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Abstract

In the domain of robotics and artificial intelligence, imitation learning has garnered
attention for enabling agents to acquire skills by mimicking experts. A central challenge is
the "correspondence problem," which arises when learner and expert agents have different
physical properties. This challenge is particularly salient when the learner and expert
possess varying morphologies and dynamic constraints, making it difficult for the learner
to imitate the expert effectively. To address this, the thesis proposes a new approach
where embodiments are represented as structured graphs. The correspondence problem
is then tackled as an inexact Graph Matching (GM) problem, providing a mathematical
framework for solving it. Through experiments, this research demonstrates the approach’s
effectiveness. By providing a structured solution to the correspondence problem, the
research contributes to enhancing the efficiency and adaptability of robotic and artificial
agents, facilitating more effective learning from human expertise.
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Zusammenfassung

Im Bereich der Robotik und künstlichen Intelligenz hat das Imitationslernen Aufmerksam-
keit erregt, indem es Agenten ermöglicht, Fähigkeiten durch das Nachahmen von Experten
zu erwerben. Eine zentrale Herausforderung besteht im "Korrespondenzproblem,"das auf-
tritt, wenn Lernende und Experten unterschiedliche physische Eigenschaften haben. Diese
Herausforderung ist besonders ausgeprägt, wenn Lernende und Experten unterschiedliche
Morphologien und dynamische Einschränkungen haben, was es dem Lernenden erschwert,
den Experten effektiv nachzuahmen. Um dies zu lösen, schlägt die Arbeit einen neuen
Ansatz vor, bei dem Verkörperungen als strukturierte Graphen dargestellt werden. Das
Korrespondenzproblem wird dann als inexaktes Graphenabgleichsproblem (GM) behan-
delt, das einen mathematischen Rahmen für seine Lösung bietet. Durch Experimente wird
die Effektivität dieses Ansatzes demonstriert. Durch die Bereitstellung einer strukturierten
Lösung für das Korrespondenzproblem trägt die Forschung zur Steigerung der Effizienz
und Anpassungsfähigkeit von robotischen und künstlichen Agenten bei und erleichtert
ein effektiveres Lernen von menschlicher Expertise.
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1 Introduction

In the vast field of robotics, there’s an underlying drive to make machines mimic human
behavior to learn from us, and in some instances, perform even better. Over the years,
imitation learning has emerged as a leading paradigm, striving to bridge the gap between
robotic capabilities and human expertise [1]. From the breathtaking intricacies of heli-
copter acrobatics [2] to the subtle nuances of haptic control [3], imitation learning has
showcased a wide array of accomplishments.
Behavioral Cloning (BC) and Inverse Reinforcement Learning (IRL) have been two primary
algorithmic approaches in this domain, with each bringing its assumptions about the
correspondence between the learner (robot) and the expert (human) [4]. For instance,
BC-based approaches often require similarity in the embodiments of the learner and the
expert for successful imitation, which can be a restrictive condition [5, 6]. In contrast
to methods that require environmental interaction, BC enables immediate imitation of
the demonstrator without such a requirement. It uses observed states and actions from
an expert to train a classifier or regressor, directly mapping these inputs to replicate
the expert’s policy[7]. On the other hand, IRL methods are computationally expensive
and involve complex reinforcement learning loops [8, 9]. IRL focuses on learning a cost
function from the expert’s behavior and subsequently applying reinforcement learning to
achieve similar tasks [7].
The correspondence problem is central to imitation learning. It seeks to establish corre-
sponding states between the expert and learner, especially when their embodiments differ
in terms of morphology, degrees of freedom, dynamics, and more[10]. Many existing
approaches in imitation learning sidestep the correspondence problem by using methods
like kinesthetic teaching or teleoperation[11]. However, these methods often require
robot-specific proprioceptions, which might not always be available. Despite the pivotal
role it plays, the correspondence problem in imitation learning remains an open question,
drawing sporadic attention but lacking comprehensive solutions. Addressing this gap
forms the main contribution of this research.
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While existing methods have explored the correspondence problem to some extent, there
remains a gap in effectively adapting the solutions for scenarios involving vastly different
morphologies. This issue delves into the complexities of aligning the varying physical
characteristics and capabilities between humans and robots [12]. Distinct state spaces,
body morphology, degrees of freedom, and even system dynamics create a complex
challenge in morphology correspondence that is yet to be fully addressed. Teleoperation
techniques have also been employed to address the correspondence issue by allowing a
human operator to control a robot remotely. Yet, traditional teleoperation often bypasses
the correspondence problem by using interfaces such as joysticks, haptic controls, or even
Virtual Reality [13, 14, 15, 16].
The study delves into the correspondence problem by representing the embodiment as
a structured graph. It aims to derive a similarity measure on these graphs using some
isometry heuristics. The correspondence problem, in its simplest form, can be defined by
finding actions so that the learner’s state is similar to the expert’s state for all timesteps.
The main objective is to investigate the correspondence problem in detail, propose a
proper distance metric between embodiments, and then train an imitation policy using
the proposed distance as reward signals. Motivated by this, the primary objective of
this research is to provide an innovative solution to the correspondence problem. By
interpreting the embodiment as a structured graph and employing similarity metrics
grounded in isometric heuristics, we aim to present a nuanced understanding of the
intricate alignment needed between human and robotic systems.
One significant contribution of this work is introducing a representation of embodiment as
a structural graph. By pairing this with feature functions tailored for graph comparison,
we create a potent tool for addressing the correspondence problem. Our approach does
not demand exact matching of morphological features but instead seeks a functionally
equivalent correspondence that could similarly perform the task, thus expanding the scope
and applicability of imitation learning.
In the subsequent chapters, this thesis provides a comprehensive analysis of imitation
learning, detailing the experiments and methodologies used in this research. The objective
is to present a systematic solution to the correspondence problem, thereby advancing the
capabilities of robots in the realm of imitation learning.

Overview

The structure of this thesis is segmented into six primary chapters, each dedicated to
elucidating various facets of leveraging structured-graph correspondence in imitation

3



learning.
In Chapter 2, a comprehensive dive into the fundamental concepts is undertaken. The
discourse begins with the broader robotics domain, followed by an in-depth exploration of
reinforcement learning (RL). A notable sub-section of this chapter is dedicated to inverse
reinforcement learning, a key concept in imitation learning. The chapter concludes with
a summary of pivotal literature, contextualizing the current state of the art against the
backdrop of this research.
Chapter 3 delineates the methodology and approach. The chapter sets out to formulate
the problem statement and hypothesis. This is complemented by a detailed exposition of
the data sources and tools used, ensuring the replicability of the experiments. The chapter
culminates in outlining the procedure that forms the bedrock of the ensuing experiments.
The subsequent Chapter 4 is dedicated to the experiments and their consequent results. A
meticulous breakdown of the experimental setup precedes the main findings, providing
readers with both the context and the outcomes of the research efforts.
Chapter 5 delves into a discussion phase. The results, while empirically obtained in the
previous chapter, are theoretically examined here. The interpretations of the findings,
their broader significance, any lurking limitations, and prospective avenues for future
research are dissected in this chapter. It serves as a bridge between the empirical and the
theoretical, weaving them into a cohesive narrative.
Finally, Chapter 6 distills all the insights, findings, and discussions into a succinct conclu-
sion. It not only reflects on the journey traversed in the thesis but also casts a gaze into
the future, speculating on the potential advancements in the domain of imitation learning
leveraging structured-graph correspondence.
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2 Fundamentals and Literature Review

The foundation of any scientific inquiry lies in a profound understanding of the theoretical
principles that govern the subject of study. Therefore, this chapter seeks to immerse the
reader in the foundational knowledge necessary to appreciate the intricacies of the work
presented in this thesis. We embark on a detailed exploration of the interwoven fields of
robotics, reinforcement learning, and inverse reinforcement learning as applied to the
correspondence problem in imitation learning.
In the following sections, the reader will be introduced to the vast landscape of robotics,
beginning with a foundational understanding of what constitutes robotics and delving
into the essential aspects of robot kinematics.
As we transition to the subject of Reinforcement Learning (RL), the discussion will focus
on the core principles that define this groundbreaking approach to machine learning.
By explicating various policy gradient methods and diving into specific applications of
Proximal Policy Optimization (PPO) and Trust Region Policy Optimization (TRPO), we
aim to create a thorough comprehension of the mechanics of RL.
To complete the theoretical framework, we will take a discerning look at the existing
literature, drawing from seminal works and recent developments that have shaped the
field. Special attention will be paid to correspondence methodologies that form the core
of the research problem tackled in this thesis.

2.1 Robotics

Robotics, as an academic and practical discipline, is a fusion of science, engineering, and
technology that focuses on the design, construction, operation, and application of robots.
These robots are autonomous or semi-autonomous machines that can perform tasks in the
real world, often replicating human actions. The field of robotics is vast, encompassing
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various sub-disciplines and specializations, each with its unique challenges and innovations.
As technology advances, robotics plays an increasingly pivotal role in various sectors, from
manufacturing and healthcare to entertainment and space exploration[17].

