08708.
50. Coulson, J.; Lygeros, J.; Dörfler, F. Regularized and Distributionally Robust Data-Enabled Predictive Control. In Proceedings of

the 2019 IEEE 58th Conference on Decision and Control (CDC), Nice, France, 11–13 December 2019.
51. Derman, E.; Mannor, S. Distributional robustness and regularization in reinforcement learning. arXiv 2020, arXiv:2003.02894.
52. Turchetta, M.; Krause, A.; Trimpe, S. Robust model-free reinforcement learning with multi-objective Bayesian optimization. In

Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020.
53. Abdulsamad, H.; Dorau, T.; Belousov, B.; Zhu, J.J.; Peters, J. Distributionally Robust Trajectory Optimization Under Uncertain

Dynamics via Relative-Entropy Trust Regions. arXiv 2021, arXiv:2103.15388.
54. Yang, I. Wasserstein Distributionally Robust Stochastic Control: A Data-Driven Approach. IEEE Trans. Autom. Control 2021, 66,

3863–3870. [CrossRef]
55. Klima, R.; Bloembergen, D.; Kaisers, M.; Tuyls, K. Robust temporal difference learning for critical domains. In Proceedings of

the 18th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS). International Foundation for
Autonomous Agents and Multiagent Systems, Montreal, QC, Canada, 13–17 May 2019.

56. Pan, X.; Seita, D.; Gao, Y.; Canny, J. Risk Averse Robust Adversarial Reinforcement Learning. arXiv 2019, arXiv:1901.08021.
57. Tan, K.L.; Esfandiari, Y.; Lee, X.Y.; Sarkar, S. Robustifying reinforcement learning agents via action space adversarial training. In

Proceedings of the 2020 American control conference (ACC), Denver, CO, USA, 1–3 July 2020.
58. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial

Nets. In Advances in Neural Information Processing Systems 27 (NIPS); Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D.,
Weinberger, K.Q., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2014.

59. Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and harnessing adversarial examples. arXiv 2014, arXiv:1412.6572.
60. Huang, S.; Papernot, N.; Goodfellow, I.; Duan, Y.; Abbeel, P. Adversarial Attacks on Neural Network Policies. arXiv 2017,

arXiv:1702.02284.
61. Mandlekar, A.; Zhu, Y.; Garg, A.; Fei-Fei, L.; Savarese, S. Adversarially robust policy learning: Active construction of physically-

plausible perturbations. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Vancouver, BC, Canada, 24–28 September 2017.

62. Pattanaik, A.; Tang, Z.; Liu, S.; Bommannan, G.; Chowdhary, G. Robust Deep Reinforcement Learning with Adversarial Attacks.
In Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS). International
Foundation for Autonomous Agents and Multiagent Systems, Stockholm, Sweden, 10–15 July 2018.

http://dx.doi.org/10.1007/BF01210205
http://dx.doi.org/10.1109/TAC.1965.1098197
http://dx.doi.org/10.1007/BF00929443
http://dx.doi.org/10.1016/S1389-0417(01)00015-8
http://dx.doi.org/10.1007/s004539910020
http://dx.doi.org/10.1109/TAC.2007.894517
http://dx.doi.org/10.1287/opre.1080.0685
https://asset-pdf.scinapse.io/prod/2562747313/2562747313.pdf
http://dx.doi.org/10.1287/moor.1120.0566
http://dx.doi.org/10.1109/TAC.2015.2495174
http://dx.doi.org/10.1287/moor.2016.0786
http://dx.doi.org/10.1109/TAC.2020.3030884

Mach. Learn. Knowl. Extr. 2022, 4 313

63. Gleave, A.; Dennis, M.; Kant, N.; Wild, C.; Levine, S.; Russell, S. Adversarial Policies: Attacking Deep Reinforcement Learning.
arXiv 2019, arXiv:1905.10615.

64. Zhang, H.; Chen, H.; Xiao, C.; Li, B.; Liu, M.; Boning, D.; Hsieh, C.J. Robust Deep Reinforcement Learning against Adversarial
Perturbations on State Observations. arXiv 2020, arXiv:2003.08938.

65. Lütjens, B.; Everett, M.; How, J.P. Certified adversarial robustness for deep reinforcement learning. In Proceedings of the
Conference on Robot Learning (CoRL), Osaka, Japan, 30 October–1 November 2019.