2.1.1 Introduction to Robotics

Robotics, an interdisciplinary domain, encompasses the design, construction, and opera-
tion of robots. These are autonomous or semi-autonomous machines adept at performing
tasks in both real-world and virtual environments. The field has evolved from ancient
attempts to mimic human motions in machines to the modern-day marvels that augment,
automate, and innovate various human activities[17].
Central to robotics are the concepts of kinematics and dynamics. Kinematics focuses on the
motion of bodies without delving into the forces causing such motion. It provides insights
into how robots move based on their mechanical structure. Dynamics, on the other hand,
delves deeper into the forces and torques that influence motion. A fundamental equation
in dynamics is Newton’s second law of motion, which can be represented as:

F = ma (2.1)

where F is the force applied, m is the mass of the body, and a is its acceleration. This
equation underscores the relationship between force and motion, a cornerstone in un-
derstanding robotic movements. The law is particularly vital for designing robots that
can interact effectively with their environment, as it aids in predicting how a robot will
respond to various forces and torques[18].
The degree of freedom (DOF) of a robot is pivotal, indicating the number of independent
movements it can execute. It is influenced by the robot’s joints and links. Mathematically,
the DOF can be represented as:

DOF = 6n−m (2.2)
where n is the number of links and m is the number of constraints. This concept is crucial
as it directly influences the robot’s workspace and potential configurations, determining
its versatility and adaptability in various environments[18].
Control architecture ensures robots operate safely and efficiently. The relationship between
the control input u and the system output y can be represented as:

y(t) = G(s)× u(t), (2.3)
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where G(s) is the transfer function in the Laplace domain. Furthermore, the control of a
robot can be described by:

u = Kpe+Kdė+Ki

∫︂
e dt, (2.4)

where u is the control input, e is the error, ė is the rate of change of error, and Kp, Kd,
and Ki are the proportional, derivative, and integral gains, respectively[17].
A robot’s position and orientation in space are vital for its control. This can be mathemati-
cally described using vectors, transformation matrices, and quaternion representations.
For instance, a vector’s position from point A to point B is[18]:

x⃗AB = (Bx −Ax)i+ (By −Ay)j + (Bz −Az)k. (2.5)

Robotics stands at the forefront of technological innovation, with applications spanning
manufacturing, healthcare, space exploration, and entertainment. Their precision and
adaptability render them invaluable for tasks that are dangerous, repetitive, or intricate
for humans. As technology advances, the capabilities of robots expand, heralding a future
of seamless collaboration between robots and humans. In this thesis context, the fusion of
robotics with machine learning techniques, such as reinforcement learning and imitation
learning, is of paramount significance. Integrating these fields promises to unlock new
potentials, pushing the boundaries of what robots can achieve in various domains[17].

2.1.2 Kinematics in Robotics

Kinematics in robotics is a fundamental study that focuses on understanding the motion
of robots without considering the forces that produce such motion. It provides insights
into how the mechanical structure of a robot translates into its movement in space.

Configuration Space

The configuration space, often denoted as C, represents all possible positions and orienta-
tions a robot can assume. For a robot with n joints, its configuration space is n-dimensional.
Each point in this space corresponds to a unique pose of the robot. For instance, a robot
arm with three rotating joints would have a configuration space represented by three
angles. The configuration space is crucial as it aids in understanding the robot’s movement
capabilities and is essential for tasks like path planning and collision avoidance [17].
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Rigid-Body Motions

Rigid-body motion describes the movement of a solid object in space. This motion can be
decomposed into rotational and translational components. The rotation in 3D space can
be represented using rotation matrices R, which transform coordinates from one frame to
another. A rotation matrix property is that its transpose is its inverse:

RT = R−1 (2.6)

Angular velocities, denoted by ω, describe how fast a body rotates and can be represented
in a skew-symmetric form. Twists combine angular and linear velocities, offering a unified
representation of rigid-body motion [19].

Forward and Inverse Kinematics

Forward kinematics determines the position and orientation of the robot’s end-effector
based on its joint parameters. Given joint angles θ⃗, the position x⃗ of the end-effector can
be determined using:

x⃗ = f(θ⃗) (2.7)

Inverse kinematics, on the other hand, finds the joint parameters required for the end-
effector to achieve a specific position and orientation. For a desired position xd⃗, the joint
angles can be found as:

θ⃗ = f−1(xd)⃗ (2.8)
While forward kinematics generally has a unique solution, inverse kinematics can have
multiple, one, or no solutions, making it computationally more challenging [17].

Forward Kinematics Calculations

Forward kinematics refers to the computational process of determining the position and
orientation of a robot’s end-effector given its joint parameters. For a multi-link robotic
manipulator, the position and orientation of the end-effector are functions of the joint
angles and link lengths.
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In its most basic form, for a planar robot with n links, the position x = [x, y] of the
end-effector in the Cartesian plane is given by:

x =
n∑︂

i=1

Li cos

⎛⎝ i∑︂
j=1

θj

⎞⎠ (2.9)

y =
n∑︂

i=1

Li sin

⎛⎝ i∑︂
j=1

θj

⎞⎠ (2.10)

where Li represents the length of the ith link and θi is the ith element of the joint angle
vector θ. The orientation of the end-effector, represented by ϕ, is the cumulative sum of
the joint angles[17]:

ϕ =
n∑︂

i=1

θi (2.11)

In my thesis work, I employed forward kinematics calculations to obtain correspondences
and achieve their matching. The forward kinematics is computed statelessly for all links.
Given joint configurations represented by the tensor q, the function processes this input
to determine and store the pose of each link within a dictionary. This design ensures
modularity, enabling scalable computations that accommodate robotic manipulators with
a diverse range of degrees of freedom and intricacies.

2.2 Reinforcement Learning (RL)

Reinforcement Learning, commonly called RL, has emerged as a powerful paradigm for
optimizing decision-making tasks in uncertain environments. At its core, RL provides
mechanisms for agents to learn from interactions and subsequently improve their ac-
tions over time. This section delves into the foundational concepts, methodologies, and
significance of RL, providing a holistic view of its intricacies and applications. The fol-
lowing diagram depicts the feedback loop between actions and rewards in a standard
reinforcement learning model.
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Figure 2.1: Standard RL model loop

2.2.1 Introduction to RL

Reinforcement Learning (RL) is a pivotal domain withinmachine learning, emphasizing the
art and science of decision-making in sequential scenarios. At its core, RL is characterized
by an agent’s continuous interaction with an environment, striving to make decisions
that maximize a cumulative reward over an extended period. This dynamic interplay
encapsulates fundamental tenets of artificial intelligence, weaving in concepts of cause
and effect, uncertainty, exploration versus exploitation, and the challenges of operating in
nondeterministic settings[20].
The RL paradigm is distinct from other machine learning approaches. Unlike supervised
learning, where the correct answers are provided, or unsupervised learning, which seeks
patterns in data, RL is about learning from interaction. The agent learns from the conse-
quences of its actions rather than from being explicitly taught, making it a powerful tool
for tasks where the correct decision or action isn’t known in advance. This trial-and-error
search, combined with delayed reward, makes RL a robust framework for a myriad of
applications, from game playing to robotics and from healthcare to finance[20].
The essence of RL lies in the balance of exploration, where the agent tries new actions to
discover their effects, and exploitation, where the agent chooses actions that it knows have
favorable outcomes. This duality is a recurring theme in RL and poses both challenges
and opportunities for designing algorithms that can learn efficiently and effectively from
interaction[20].
In the broader context, RL has been instrumental in various applications, from robotics
to finance. Its ability to model decision-making under uncertainty makes it a powerful
tool for numerous complex tasks. However, the field also faces challenges, especially
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when dealing with large-scale problems, which often require sophisticated algorithms and
computational techniques[21].

Markov Decision Processes

Markov Decision Processes (MDPs) are foundational tools for modeling sequential decision-
making scenarios where an agent interacts with a system over time. At its core, an MDP is
characterized by states, actions, and transitions, with the agent making decisions at each
state based on a given policy. The outcome of each decision is probabilistic, leading to
transitions between states and associated rewards.
An MDP is a mathematical framework that captures the essence of decision-making in
environments with stochastic outcomes and can be formally defined by a tuple M :=
{S,A, r, P, γ}:

• S: Represents the finite state space.
• A: Denotes the finite action space of the protagonist.
• r: The reward function, mapping state and action pairs to rewards.
• P : The state transition probability function.
• γ: The discount factor.

In the context of MDPs, the agent’s objective is to maximize the cumulative reward over
time. This is achieved by following a policy, which is a mapping from states to actions. The
quality of a policy is often measured by the expected total reward when following that
policy from a given state. The optimal policy is the one that yields the highest expected
reward[22].
A key property of MDPs is the Markov property, which asserts that the future state of the
system depends only on the current state and action and not on the sequence of states
and actions that preceded it. This property simplifies the analysis and computation of
optimal policies.
The primary goal of an MDP is to identify a policy, denoted as π, that chooses the best
action based on the current state in order to optimize the accumulated rewards over time.
This can be formally expressed as:
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π∗ = argmax
π

E

[︄ ∞∑︂
t=0

rt | π

]︄
(2.12)

where π∗ represents the optimal policy and rt denotes the reward at time t.
MDPs have found widespread applications in various domains, from robotics to finance,
due to their ability to model complex decision-making problems under uncertainty[23].
The intrinsic architecture of Markov Decision Processes (MDPs) lends itself well to utilizing
dynamic programming methods. These approaches leverage the Bellman equation to
solve the underlying optimization problem iteratively. Specifically, they compute the value
function and then extract the optimal policies based on this function[22].
In practice, while the theoretical foundations of MDPs are well-established, solving large-
scale MDPs remains a challenge due to the curse of dimensionality. However, advancements
in algorithms and computational techniques continue to push the boundaries of what is
achievable with MDPs[23].

2.2.2 Policy Gradient Methods

Policy Gradient Methods are a subset of reinforcement learning techniques that focus on
directly optimizing a parameterized control policy using gradient descent. This approach
is distinct from traditional value function approximation methods, which derive policies
from a value function [24].
A policy gradient method is defined as a reinforcement learning strategy that directly
optimizes a parametrized control policy through gradient descent. It falls under the
category of policy search techniques that aim to maximize the expected return of a policy
within a fixed policy class [24].
Policy gradient is a technique used in reinforcement learning, aiming to model and
optimize the agent’s policy directly. Reinforcement learning seeks an optimal behavior
strategy for the agent to achieve the highest cumulative reward. Instead of focusing on
value estimation as many other approaches do, policy gradient methods optimize the
policy, a function often parameterized by θ [25].
The reward (objective) function, in the context of the policy gradient, is defined by:

J(Q) =
∑︂
s∈S

dπ(s)V π(s) =
∑︂
s∈S

dπ(s)
∑︂
a∈A

πθ(a|s)Qπ(s, a) (2.13)
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where dπ(s) represents the stationary distribution of Markov chain for πθ. The primary
objective becomes the adjustment of θ such that the policy πθ maximizes this reward
function[25].
Policy Gradient Methods allow for directly incorporating domain knowledge into policy
parameterization. Often, fewer parameters are required to represent the optimal policy
than the corresponding value function. They are guaranteed to converge to at least a locally
optimal policy and can handle continuous states and actions, and often even imperfect
state information [24]. However, they are challenging to use in off-policy settings, exhibit
slow convergence in discrete problems, and global optima are not always attained [24].
In continuous spaces, policy-based methods often outshine value-based approaches due to
the infinite number of actions or states, which can make value estimation computationally
intensive [25]. By utilizing gradient ascent, θ can be adjusted in the direction suggested
by the gradient to identify the optimal θ for πθ that yields the highest reward.
Over the past few years, the landscape of policy gradient algorithms has expanded consider-
ably, with many methods being introduced. However, amidst this vast array of options, this
thesis delves explicitly into PPO and TRPO. These methods were selected not only for their
prominence but also because they formed the cornerstone of my research investigations.

Trust Region Policy Optimization (TRPO)

The stability of training in reinforcement learning can be enhanced by ensuring incremental
changes to the policy. TRPO adopts this strategy, and it implements a constraint on policy
updates using the KL divergence, ensuring that significant alterations don’t occur suddenly.
In off-policy reinforcement learning scenarios, there’s a distinction between the policy for
gathering trajectories and the one under optimization. Here, the objective function gauges
the total advantage over state visitation distribution and actions. The disparity between
the distribution of training data and the actual policy state distribution is balanced using
an importance sampling estimator. In this context, θold refers to the policy parameters
prior to updating, and the estimated advantage, Aθold , is utilized because true rewards
are typically elusive[25].
Even in on-policy training, asynchronous operations can cause a lag between the policy
for data collection and the desired optimized policy. TRPO addresses this nuance by
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designating the behavior policy as πθold . The resultant objective function is given by:

J(θ) = Es∼ρθold ,a∼πθold

[︃
πθ(a|s)
πθold(a|s)

×Aθold(s, a)
]︃

(2.14)

The goal of TRPO is to amplify this objective function while ensuring the trust region
constraint is satisfied. This constraint demands that the divergence between the old
and updated policies, measured by KL-divergence, remains limited, typically within a
defined parameter δ. Thus, TRPO maintains policy coherence while assuring a consistent
enhancement over iterations. For a comprehensive understanding and proof, readers are
directed to the original paper.
Trust Region Policy Optimization (TRPO) is an iterative procedure designed for optimizing
policies with guaranteed monotonic improvement. The core idea behind TRPO is to
make several approximations to a theoretically justified procedure, resulting in a practical
algorithm that is effective for optimizing large nonlinear policies, such as neural networks
[26].
TRPO operates by optimizing a local approximation to the expected return of the policy
with a Kullback-Leibler (KL) divergence penalty. This approach ensures that the updated
policy does not deviate too much from the old policy, thereby maintaining stability in
the optimization process. The algorithm is scalable and can optimize policies with many
parameters, which has been a challenge for model-free policy search in the past [26].
The foundation of TRPO lies in optimizing a certain surrogate objective function. This
optimization guarantees policy improvement with non-trivial step sizes. The algorithm
employs trust region methods designed to ensure that each update to the policy does
not change the policy too drastically. This is achieved by constraining the KL divergence
between the new and old policies to be below a certain threshold [26].
TRPO has demonstrated robust performance across a variety of tasks. For instance, it
has been used to learn complex policies for robotic locomotion tasks such as swimming,
hopping, and walking. Additionally, TRPO has been applied to play Atari games using
raw image inputs, showcasing its versatility and capability to handle high-dimensional
input spaces [26].

Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO) is a novel family of policy gradient methods designed
for reinforcement learning. These methods alternate between sampling data through
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interaction with the environment and optimizing a "surrogate" objective function using
stochastic gradient ascent. Unlike standard policy gradient methods that perform one
gradient update per data sample, PPO introduces a unique objective function that allows
for multiple epochs of minibatch updates. This results in an algorithm that is simpler to
implement than trust region policy optimization (TRPO), yet it retains the benefits of TRPO
in terms of performance and sample complexity [27]. Proximal Policy Optimization (PPO)
was introduced as a more streamlined counterpart to the Trust Region Policy Optimization
(TRPO) approach. While PPO simplifies implementation through its clipped surrogate
objective, it maintains impressive performance metrics akin to TRPO[25].
The core principle behind PPO is the optimization of a surrogate objective function. This
function ensures that the updated policy does not deviate significantly from the previous
policy, thereby maintaining stability in the optimization process. The algorithm employs
a mechanism that clips probability ratios, forming a pessimistic estimate of the policy’s
performance. By alternating between sampling data and performing several epochs of
optimization on this data, PPO achieves a balance between efficiency and robustness [27].
The probability ratio is defined as:

rt(θ) =
πθ(at|st)
πθold(at|st)

(2.15)

where rt(θold) = 1.
The objective function of PPO is designed to minimize the discrepancy between its original
and clipped values, thereby countering extreme policy updates even when higher rewards
are at stake. Integrating PPO within a neural network framework, where both policy
(actor) and value (critic) functionalities share parameters, leads to the objective function
being governed by the clipped reward, complemented by an error term tied to value
estimation and an entropy term that promotes exploration.
The surrogate objective for TRPO is defined as:

LCPI(θ) = Êt [rt(θ)ât] (2.16)

The objective function in TRPO (for on-policy scenarios) can be represented as LTRPO(θ).
However, the unconstrained maximization of LTRPO(θ) can lead to extreme policy ra-
tios, resulting in unstable conditions. PPO stabilizes this by constraining r(θ) to lie
within a vicinity of 1, specifically in the range [1 − ϵ, 1 + ϵ], where ϵ is a predefined
hyperparameter[25].
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The primary objective introduced for PPO is:

LCLIP(θ) = Êt [min (rt(θ)ât, clip(rt(θ), 1− ϵ, 1 + ϵ)ât)] (2.17)

where ϵ is a hyperparameter, commonly set to ϵ = 0.2[27].
PPO operates based on a surrogate objective that maximizes the expected return of a policy
while constraining the size of the policy update. This is achieved by using the Kullback-
Leibler (KL) divergence to ensure that the new policy remains close to the old policy. The
algorithm’s foundation lies in optimizing this surrogate objective, which guarantees policy
improvement with non-trivial step sizes. The use of trust-region methods ensures that
each policy update remains within a certain threshold, preventing drastic changes to the
policy [27].
Another approach is to use a penalty on KL divergence and adapt the penalty coefficient to
achieve a target value of the KL divergence dtarg for each policy update. The KL-penalized
objective is:

LKLPEN(θ) = Êt

[︃
πθ(at|st)
πθold(at|st)

ât − βKL[πθold(·|st), πθ(·|st)]
]︃

(2.18)

There are two fundamental design aspects of PPO: firstly, the use of the clipped probability
ratio for policy regularization, and secondly, the characterization of the policy action
space through either continuous Gaussian or discrete softmax distributions. With this
exploration, three potential pitfalls are inherent to standard PPO implementations.

1. In continuous action spaces, PPO might exhibit instability when rewards diminish
outside established boundaries.

2. For discrete action spaces characterized by infrequent high rewards, PPO may
stagnate at suboptimal action sequences.

3. Policy outcomes are prone to variations during initialization, especially if optimal
actions are proximal to the initial state.