66. Grünwald, P.D.; Dawid, A.P. Game theory, maximum entropy, minimum discrepancy and robust Bayesian decision theory. Ann.
Stat. 2004, 32, 1367–1433. [CrossRef]

67. Osogami, T. Robustness and risk-sensitivity in Markov decision processes. In Advances in Neural Information Processing Systems
(NIPS); Curran Associates, Inc.: Red Hook, NY, USA, 2012.

68. Eysenbach, B.; Levine, S. If MaxEnt RL is the Answer, What is the Question? arXiv 2019, arXiv:1910.01913.
69. Eysenbach, B.; Levine, S. Maximum entropy rl (provably) solves some robust rl problems. arXiv 2021, arXiv:2103.06257.
70. Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004.
71. Papageorgiou, M.; Leibold, M.; Buss, M. Optimierung; Springer: Berlin/Heidelberg, Germany, 1991.
72. Kall, P.; Wallace, S.W.; Kall, P. Stochastic Programming; Springer: Berlin/Heidelberg, Germany, 1994.
73. Beyer, H.G.; Sendhoff, B. Robust optimization–A comprehensive survey. Comput. Methods Appl. Mech. Eng. 2007, 196, 3190–3218.

[CrossRef]
74. Xu, H.; Caramanis, C.; Mannor, S. A distributional interpretation of robust optimization. Math. Oper. Res. 2012, 37, 95–110.

[CrossRef]
75. Wiesemann, W.; Kuhn, D.; Sim, M. Distributionally robust convex optimization. Oper. Res. 2014, 62, 1358–1376. [CrossRef]
76. Heger, M. Consideration of risk in reinforcement learning. In Machine Learning Proceedings 1994; Elsevier: Amsterdam, The

Netherlands, 1994.
77. Scarf, H.E. A Min-Max Solution of an Inventory Problem; Technical Report; Rand Corp: Santa Monica, CA, USA, 1957.
78. Bolza, O. Vorlesungen über Variationsrechnung; BG Teubner: Stuttgart, Germany, 1909. Available online: https://diglib.uibk.ac.at/

ulbtirol/content/titleinfo/372088 (accessed on 12 March 2022).
79. McShane, E.J. On multipliers for Lagrange problems. Am. J. Math. 1939, 61, 809–819. [CrossRef]
80. Bliss, G.A. Lectures on the Calculus of Variations; University of Chicago Press: Chicago, IL, USA, 1946.
81. Cicala, P. An Engineering Approach to the Calculus of Variations; Libreria Editrice Universitaria Levrotto & Bella: Turin, Italy, 1957.
82. Pontryagin, L.S. Mathematical Theory of Optimal Processes; Routledge: London, UK, 2018.
83. Bellman, R. The theory of dynamic programming. Bull. Am. Math. Soc. 1954, 60, 503–515. [CrossRef]
84. Doya, K. Reinforcement Learning in Continuous Time and Space. Neural Comput. 2000, 12, 219–245. [CrossRef]
85. Bellman, R. A Markovian decision process. J. Math. Mech. 1957, 6, 679–684. [CrossRef]
86. Kalman, R.E. Contributions to the theory of optimal control. Bol. Soc. Mat. Mex. 1960, 5, 102–119.
87. Kalman, R.E.; Bertram, J.E. Control system analysis and design via the “second method” of Lyapunov: I—Continuous-time

systems. J. Basic Eng. 1960, 82, 371–393. [CrossRef]
88. Kalman, R.E. A new approach to linear filtering and prediction problems. J. Basic Eng. 1960, 82, 35–45. [CrossRef]
89. Von Neumann, J.; Morgenstern, O. Theory of Games and Economic Behavior; Princeton University Press: Princeton, NJ, USA, 1944.
90. Isaacs, R. Differential Games: A Mathematical Theory with Applications to Warfare and Pursuit, Control and Optimization; Dover

Publications: Mineola, NY, USA, 1999.
91. Nash, J. Non-cooperative games. Ann. Math. 1951, 54, 286–295. [CrossRef]
92. Awheda, M. On Multi-Agent Reinforcement Learning in Matrix, Stochastic and Differential Games. Ph.D. Thesis, Carleton