To circumvent these issues, one could either discretize the action space or employ the
Beta distribution as an alternative to the Gaussian policy, addressing the first and third
challenges. For the first and second challenges, KL regularization, reminiscent of the
motivation behind TRPO, offers a viable solution [25].
PPO has demonstrated its effectiveness across various tasks. For instance, it has been
applied to robotic locomotion tasks and has outperformed other online policy gradient

16



methods in environments like the Arcade Learning Environment. Its versatility and
capability to handle high-dimensional input spaces make it a valuable tool in the realm of
reinforcement learning [27].
Benchmark evaluations underscore the prowess of PPO, demonstrating its potent efficacy
in tandem with its streamlined methodology. Consequently, I predominantly employed
this technique to train the agents throughout my research.

2.2.3 Actor-Critic Methods

Actor-critic methods advance the conventional policy gradient techniques by seamlessly
blending both policy and value function learning. Distinct from vanilla policy gradient
methods that primarily target the policy model, Actor-Critic methods introduce a value
function to streamline the policy update. By doing so, they harness the combined strengths
of both policy-based and value-based approaches. These methods consist of two integral
models: the Actor, which proposes actions based on the current policy, and the Critic,
which assesses these actions through value estimation. With the Critic’s feedback, the
Actor refines its policy, promoting a more informed and efficient learning process [25, 28].

• Actor: Responsible for updating the policy parameters, θ, based on the direction
provided by the critic.

• Critic: Focuses on updating the value function parameters, w. Depending on the
specific algorithm, this could be either the action-value Q(s, a) or the state-value
V (s).

A typical action-value Actor-Critic algorithm operates as follows:

1. Initialize policy parameters, θ, randomly and sample an initial state, s0.
2. For each timestep t:

• Sample reward rt and the subsequent state st+1.
• Sample the next action at+1.
• Update the policy parameters: θ ← θ + α∇θ lnπθ(at|st)Qw(st, at).
• Compute the Temporal Difference (TD) error for the action-value at time t:

δt = rt + γQw(st+1, at+1)−Qw(st, at).
• Update the action-value function parameters: w ← w + βδt∇wQw(st, at).
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• Update states and actions: st ← st+1 and at ← at+1.

Where α and β are predefined learning rates for the policy and value function parameter
updates[25].

Soft Actor-Critic (SAC)

Soft Actor-Critic (SAC) is a sophisticated version of the Actor-Critic approach, rooted in
the maximum entropy reinforcement learning framework. In SAC, the Actor’s objectives
expand to not just maximizing the expected reward but also bolstering the entropy
of the policy. Such a dual focus culminates in policies that balance exploration and
exploitation, ensuring comprehensive exploration of the action space and mitigating
premature convergence to less optimal strategies. A salient feature of SAC is its adeptness
at efficiently navigating a myriad of tasks without the need for rigorous hyperparameter
adjustments, distinguishing it from other reinforcement learning techniques. It finds its
niche, especially in robotics and autonomous systems [25, 28].
Applications of SAC span across various domains, including robotics and autonomous
systems, where the method’s inherent capability to handle complex, high-dimensional
environments is of paramount importance.
In conclusion, while the Actor-Critic methods, including SAC, provide a robust framework
for reinforcement learning, the specific choice of method should always align with the
complexities and requirements of the task at hand[28].

Imitation Learning (IL)

Imitation learning is a subset of methods that aim to reproduce desired behavior based
on expert demonstrations. In many scenarios, the experts are human operators, and the
learners are robotic systems. This technique facilitates the transfer of skills from humans
to robotic systems. To implement imitation learning, a system is developed that records
expert demonstrations and subsequently learns a policy to replicate the demonstrated
behavior [4].
Imitation learning aims to emulate expert behavior through learned policies. Observations
from either an expert or learner manifest as trajectories, denoted as τ = [ϕ0, ..., ϕT ], where
ϕ represents features. These features, such as a robot’s state or other measurements, can
be as broad as raw image pixels. Demonstrations often occur under varying conditions,
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identified by a context vector s, encapsulating task-specific information like initial robotic
states or object positions. The context remains static during task execution, contrasting
with the dynamic state features ϕt. Some scenarios also present an optimized reward
signal r. Demonstrations accumulate into a dataset D = {(τi, si, ri)}Ni=1, from which a
policy π∗ is derived through an optimization strategy:

π∗ = arg minD(q(ϕ), p(ϕ)) (2.19)

where q(ϕ) is the expert-induced feature distribution, p(ϕ) the learner-induced one, and
D(q, p) a measure of similarity between q and p. The learning process can take place
either offline or online, and when multiple tasks are demonstrated, it transitions into
multitask learning. Furthermore, simulators or physical systems offer platforms for policy
evaluation, interaction, and iterative enhancement[4].
The significance of imitation learning, especially in robotics, is profound. It is now
considered a pivotal technology for manufacturing, elder care, and the service industry,
where robots are expected to work with humans [4].

Behavioral Cloning (BC)

Behavioral Cloning (BC) serves as a potent approach in imitation learning, aiming at
establishing a direct correlation between states or contexts and resultant actions or
trajectories, circumventing the need to deduce the underlying reward function. The core
advantage of BC lies in its ability to aptly replicate demonstrated behavior when such
a direct association is the most succinct representation of the desired action sequence.
Distinguishing between two main methodologies, model-free BC focuses on learning
without relying on underlying system dynamics, whereas model-based BC capitalizes on
this knowledge for enhanced learning.
Given an expert’s demonstrations, BC aims to develop a policy that relates context to
trajectories or links state (and context) to control input. Grounded in the assumption that
an expert’s demonstration dataset is accessible, BC models the learning challenge as a
supervised regression problem, with the overarching objective being to approximate the
expert’s exhibited behavior[4].
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2.3 Inverse Reinforcement Learning

Inverse Reinforcement Learning (IRL) focuses on recovering a reward function by observ-
ing a policy or demonstrating it. This technique, alternatively termed inverse optimal
control, inverse planning, or structural estimation of MDPs, perceives the reward function
as a concise way to specify the desired behavior. In the context of IRL, given measure-
ments of an agent’s behavior, sensory inputs, and a model of the physical environment,
the challenge is to ascertain the reward function the agent is optimizing.
IRL operates under the assumption that the demonstrator’s decision-making process
follows a Markov decision process (MDP), which encompasses states, control inputs,
state transition probabilities, a discount factor, an initial-state distribution, and a reward
function.
The IRL objective is to determine the unknown reward function from expert trajectories.
However, due to the potential for a policy to be optimal for several reward functions,
identifying the exact reward function can be challenging. To address this ambiguity,
multiple research efforts suggest optimizing additional objectives. Common methods
of IRL typically follow an iterative learning routine that alternates between addressing
an RL-based challenge and updating an estimate for the cost function. The goal of this
process is to align the state-action frequency between demonstrated and learner-induced
trajectories, thereby determining the policy and reward function parameters[4].

Data: Given expert trajectories D = {τi}Ni=1

Initialize parameters for reward w and policy θ;
while not converged do

Compute the state-action visitation count µ for policy πθ;
Calculate the objective L and gradient ∇wL, contrasting µ against distribution
from D;

Refine reward parameter w;
Adjust the policy parameter θ using RL techniques;

Result: Finalized policy θ and reward w parameters
Algorithm 1: Condensed Overview of Feature-Matching IRL

20



Comparison and differentiation from standard RL

Imitation learning is distinct from the more familiar supervised learning setting. In
imitation learning, the features or states in a dataset of demonstrations are not necessarily
drawn from the distribution of the features the learner will encounter using their own policy.
This distinction means that the assumption of independent and identically distributed
(i.i.d.) data is often violated in imitation learning [4].
Furthermore, imitation learning is closely related to reinforcement learning (RL). While
RL aims to obtain a policy that maximizes an expected reward, imitation learning often
assumes optimal expert demonstrations, which are not available in basic RL. These demon-
strations provide prior knowledge that allows for more efficient methods, potentially
leading to a significant decrease in sample complexity in learning a task by imitation
rather than by trial-and-error reinforcement learning [4].

Discussion of seminal works

The field has seen significant advancements in addressing the correspondence problem.
Modern approaches aim to find a balance between capturing the essence of the demon-
strated task and adapting it to the robot’s capabilities. This involves understanding both
the spatial and temporal aspects of the demonstration and the robot’s motion. Techniques
have been developed to represent and compare the motions of different entities in a unified
framework, allowing for more effective imitation learning.
The correspondence problem in imitation learning is a central challenge, especially when
the expert and the learner have different embodiments. This issue arises when establishing
corresponding states between two entities that differ in morphology, degrees of freedom,
dynamics, and more. The problem revolves around how one can map the actions or states
of one agent (typically a human expert) to another agent (like a robot) that might have a
completely different structure or set of capabilities.
Historically, numerous approaches in imitation learning have often sidestepped the corre-
spondence problem, either by focusing on scenarios where the expert and learner possess
similar or identical embodiments or by employing methods that rely on robot-specific
proprioceptions, such as kinesthetic teaching or teleoperation. However, with the ad-
vancement of robotics and artificial intelligence, there’s been a heightened interest in
confronting the correspondence problem directly. This is particularly evident when the
demonstrator, a human, and the robot learner exhibit diverse morphologies or capabilities.
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The contemporary literature has delved into various methodologies to address this chal-
lenge, striving to identify a correspondence that not only encapsulates the intrinsic intent
of the demonstration but also remains adaptable to the robot’s distinct characteristics.[29].