University, Ottawa, ON, Canada, 2017.
93. Bowling, M.H.; Veloso, M.M. An Analysis of Stochastic Game Theory for Multiagent Reinforcement Learning. 2000. Available

online: https://apps.dtic.mil/sti/citations/ADA385122 (accessed on 12 March 2022).
94. Howard, R.A. Dynamic Programming and Markov Processes. 1960. Available online: https://psycnet.apa.org/record/1961-014

74-000 (accessed on 12 March 2022).
95. Littman, M.L. Markov games as a framework for multi-agent reinforcement learning. In Machine Learning Proceedings 1994;

Elsevier: Amsterdam, The Netherlands, 1994.
96. Sharma, R.; Gopal, M. A robust Markov game controller for nonlinear systems. Appl. Soft Comput. 2007, 7, 818–827. [CrossRef]
97. Monahan, G.E. State of the art—A survey of partially observable Markov decision processes: Theory, models, and algorithms.

Manag. Sci. 1982, 28, 1–16. [CrossRef]
98. Kaelbling, L.P.; Littman, M.L.; Cassandra, A.R. Planning and acting in partially observable stochastic domains. Artif. Intell. 1998,

101, 99–134. [CrossRef]
99. Sutton, R.S.; McAllester, D.; Singh, S.; Mansour, Y. Policy gradient methods for reinforcement learning with function approxima-

tion. Adv. Neural Inf. Process. Syst. 1999, 12.
100. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing atari with deep

reinforcement learning. arXiv 2013, arXiv:1312.5602.
101. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep

reinforcement learning. arXiv 2015, arXiv:1509.02971.

http://dx.doi.org/10.1214/009053604000000553
http://dx.doi.org/10.1016/j.cma.2007.03.003
http://dx.doi.org/10.1287/moor.1110.0531
http://dx.doi.org/10.1287/opre.2014.1314
https://diglib.uibk.ac.at/ulbtirol/content/titleinfo/372088
https://diglib.uibk.ac.at/ulbtirol/content/titleinfo/372088
http://dx.doi.org/10.2307/2371626
http://dx.doi.org/10.1090/S0002-9904-1954-09848-8
http://dx.doi.org/10.1162/089976600300015961
http://dx.doi.org/10.1512/iumj.1957.6.56038
http://dx.doi.org/10.1115/1.3662604
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.2307/1969529
https://apps.dtic.mil/sti/citations/ADA385122
https://psycnet.apa.org/record/1961-01474-000
https://psycnet.apa.org/record/1961-01474-000
http://dx.doi.org/10.1016/j.asoc.2006.02.005
http://dx.doi.org/10.1287/mnsc.28.1.1
http://dx.doi.org/10.1016/S0004-3702(98)00023-X

Mach. Learn. Knowl. Extr. 2022, 4 314

102. Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a
stochastic actor. In Proceedings of the 35th International Conference on Machine Learning PMLR, Stockholm, Sweden, 10–15
July 2018.

103. Williams, R.J. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Mach. Learn. 1992, 8,
229–256. [CrossRef]

104. Kakade, S.M. A natural policy gradient. In Advances in Neural Information Processing Systems; NIPS: Cambridge, MA, USA, 2001;
Volume 14.

105. Peters, J.; Schaal, S. Natural actor-critic. Neurocomputing 2008, 71, 1180–1190. [CrossRef]
106. Peters, J.; Mulling, K.; Altun, Y. Relative entropy policy search. In Proceedings of the Twenty-Fourth AAAI Conference on

Artificial Intelligence, Atlanta, GA, USA, 11–15 July 2010.
107. Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; Moritz, P. Trust region policy optimization. In Proceedings of the International

Conference on Machine Learning, PMLR, Lille, France, 7–9 July 2015.
108. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017, arXiv:1707.06347.
109. Lanctot, M.; Zambaldi, V.; Gruslys, A.; Lazaridou, A.; Tuyls, K.; Perolat, J.; Silver, D.; Graepel, T. A Unified Game-Theoretic

Approach to Multiagent Reinforcement Learning. In Advances in Neural Information Processing Systems; NIPS: Cambridge, MA,
USA, 2017; Volume 30.

110. Laurent, G.J.; Matignon, L.; Fort-Piat, L. The world of independent learners is not Markovian. Int. J.-Knowl.-Based Intell. Eng. Syst.
2011, 15, 55–64. [CrossRef]

111. Claus, C.; Boutilier, C. The Dynamics of Reinforcement Learning in Cooperative Multiagent Systems. In Proceedings of the
Fifteenth National/Tenth Conference on Artificial Intelligence/Innovative Applications of Artificial Intelligence. American
Association for Artificial Intelligence, Madison, WI, USA, 26–30 July 1998.

112. Shapley, L.S. Stochastic games. Proc. Natl. Acad. Sci. USA 1953, 39, 1095–1100. [CrossRef] [PubMed]
113. Buşoniu, L.; Babuška, R.; Schutter, B.D. Multi-agent reinforcement learning: An overview. In Innovations in Multi-Agent Systems

and Applications-1; Springer: Berlin/Heidelberg, Germany, 2010.
114. Gronauer, S.; Diepold, K. Multi-agent deep reinforcement learning: A survey. Artif. Intell. Rev. 2021, 55, 895–943. [CrossRef]
115. Littman, M.L.; Szepesvári, C. A generalized reinforcement-learning model: Convergence and applications. ICML 1996, 96, 310–318.
116. Szepesvári, C.; Littman, M.L. A unified analysis of value-function-based reinforcement-learning algorithms. Neural Comput. 1999,

11, 2017–2060. [CrossRef] [PubMed]
117. Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam,

V.; Lanctot, M.; et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484–489. [CrossRef]
118. Foerster, J.; Assael, I.A.; De Freitas, N.; Whiteson, S. Learning to communicate with deep multi-agent reinforcement learning.

Adv. Neural Inf. Process. Syst. 2016, 29.
119. Lowe, R.; Wu, Y.I.; Tamar, A.; Harb, J.; Pieter Abbeel, O.; Mordatch, I. Multi-agent actor-critic for mixed cooperative-competitive

environments. In Advances in Neural Information Processing Systems; NIPS: Cambridge, MA, USA, 2017; Volume 30.
120. Foerster, J.; Farquhar, G.; Afouras, T.; Nardelli, N.; Whiteson, S. Counterfactual multi-agent policy gradients. In Proceedings of

the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018.
121. Rashid, T.; Samvelyan, M.; Schroeder, C.; Farquhar, G.; Foerster, J.; Whiteson, S. Qmix: Monotonic value function factorisation for

deep multi-agent reinforcement learning. In Proceedings of the International Conference on Machine Learning (ICML), PMLR,
Stockholm, Sweden, 10–15 July 2018.

122. Mahajan, A.; Rashid, T.; Samvelyan, M.; Whiteson, S. Maven: Multi-agent variational exploration. In Advances in Neural
Information Processing Systems (NIPS); Curran Associates, Inc.: Red Hook, NY, USA, 2019.

123. Son, K.; Kim, D.; Kang, W.J.; Hostallero, D.E.; Yi, Y. Qtran: Learning to factorize with transformation for cooperative multi-agent
reinforcement learning. In Proceedings of the 36th International Conference on Machine Learning (ICML), PMLR, Long Beach,
CA, USA, 9–15 June 2019.

124. Rashid, T.; Farquhar, G.; Peng, B.; Whiteson, S. Weighted qmix: Expanding monotonic value function factorisation for deep
multi-agent reinforcement learning. Adv. Neural Inf. Process. Syst. 2020, 33, 10199–10210.

125. Zhu, Y.; Zhao, D. Online minimax Q network learning for two-player zero-sum Markov games. IEEE Trans. Neural Netw. Learn.
Syst. 2020, 33, 1228–1241. [CrossRef]

126. Yu, C.; Velu, A.; Vinitsky, E.; Wang, Y.; Bayen, A.; Wu, Y. The Surprising Effectiveness of PPO in Cooperative, Multi-Agent Games.
arXiv 2021, arXiv:2103.01955.