Recent developments

Imitation learning has witnessed significant advancements in recent years, particularly
in addressing the correspondence problem. One innovative approach involves using
structured representations, such as graphs, to encapsulate the embodiment of robotic
systems. By deriving similarity measures between these representations, it’s feasible to
establish correspondence among robots with varied morphologies.
Another notable stride in the field is the introduction of adaptive policies and frame-
works. These can determine correspondences based on the robot’s interactions with its
environment. Leveraging mathematical constructs like Riemannian metrics, these poli-
cies can prioritize different correspondences depending on the robot’s current state and
objectives[30].
A paramount challenge in this domain is ensuring that robots not only mimic tasks but
also adhere to safety protocols, navigate around obstacles, and respect their physical
boundaries. Contemporary research has introduced frameworks that amalgamate these
considerations, guaranteeing both precise and safe imitation by the robot.
The emergence of these new policies and frameworks has amplified the efficacy of imitation
learning across diverse robotic systems. Such progress not only boosts the efficiency of the
learning process but also extends its range of applications. This paves the way for versatile
robotic systems capable of learning from various experts.
In the broader spectrum of imitation learning, solving the correspondence problem is
vital. It empowers robots and other artificial agents to learn from various experts, be it
humans, other robots, or even virtual entities. As the discipline matures, solutions to the
correspondence problem are expected to be instrumental in steering the future trajectory
of imitation learning and robotics[29].
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3 Methodology and Approach

In this chapter, we’ll unpack the methodology driving our exploration into robotics and
reinforcement learning. We begin by articulating the correspondence problem central to
this study, followed by a succinct exposition of our hypothesis. The tools and frameworks
will be described, setting the stage for our research design. From coding to correspondence
matching, embodiment modeling, and experimental setups, this chapter offers a clear
roadmap for our research.

3.1 Problem Statement and Hypothesis

This section focuses on solving the correspondence problem in the imitation learning
problem. We aim to define the problem, propose a hypothesis for its resolution, and
present a structured approach for testing the hypothesis.

3.1.1 Defining the correspondence problem

The correspondence problem is a fundamental challenge in computer science, especially
in pattern recognition, computer vision, graphics, and bioinformatics. It revolves around
finding an optimal correspondence between the vertices of graphs to minimize or maximize
their node and edge disagreements (affinities) [29]. This problem is essential because it
relates to many real-world applications where correspondence and similarity between
graphs are required. One of the main advantages of using graphs to describe relational
information, as opposed to vectors, is that graphs offer a more powerful representation of
structural relations. In most real-world scenarios, nodes and edges in these graphs are
assigned with arbitrary attributes, making this modeling approach flexible and widely
applicable.
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In the context of imitation learning and reinforcement learning, addressing the corre-
spondence problem is crucial. It enables robots and artificial agents to learn from various
experts, including humans, other robots, or even virtual agents. By encoding geometrical
cues in the graph representation and the matching process, graph-matching methods
can generally find better correspondence than point-based registration methods, such as
RANSAC or Iterative Closest Point (ICP) [29]. This is especially true when dealing with
agents or robots with different morphologies or capabilities.
For this study, the correspondence problem was addressed by leveraging the Unified
Robot Description Format (URDF). The URDF files were transformed into structured
graphs, which encapsulated the essence of each robot’s embodiment. This paved the
way for correspondence-matching techniques, enabling the establishment of relationships
between different robotic systems or agents via graph representations. By tackling the
correspondence problem head-on, it becomes feasible to bridge the gap between diverse
agents, ensuring that the underlying intent of demonstrations is captured and adapted to
the unique characteristics of the learner [29].

3.1.2 Research Outline

This subsection outlines our methodology for tackling the correspondence problem, focus-
ing initially on defining the graph structure that represents various robotic embodiments.
1. Graph Transformation:

The primary phase involves the transformation of Unified Robot Description Format
(URDF) files into structured graphs. These graphs encapsulate the essence of each robot’s
embodiment, ensuring a comprehensive representation that can cater to various robotic
architectures and embodiments.

• Data Collection: URDF files for various robotic agents were collected to ensure
diversity in embodiments.

• Graph Formation: A handcrafted algorithm was developed to transform URDF files
into structured graphs, with each node representing a joint and edges representing
the distances between these joints.

2. Correspondence Matching:

Once the graphs are generated, the next step focuses on finding the optimal correspondence
between them.
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• Feature Extraction: For each graph, features that include geometric and kinematic
cues are extracted. These features serve as the basis for matching.

• Graph Matching Algorithm: A graph matching algorithm is applied to find the best
correspondence between the graphs. The objective is to minimize the distortion and
maximize the affinity between graphs.

3. Imitation Learning Setup:

The established correspondences are then used to set up imitation learning scenarios
where agents can learn from diverse experts.

• Experiment Design: Several experiments were designed where robotic agents, using
the established correspondences, tried to imitate expert movements or tasks.

• Evaluation Metrics: Performance metrics were identified to evaluate how closely the
agents could imitate the experts. This includes quantifying the difference between
the movements, the accuracy of task completion, and the time taken.

4. Analysis and Refinement:

Post-experimentation, the results were analyzed to evaluate the effectiveness of our
approach.

• Results Compilation: The outcomes of the experiments were compiled, quantifying
the agents’ performance.

• Refinement: Based on the results, iterative refinements were made to the graph
transformation and matching algorithms to improve performance.

In conclusion, the research outline provides a structured pathway, from graph formation
to imitation learning, ensuring that the correspondence problem is tackled holistically.
Through iterative processes and robust evaluation, we aim to validate the proposed
hypothesis and contribute to the field of robotics and reinforcement learning.

3.1.3 Hypothesis about the Optimal Correspondence

The correspondence problem in imitation learning, especially when considering different
embodiments, remains a significant challenge. This problem arises when establishing
corresponding states between an expert and a learner, especially when their embodiments
differ in terms of morphology, degrees of freedom, and dynamics, among other factors.
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The core of this problem is how an agent (the learner) can replicate a behavior observed
in another agent (the expert) when they operate under different kinematic and dynamic
constraints.
To address this, embodiments are represented as structured graphs, with the corre-
spondence problem formulated as an inexact Graph Matching (GM) problem[29]. The
correspondence can be represented as an injective function mapping nodes between em-
bodiment graphs based on certain objectives. The inexact GM aims to find correspondence
with minimum distortion, maximizing affinity between graphs. The embodiment metric is
then defined as the sum of corresponding global feature distances, essentially measuring
the distance sum of corresponding joint poses between embodiments.
The hypothesis is that the correspondence problem in imitation learning can be formulated
as this inexact GM problem, where a bijective map between embodiment nodes might
not always exist. This approach provides a structured and mathematical way to address
the correspondence problem, offering a potential solution to one of the long-standing
challenges in imitation learning[31, 32].

3.2 Data and Tools

This section details the data frameworks and tools foundational to this research. Beginning
with an in-depth look into PyTorch and its application in reinforcement learning tasks, we
segue into the nuances of neural network architectures, delving into their anatomy and
operation. Further, we explore the essence of robot representation through the URDF and
how it underpins the embodiment modeling. Finally, we introduce the specific robotic
environments employed for experimentation, providing a setup on which our algorithms
were tried and tested.

3.2.1 Overview

The landscape of machine learning has witnessed rapid advancements, particularly
with the advent of robust libraries and hardware tailored for training and deployment
pipelines. Among the prominent emerging frameworks is PyTorch, an imperative style,
high-performance deep learning library [33]. PyTorch, coupled with Python and Numpy,
offers a potent combination for robotics research, facilitating the development and de-
ployment of sophisticated algorithms in a user-friendly environment.
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TorchRL, a control library built on PyTorch, is a versatile tool for reinforcement learn-
ing and control tasks. It is designed to balance modularity and integration, making it
especially suitable for complex, real-world data and environments. TorchRL introduces
the TensorDict, a novel PyTorch primitive, which serves as a flexible data carrier. This
design ensures seamless integration of various library components while preserving their
individual modularity. Such a structure allows for replay buffers, datasets, distributed
data collectors, environments, transforms, and objectives to be used either in isolation or
in combination, providing researchers with unparalleled flexibility [34].
In the context of this research, TorchRL was particularly beneficial. Initially, the Mush-
roomRL library was employed for experimenting with PPO and TRPO algorithms[35].
However, due to TorchRL’s adaptability and the ease with which correspondence rewards
could be defined, it became the library of choice. The ability to manipulate the PPO agent
and define correspondence rewards was made significantly more convenient with TorchRL,
underscoring its utility in reinforcement learning tasks.

Neural Network Architectures

Deep Reinforcement Learning (DRL) has emerged as a powerful approach for training
agents to perform tasks by interacting with their environment. Central to the success of
DRL is the use of deep neural networks, which provide the capability to process high-
dimensional inputs, such as raw pixel data from images, and learn complex representations.
These networks have achieved human-level performance in various tasks, notably in games
like Atari 2600, where agents make decisions based solely on raw pixel values [36]. The
rich representations offered by deep neural networks enhance the efficiency of reinforce-
ment learning, allowing agents to generalize across different tasks and environments. The
agent employed in this study is trained via the PPO algorithm. Within the PPO framework,
neural networks are foundational for approximating the policy (actor) and value (critic)
functions.

Shared Base Network: The primary layer of our agent’s architecture is the Shared
Base Network, constructed as a Multi-Layer Perceptron (MLP). It undertakes the role of
processing state representations from the environment.