127. Xu, H.; Mannor, S. Robustness and generalization. Mach. Learn. 2012, 86, 391–423. [CrossRef]
128. Satia, J.K.; Lave Jr, R.E. Markovian decision processes with uncertain transition probabilities. Oper. Res. 1973, 21, 728–740. [CrossRef]
129. Xiao, C.; Li, B.; Zhu, J.Y.; He, W.; Liu, M.; Song, D. Generating adversarial examples with adversarial networks. arXiv 2018,

arXiv:1801.02610.
130. White, C.C., III; Eldeib, H.K. Markov decision processes with imprecise transition probabilities. Oper. Res. 1994, 42, 739–749. [CrossRef]
131. Givan, R.; Leach, S.; Dean, T. Bounded parameter Markov decision processes. In European Conference on Planning; Springer:

Berlin/Heidelberg, Germany, 1997.
132. Littman, M.L. Memoryless policies: Theoretical limitations and practical results. In From Animals to Animats 3: Proceedings of the

Third International Conference on Simulation of Adaptive Behavior; MIT Press: Cambridge, MA, USA, 1994.

http://dx.doi.org/10.1007/BF00992696
http://dx.doi.org/10.1016/j.neucom.2007.11.026
http://dx.doi.org/10.3233/KES-2010-0206
http://dx.doi.org/10.1073/pnas.39.10.1095
http://www.ncbi.nlm.nih.gov/pubmed/16589380
http://dx.doi.org/10.1007/s10462-021-09996-w
http://dx.doi.org/10.1162/089976699300016070
http://www.ncbi.nlm.nih.gov/pubmed/10578043
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1109/TNNLS.2020.3041469
http://dx.doi.org/10.1007/s10994-011-5268-1
http://dx.doi.org/10.1287/opre.21.3.728
http://dx.doi.org/10.1287/opre.42.4.739

Mach. Learn. Knowl. Extr. 2022, 4 315

133. Zhu, J.J.; Jitkrittum, W.; Diehl, M.; Schölkopf, B. Worst-Case Risk Quantification under Distributional Ambiguity using Kernel
Mean Embedding in Moment Problem. In Proceedings of the 2020 59th IEEE Conference on Decision and Control (CDC), Jeju,
Korea, 14–18 December 2020.

134. Gupta, V. Near-optimal Bayesian ambiguity sets for distributionally robust optimization. Manag. Sci. 2019, 65, 4242–4260.
[CrossRef]

135. Rahimian, H.; Mehrotra, S. Distributionally robust optimization: A review. arXiv 2019, arXiv:1908.05659.
136. Badrinath, K.P.; Kalathil, D. Robust Reinforcement Learning using Least Squares Policy Iteration with Provable Performance

Guarantees. In Proceedings of the International Conference on Machine Learning PMLR, Virtual, 18–24 July 2021.
137. Abdullah, M.A.; Ren, H.; Ammar, H.B.; Milenkovic, V.; Luo, R.; Zhang, M.; Wang, J. Wasserstein robust reinforcement learning.

arXiv 2019, arXiv:1907.13196.
138. Todorov, E.; Erez, T.; Tassa, Y. Mujoco: A physics engine for model-based control. In Proceedings of the 2012 IEEE/RSJ

International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 7–12 October 2012.
139. O’Donoghue, B.; Osband, I.; Munos, R.; Mnih, V. The uncertainty bellman equation and exploration. In Proceedings of the

International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017.
140. Derman, E.; Mankowitz, D.; Mann, T.; Mannor, S. A Bayesian Approach to Robust Reinforcement Learning. In Proceedings of the

Conference on Uncertainty in Artificial Intelligence (UAI), PMLR, Tel Aviv, Israel, 22–25 July 2019.
141. Rajeswaran, A.; Ghotra, S.; Ravindran, B.; Levine, S. Epopt: Learning robust neural network policies using model ensembles.

arXiv 2016, arXiv:1610.01283.
142. Tamar, A.; Glassner, Y.; Mannor, S. Optimizing the CVaR via sampling. In Proceedings of the Twenty-Ninth AAAI Conference on

Artificial Intelligence, Austin, TX, USA, 25–30 January 2015.
143. Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. OpenAI Gym. arXiv 2016, arXiv:1606.01540.
144. Mankowitz, D.J.; Levine, N.; Jeong, R.; Shi, Y.; Kay, J.; Abdolmaleki, A.; Springenberg, J.T.; Mann, T.; Hester, T.; Riedmiller, M.

Robust reinforcement learning for continuous control with model misspecification. arXiv 2019, arXiv:1906.07516.
145. Lutter, M.; Mannor, S.; Peters, J.; Fox, D.; Garg, A. Robust Value Iteration for Continuous Control Tasks. arXiv 2021,

arXiv:2105.12189.
146. Papernot, N.; McDaniel, P.; Jha, S.; Fredrikson, M.; Celik, Z.B.; Swami, A. The limitations of deep learning in adversarial settings.

In Proceedings of the 2016 IEEE European Symposium on Security and Privacy (EuroS&P), Saarbruecken, Germany, 21–24
March 2016.

147. Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing properties of neural networks.
arXiv 2013, arXiv:1312.6199.

148. Van Hasselt, H.; Guez, A.; Silver, D. Deep reinforcement learning with double q-learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016.

149. Welling, M.; Teh, Y.W. Bayesian learning via stochastic gradient Langevin dynamics. In Proceedings of the 28th international
conference on machine learning (ICML-11), Bellevue, WA, USA, 28 June–2 July 2011.

150. Salman, H.; Yang, G.; Zhang, H.; Hsieh, C.J.; Zhang, P. A convex relaxation barrier to tight robustness verification of neural
networks. arXiv 2019, arXiv:1902.08722.

151. Ziebart, B.D. Modeling Purposeful Adaptive Behavior with the Principle of Maximum Causal Entropy; Carnegie Mellon University:
Pittsburgh, PA, USA, 2010.

152. Howard, R.A.; Matheson, J.E. Risk-sensitive Markov decision processes. Manag. Sci. 1972, 18, 356–369. [CrossRef]
153. Jaquette, S.C. A utility criterion for Markov decision processes. Manag. Sci. 1976, 23, 43–49. [CrossRef]
154. Denardo, E.V.; Rothblum, U.G. Optimal stopping, exponential utility, and linear programming. Math. Program. 1979, 16, 228–244.

[CrossRef]
155. Patek, S.D. On terminating Markov decision processes with a risk-averse objective function. Automatica 2001, 37, 1379–1386.

[CrossRef]
156. Osogami, T. Iterated risk measures for risk-sensitive Markov decision processes with discounted cost. arXiv 2012, arXiv:1202.3755.
157. Whittle, P. Risk-sensitive linear quadratic Gaussian control. Adv. Appl. Probab. 1981, 13, 764–777. [CrossRef]
158. Whittle, P. Risk sensitivity, a strangely pervasive concept. Macroecon. Dyn. 2002, 6, 5–18. [CrossRef]
159. Nass, D.; Belousov, B.; Peters, J. Entropic Risk Measure in Policy Search. In Proceedings of the 2019 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019.
160. Petersen, I.; James, M.; Dupuis, P. Minimax optimal control of stochastic uncertain systems with relative entropy constraints.

IEEE Trans. Autom. Control 2000, 45, 398–412. [CrossRef]
161. Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; Vladu, A. Towards deep learning models resistant to adversarial attacks. arXiv

2017, arXiv:1706.06083.
162. Papernot, N.; McDaniel, P.; Goodfellow, I.; Jha, S.; Celik, Z.B.; Swami, A. Practical black-box attacks against machine learning.

In Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security, Abu Dhabi, United Arab
Emirates, 2–6 April 2017.

http://dx.doi.org/10.1287/mnsc.2018.3140
http://dx.doi.org/10.1287/mnsc.18.7.356
http://dx.doi.org/10.1287/mnsc.23.1.43
http://dx.doi.org/10.1007/BF01582110
http://dx.doi.org/10.1016/S0005-1098(01)00084-X
http://dx.doi.org/10.2307/1426972
http://dx.doi.org/10.1017/S1365100502027025
http://dx.doi.org/10.1109/9.847720

	Introduction
	Preliminaries
	Optimization
	Optimal Control
	Robust Control
	Differential Games
	Nash Equilibrium
	Two-Player Zero-Sum Game

	Reinforcement Learning
	Single Agent Reinforcement Learning
	Multi Agent Reinforcement Learning

	Robustness in Reinforcement Learning
	Transition and Reward Robust Designs
	Disturbance Robust Designs
	Action Robust Designs
	Observation Robust Designs
	Relations to Maximum Entropy RL and Risk Sensitivity

	Conclusions
	Summary
	Outlook

	References