• Architecture: The MLP is constructed with two hidden layers, each containing 64
units.
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• Activation Function: A Rectified Linear Unit (ReLU) is employed as the non-linear
activation function.

• Output: Producing a shared feature vector, the output dimension is 256, serving as
input for both actor and critic networks.

Actor-Network: The actor network uses the shared feature vector to produce a distribu-
tion over potential actions contingent on the nature of the action space.

• Discrete Action Spaces:

– The network outputs logits corresponding to each potential action.
– It utilizes anMLP, where the architecture’s depth is externally defined. Typically,
this comprises a single layer with units equivalent to the number of possible
discrete actions.

• Continuous Action Spaces:

– Output parameters fit for a Gaussian distribution, detailing the mean and
variance.

– An extra layer ensures these parameters fall within a predefined range.
– The depth and unit count of each layer can be externally set. Generally, the

MLP has one layer with units double the dimensionality of the action space to
cater to both mean and variance values.

Critic Network: The critic network, integral for predicting the expected return from a
particular state, derives its input from the shared feature vector. It maps this input to a
singular scalar value, indicating the predicted value. The architecture of this network is
modular, with layers whose number of units is determined by an external configuration.
In the provided setup, the critic network often comprises a single layer, but its depth and
width are adjustable, offering adaptability to diverse problem scenarios.
By adopting a shared base network, this architecture capitalizes on parameter efficiency. It
enables the actor and critic networks to leverage common patterns in the data, streamlining
their function approximations. The fully connected nature of these networks underscores a
dense inter-neuronal connection, facilitating the complex function approximation requisite
for reinforcement learning tasks.
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3.2.2 Modeling of Embodiments

The Unified Robot Description Format (URDF) is an essential tool in robotics, offer-
ing a standardized method to represent a robot’s geometry, kinematics, and dynamics.
Developed as an XML-based format, URDF describes the kinematic structure, dynamic
parameters, visual representation, and collision geometries of a robot [37]. This human-
readable format delineates robot links (rigid bodies) and the joints connecting them using
a tree structure.
A URDF model is a comprehensive XML file that captures the kinematic structure, dynamic
parameters, visual representation, and collision geometries of a robot. The file may also
reference other files containing 3D geometries of the robot’s components[38]. The primary
components of a URDF file are described as follows:

• Robot Name: Every URDF file begins by specifying the robot’s name.
• Links: These represent the rigid bodies of the robot. Each link has a visual repre-

sentation, which can be a simple geometric shape or a complex mesh.
• Joints: Joints define the connection between links. They specify the type of move-

ment (e.g., continuous rotation) and the axis of rotation.

For instance, a simple 2 DoF planar robot’s URDF file might define a base link, a visual
representation using a box geometry, and a continuous joint connecting the base link to
another link [38].
The URDF, or Unified Robot Description Format, constructs a robot’s skeleton by hierarchi-
cally defining its links and joints. Each link represents a rigid body, and the joints define
the spatial relationships and movements between these links. This hierarchical structure,
often visualized as a tree, captures the robot’s kinematic chain, starting from a base link
and branching out to the various end-effectors and other components. The links and joints
are described using XML tags, with attributes detailing their physical properties, visual
representations, and collision geometries. This structured representation ensures that
every aspect of the robot’s physical structure, from its overall shape to the minutiae of its
joint limits, is captured in a standardized format.
Regarding graph matching on the URDF-constructed skeleton, the tree structure inherent
in the URDF can be transformed into a graph representation. Each node in the graph
corresponds to a link in the robot, and the edges represent the joints connecting them.
With this graph representation, graph-based algorithms can find correspondences between
robot models. This is particularly useful in imitation learning, where the goal is to map
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the movements of one robot (or human demonstrator) onto another robot with potentially
different morphology. By finding the optimal node (link) correspondences between the
two graphs, one can effectively determine how movements in the source robot should be
translated to actions in the target robot, ensuring accurate and meaningful imitation.
In this research, URDF files were crafted for specific robotic environments: the inverted
pendulum, double inverted pendulum, half cheetah, and ant. These URDF files not only
provided a detailed model of each robot but also served as the foundation for subsequent
graph-based representations. By transforming these URDFmodels into structured graphs, it
became feasible to tackle the correspondence problem, a challenge central to this research.
The graph representations encapsulated the essence of each robot’s embodiment, paving
the way for advanced correspondence-matching techniques[37].
In section 3.3.2, we utilize the URDF as the standard data format for constructing the
embodiment graph, which lays the foundation for our imitation learning study.

3.2.3 Experimental Environments

In reinforcement learning, simulated environments play a key role. These environments,
often governed by physics engines, provide a sandbox for agents to learn and refine their
policies before deployment in real-world scenarios. The following environments were
utilized in this study:

Inverted Pendulum: The Inverted Pendulum task is a fundamental control problem
where the primary objective is to balance a pendulum upright by applying forces at its
pivot point. This task is a fundamental benchmark in reinforcement learning due to its
simplicity yet non-trivial dynamics. It is an initial testbed for many algorithms, offering
insights into their stability and control capabilities[39].

Double Inverted Pendulum (IDP): An extension of the Inverted Pendulum, the Double
Inverted Pendulum, or IDP, introduces an additional pendulum segment. This added
complexity makes the task more challenging, requiring finer control to maintain balance.
It’s a testament to an algorithm’s capability to handle increased system intricacies[39].
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Half Cheetah: The Half Cheetah environment simulates a two-dimensional, planar,
bipedal robot that mimics the motion of a cheetah. The primary goal in this environment
is to make the cheetah run as fast as possible. It’s a more complex task that tests an
algorithm’s proficiency in handling locomotion challenges, multi-joint coordination, and
energy-efficient movement[39].

Ant: The Ant environment represents a quadrupedal robot navigating a two-dimensional
plane. The objective is to guide the ant to move in various directions while maintaining
stability. This environment is particularly challenging due to the multifaceted dynamics of
a four-legged creature, demanding intricate coordination and balance[39].
These environments, depicted in Figure 3.1, serve as a diverse set of benchmarks that range
from simple balancing tasks to complex locomotion challenges. Specifically, we utilize
these settings to perform imitation learning between expert and learner pairs. For instance,
the inverted pendulum and the double inverted pendulum serve as the expert-learner pair
for one set of experiments. Another planned expert-agent pair for future work involves
the half-cheetah and ant environments. These settings are instrumental in evaluating the
robustness, adaptability, and efficiency of reinforcement learning algorithms in continuous
control domains.

(a) Inverted Pendulum (b) Double Pendulum (c) Half Cheetah (d) Ant

Figure 3.1: Experimental gym environments

3.3 Approach and Procedure

To ensure the accurate and systematic translation of robotic motion into abstract skeletal
structures and further into a trainable reinforcement learning model, a well-defined
methodology was crucial. This chapter explains the step-by-step procedure we followed,
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beginning with tool and library selection and culminating in the design of correspondence
reward functions based on the correspondence hypothesis mentioned in the previous
chapter. Each sub-phase of our approach was vital, establishing building blocks that
collectively shaped the foundation and execution of our study.

3.3.1 Representation of Embodiment Using Structured Graphs

Robotic motion and interaction within an environment are fundamentally shaped by
the spatial relationships and movements of their constituent parts. Abstracting these
relationships into skeletal structures offers a concise representation of a robot’s physical
configuration and joint articulations. These skeletons serve as graphical representations of
the robot’s physical structure and joint relationships, enabling an intuitive understanding
and manipulation of robotic motion.
Our choice of embodiment representation is motivated by the need to meet several require-
ments: (i) generic - the representation can be applied to diverse physical embodiments;
(ii) geometric-kinematic - it encapsulates the shape and motion of the embodiment; (iii)
extrinsic - features such as links or joint poses can be measured against a reference frame;
and (iv) metric-compatible - it permits the introduction of a distance measure across varied
embodiments with different DoFs.

Rigid Body State Representation

In robotics, a common approach to represent the kinematics of interconnected rigid links
is through a Lie group representation using the special Euclidean group SE(3)[40]. A
point on this manifold, represented as T ∈ SE(3), encapsulates the entire pose, both
position and orientation, of a robot link frame or an object. Formally, this can be expressed
as:

T =

⎡⎣R p

0⊺ 1

⎤⎦ ∈ SE(3) , (3.1)

where R ∈ SO(3) is a rotation matrix with properties RR⊺ = R⊺R = I and detR = 1.
The column vector p ∈ R3 describes the frame’s translation with respect to a reference
frame. Simplifying the notation, we often write T = [R,p].
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Choice of metric in SE(3). We define the distance measure between two points in SE(3),
T1 = [R1,p1] and T2 = [R2,p2], as a combination of a translational and a rotational
component:

dR(T1,T2) = ∥p1 − p2∥+ ∥(LogMap(R⊺
1R2))∥, (3.2)

where LogMap(·) refers to the operator mapping an element from SO(3) to its tangent
space. In this context, while the first term uses the standard Euclidean norm between the
two frame origins p, p̂, the second term employs a bi-invariant Riemannian metric on
SO(3). Given that both terms in the equation are metrics, Equation 3.2 establishes itself
as a metric on SE(3)[41].

Constructing Graphical Representations from Robot Models

Robot models, commonly provided in the Universal Robot Description Format (URDF),
detail the links and joints of a robot. Using specialized classes, these models can be
converted into a format suitable for further operations.
During the transformation process, each model link is examined to determine the degrees
of freedom (DoFs) for movable joints while acknowledging fixed joints. This conversion
process captures the key properties of individual rigid bodies, especially the parent-child
relationships between links.
Further, we construct the embodiment graph by associating a node with each joint of
the robot body. Physical links between joints dictate the edges. For an embodiment
with M -DoFs and joint configuration q ∈ RM , each node’s joint pose is computed by
Ti = liv(q).
The embodiment can be represented as a structured graph G = (V,E, lv, ls, le) comprising
a node index set, edge set, and feature functions.
Each node v ∈ V and edge e ∈ E possesses distinct attributes and features:
Node Attributes:

• pose: The spatial position of the node.
• var: Uncertainty associated with the node’s position.
• name: A unique identifier for the node.
• lv: Maps a node to a joint pose with respect to a base frame.
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• ls: Computes local graph heuristics measuring the physical embodiment topol-
ogy.

Edge Attributes:

• length: The Euclidean distance between two interconnected nodes.
• le: Represents the physical length between nodes, i.e., joint poses.

The metric space defined by (SE(3), dR) serves as the global feature space with a specific
distance function for node comparison. The local feature space is identified as an Euclidean
space (R, dR).
Utilizing the ‘networkx‘ library, the skeletal graph can be efficiently represented. Essential
operations include loading the skeletal structure, calculating link lengths, examining
adjacency matrices, and visualizing the skeletal construct.
For an N -joint robot, the overall embodiment state can be distinctly defined by an element
of the direct product space comprising concatenated joint poses.
This methodological framework equips researchers with a thorough toolkit for creating,
visualizing, and analyzing skeletal structures for embodiment comparison. By translating
these entities into graphs, various mathematical and computational techniques become
available, heralding deeper insights and advanced operations.

3.3.2 Graph Matching as a Representation of Embodiment Correspondence

In this section, we delve into expressing the connection between two embodiment repre-
sentations, denoted asG1 andG2, which have a predetermined number of nodes and edges,
captured as n = |V | and m = |E|. This connection or correspondence is conceptualized
as an injective function c : V1 → V2 that establishes a link between nodes across embodi-
ment graphs based on specific criteria. We theorize that within imitation learning, this
correspondence challenge is best framed as an approximate graph matching problem [29].
Given that there’s rarely a direct bijective relationship between nodes (considering n1

doesn’t always equate to n2), the strategy is designed to pinpoint correspondence with
minimal distortion or to amplify graph similarities.
First, we introduce the notion of correspondence through a binary assignment matrix,
represented as X ∈ {0, 1}n1×n2 . The overarching structure of the graph G is depicted
through the node-edge incident matrix, captured as G ∈ {0, 1}n×m, with the condition
that Gi,e = Gj,e = 1 if and only if the i-th and j-th nodes are bridged by the e-th edge.
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Drawing inspiration from Lawler’s Quadratic Assignment Problem, the correspondence
conundrum between G1 and G2 is framed as:

vec(X)⊺Kvec(X)

s.t. X ∈ {0, 1}n1×n2 , X1n2 = 1n1 , X
⊺1n1 ≤ 1n2

(3.3)

Within this formulation, K serves as the second-order affinity matrix. The inherent
constraints are designed to ensure a two-way one-to-one node connection across graphs.
As detailed in [42], the decomposition of K is presented as:

K = (H2 ⊗H1)diag(vec(L))(H2 ⊗H1)
⊺,

s.t. H1 = [G1, In1 ] ∈ {0, 1}n1×(m1+n1),

H2 = [G2, In2 ] ∈ {0, 1}n2×(m2+n2),

L =

⎡⎣ Ke −KeG⊺
2

−G1K
e G1K

eG⊺
2 +Kv

⎤⎦ ∈ R(m1+n1)×(m2+n2)

(3.4)

Local graph-oriented heuristics in the aforementioned factorized expression are derived
from both edge-affinity and node-affinity matrices, as illustrated:

Ke
i,j = exp

(︃
−(l1e(i)− l2e(j))

2

σe

)︃
, σe > 0,

Kv
k,l = exp

(︃
−(l1v(k)− l2v(l))

2

σv

)︃
, σv > 0,

(3.5)

where hyperparameters are represented by σe and σv.
There exists an array of solution approaches to address the problem within the realm of
graph-matching [29, 43]. But given that the approximate Graph Matching problems in this
study involve relatively smaller graphs (less than 30 nodes as an example), our strategy
harnesses the straightforward yet effective Spectral Matching technique, also recognized
as the Power Iteration method. The methodology behind Spectral Matching streamlines
the matching output into a vector unit, bypassing the binary constraints. Following this,
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Figure 3.2: Correspondence match between inverted pendulum and double inverted
pendulum

the relaxed solution draws from the power iteration rule: xi+1 = Kxi/∥Kxi∥. As a final
step to restore the binary constraints, the solution derived from Spectral Matching is
subjected to the Hungarian algorithm [44].

Example: Correspondence Matching in Kinematic Trees

To elucidate the concept of correspondence matching between kinematic trees, let’s
consider two different systems: an inverted pendulum and a double inverted pendulum.
In this case, we have three key points of correspondence: the base joints, the pivot points,
and the endpoints of the pendulums.

1. Base Joints: The distance between the base joints of the two systems is always zero
since these points are fixed and serve as the origin for the other joints.

2. Pivot Points: These joints enable the pendulum’s motion. In the case of the double-
inverted pendulum, there will be an additional pivot compared to the simple inverted
pendulum. Matching these pivots would involve computing their spatial distance in
a specific configuration, contributing to the overall correspondence matching metric.

3. End-points: These are the points at the free ends of the pendulums. In the case of a
double inverted pendulum, the second pendulum’s end-point would be matched to
an equivalent point derived from the simple inverted pendulum.
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The visual representation of these correspondence matches can be illustrated with lines
pointing from matched joint to matched joint, emphasizing the spatial relationship and
how each joint in one structure corresponds to a joint in the other. The overall goal is to
minimize the spatial discrepancy across these matched joints, which contributes to the
reward function in optimizing the kinematic tree configuration.

Correspondence Distance Computation

The correspondence distance computation serves as an aggregate measure for the align-
ment between the two robotic embodiments. To incorporate the notion of correspondence
between the joints, we make use of the optimal correspondence matrixM∗, obtained
through the approximate Graph Matching method, as described in the subsection 3.3.2.
The correspondence distance is a more nuanced quantity obtained as follows:

dC = tr(M∗D⊺) (3.6)

where Dij represents the distance between joint i in the first model and joint j in the
second model, and tr(·) is the trace of the resulting matrix. The trace essentially captures
the sum of the diagonal elements, the aligned distances after correspondence.
The resulting correspondence distance serves as a critical metric in designing our corre-
spondence reward function. It quantifies the deviation or alignment between the two
robotic embodiments and plays a significant role in influencing the agent’s actions and
learning trajectory.

3.3.3 Utilization of PPO and TRPO Algorithms

In the beginning stages of this research, we explored the trust region by employing the
TRPO and PPO algorithms to train the gym environments. The purpose was to analyze
the effectiveness and nuances of each algorithm for the problem at hand.
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Core Framework

Initially, an experiment setup was developed to test and evaluate the performance of the
selected algorithm, whether it be PPO or TRPO. This setup included:

• Configuring the environment using OpenAI’s Gym interface for the single inverted
pendulum task.

• Specifying a Gaussian policy, which is parameterized by a neural network.
• Iteratively training the agent over specified epochs, each involving learning from

the environment and evaluating the agent’s performance.
• After training, the agent’s performance was visualized over a few episodes.
• For reproducibility and future use, the learned weights of the agent’s policy were

saved.

Refinement and Modularization

To enhance the scalability of the training process across multiple environments and
tasks, a more refined and modular framework was constructed. This framework used
configuration-driven design thanks to the hydra utility. With this setup, training various
environments became as simple as specifying the environment name and corresponding
configuration files.
The core components of this refined framework are:

• A mechanism to construct PPO models based on whether the environment state was
described using pixel data or traditional state vectors.

• Separate modules for policy and value function, each defined using neural networks.
For environments with continuous actions, policies were formulated using a TanhNor-
mal distribution, whereas discrete action spaces utilized the OneHotCategorical
distribution.

• A loss computation module, which, in the context of PPO, employed a clippingmecha-
nism to maintain the updated policy close to the original policy during optimization.
This is a central feature of the PPO algorithm to ensure stable learning.
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3.3.4 Design of Correspondence Reward Functions

In the domain of Inverse Reinforcement Learning, the design of the reward function holds
paramount importance. It offers the agent crucial insights about the optimality of its
actions within a specific state. For our study, which delves into correspondence matching
in robotics, the reward function is indispensable. It not only serves as a guide but also
ensures that the agent achieves the desired behavior: a close correspondence between
different embodiments.
A challenge intrinsic to our study is the assessment of the proximity between the joints of
two robot embodiments. With this challenge in mind, our reward function is tailored to
reflect the distance between corresponding joints. Our primary goal was to encourage
our Proximal Policy Optimization (PPO) agent to align the joint configurations of two
diverse robotic embodiments closely. As such, our correspondence reward system was
designed such that the closer the joint configurations between the two models, the higher
the reward given to the agent, and conversely, more significant disparities resulted in
lower rewards.

Embodiment Metric and Reward Function Construction

Consider P1 as the imitating embodiment (learner) with the configuration vector p. This
structure is characterized by its kinematics representation as m1

1(k) = Kp(k). For every
node k within N1, its Jacobian is given by Jk(p), derived from a known robotic model.
We utilize the notation P1(p) to emphasize how each configuration can alter the graph’s
properties via Kp(·).
The mentor morphological structure, denoted asP2, can either be derived from a controlled
robot or an unregulated human form using certain humanoid models. When the optimal
correspondence matrixM∗ is retrieved using the approximate Graph Matching method,
the morphological metric is formulated as the aggregate of the paired global feature
differences. Morphological metric can be explicitly described as the accumulated distance
of matched joint positions across the forms:

δM (P1(p),P2) = tr(M∗B⊺),
where Bk,l = δS(Kp(k),m

2
1(l))∀k ∈ N1, l ∈ N2.

(3.7)
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The function δM (P1,P2) serves as a metric within the space of all morphological graph
representations, symbolized by P.
Having established how the morphological features of both the learner and mentor robots
are quantified, we can now utilize this embodiment metric, δM , in formulating our reward
function.
The correspondence reward function utilizes the tensorXd, which encapsulates the details
of joint configurations and is obtained through a specialized correspondence method. The
reward function is defined as:

r(q1,q2) = exp(−δM (P1(q1),P2(q2))) (3.8)

where q1 and q2 represent the joint configurations of the two models. The scalar
d(q1,q2,Xd) signifies the total distance between the correspondences of these models, as
elaborated in a preceding section. The design ensures that a smaller d yields a higher r,
guiding the agent to find configurations that minimize the correspondence distance.

Integration with the PPO Agent

The correspondence reward function was encapsulated within a class. This class inherits
from a superclass and primarily interfaces with the agent’s observations, transforming
them into correspondence rewards. The reward is then integrated with the data collection
process and the testing environment. This ensures that during training and evaluation, the
PPO agent’s interactions are consistently guided by the designed correspondence reward
mechanism.
To further illustrate, upon the agent’s interaction with the environment, the observed
joint configuration is passed through the reward function. The resultant reward value,
grounded in the principles of correspondence, then influences the agent’s learning, subtly
nudging it towards achieving better alignment between the two robotic models.
In conclusion, the correspondence reward function serves as a bridge between the agent
and the desired task of achieving optimal joint correspondences. It ensures that the PPO
agent receives pertinent feedback regarding the quality of its actions, driving it towards
achieving the intended goal of the study.
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4 Experiments and Results

In this illuminating chapter, we delve into the practical facet of our research. With a
foundational understanding of our methodologies, we transition to the empirical side,
presenting the detailed experimental setups we employed, from the hardware configura-
tions to the digital environments. We systematically analyze and present the outcomes,
showcasing the performance metrics and trajectory analyses employed.

4.1 Experimental Setup

The experiments were conducted on the Lichtenberg High Performance Computer (HPC).
This HPC system offers a robust infrastructure that caters to high computational demands.
The Lichtenberg HPC comprises multiple login nodes, and these nodes are equipped with
the "Cascade Lake" architecture, supporting AVX512, and boast 96 cores with a memory
capacity of 768 GB RAM. Notably, some nodes are also further enhanced with NVidia
Tesla T4 GPUs.
Furthermore, the HPC system is equipped with accelerator nodes that feature GPU accel-
erators from Nvidia, specifically the Volta 100 and Ampere 100 models. These GPUs are
designed to significantly boost computational capabilities, especially beneficial for tasks
that require parallel processing, such as deep learning models and simulations[45].
For experiment tracking and result visualization, we utilized Weights and Biases (wandb),
which greatly facilitated the monitoring of real-time metrics and overall performance [46].
In the context of this study, leveraging MuJoCo’s gym environments provided a robust
platform for simulating and analyzing the dynamics of robotic systems, ensuring accurate
and efficient results. MuJoCo, which stands for Multi-Joint Dynamics with Contact, is a
physics engine tailored specifically for model-based control. MuJoCo represents multi-joint
dynamics in generalized coordinates and computes them using recursive algorithms [47].
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4.1.1 Description of Environments

In this study, various environments were used to assess the effectiveness of our correspondence-
matching approach in reinforcement learning. These include the single-inverted pendulum,
double-inverted pendulum, half-cheetah, and ant environments. Classical deep reinforce-
ment learning techniques, specifically the Proximal Policy Optimization algorithm, were
initially employed to train agents in each setting.
For the inverted pendulum and double inverted pendulum experiments, the focus was on
achieving specific states, namely the swing-up state. After training an agent in the single
pendulum environment, we used our correspondence matching method to transfer this
learning to the double pendulum environment. The double pendulum agent was guided
to reach the swing-up state of the single pendulum by minimizing the correspondence
points’ distance. Remarkably, the rewards achieved through this approach were better
than those gained through conventional deep reinforcement learning. This improvement
was also visually evident in the environment simulations.
In the case of the half-cheetah and ant environments, the objective is to teach locomotion.
We plan to train the half-cheetah agent using classical PPO methods to learn how to walk
efficiently. The collected trajectories, which will consist of states and actions, are intended
to guide the ant agent through our correspondence matching method. While we have
not yet completed this phase, our hope is that the ant agent will be able to leverage the
’lessons’ learned by the half-cheetah to improve its own walking capabilities.

4.1.2 Performance Metrics

To rigorously evaluate the effectiveness and efficiency of our correspondence-matching
approach, we rely on a combination of quantitative metrics and qualitative insights. We
employ wandb for experiment tracking, and our analysis covers a range of metrics:

1. Reward Metrics: Our primary metric is the reward, used both for training and
testing which depicted in the below Figure 4.1.

42



(a) Training reward (b) Testing reward

Figure 4.1: Example metrics obtained from the combined reward solution.

• Environment Reward (Vanilla RL): The basic reward given by the environment,
serving as a baseline for performance comparison[48].

• Correspondence Reward: We also make use of a correspondence reward, de-
signed based on our correspondence matching methodology.

• Combined Reward: A blend of the environment and correspondence reward,
which yielded the best performance in our experiments.

2. Success Rate over Seeds: To rigorously evaluate the robustness and reliability of
our approach, we employed various seed values in our experiments. While the seeds
themselves are not critical for the learning process, using different seeds allows for
a more comprehensive evaluation of the model’s performance across different initial
conditions.

3. Entropy and Loss Metrics: While not direct performance metrics, ‘entropy‘, ‘critic
loss‘, ‘entropy loss‘, and ‘objective loss‘ provide valuable diagnostic information.
Thesemetrics help understand the agent’s behavior, such as its exploration-exploitation
balance and the convergence of the critic network. The relevant metrics are depicted
in Figure 4.2, given below.

(a) Entropy (b) Critic Loss (c) Objective Loss

Figure 4.2: Additional statistics of the combined reward solution.
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In our experiments on the pendulum environment, the best performance was achieved
using the combined reward scheme, followed by the correspondence reward and then the
classical RL reward. This suggests that augmenting the traditional environment reward
with our custom correspondence-based reward can indeed enhance the learning process,
providing both a robust and effective approach for robotic task imitation.
These metrics are designed to provide a multi-faceted evaluation, capturing both the
quality and efficiency of the imitation learning process. Combined, they give a robust
understanding of the system’s performance, guiding future improvements and refinements.

4.1.3 Trajectory Analysis and Correspondence Matching

In this section, we aim to provide insights into the performance and efficacy of our approach
through two key lenses: correspondence matching and trajectory analysis. First, we will
showcase results from various correspondence-matching exercises that were carried out to
validate the universality of our method. This will include extending our matches beyond
the inverted pendulum and double-inverted pendulum examples discussed in the previous
chapter. Following that, we will delve into the trajectory analysis to examine the behavioral
patterns exhibited by our models during the learning process.

Correspondence Matching: After detailing correspondence matches between the in-
verted pendulum and the double inverted pendulum, here we broaden the scope to
incorporate other intriguing matches. One such match places the inverted pendulum
against the cart pole system, as depicted in Figure 4.3.
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Figure 4.3: Correspondence match between inverted pendulum and cart pole

An additional example considers the matching between a human skeleton and a dolphin
skeleton, illustrated in Figure 4.4.

Figure 4.4: Correspondence match between human skeleton and dolphin skeleton

It is worth mentioning that our automated code system can carry out these calculations
for any kind of embodiment, provided the URDF files are accessible.

Trajectory Analysis: An essential component of our methodology involves the collection
and examination of trajectories. These consist of state-action pairs along with associated
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weights. Once training is complete, the actor’s state dictionary, which essentially represents
the trained policy, is saved for future use. This allows us to reload the state dictionary as
needed for analysis.
Through this mechanism, we identify successful state-action pairs that serve as effective
guiding signals for the reinforcement learning agents during their learning phase. These
pairs are especially crucial for our overarching goal of matching corresponding state-action
pairs across different environments. For instance, successful walking state-action pairs
observed in the expert agent operating in the ’half cheetah’ environment can provide
invaluable guidance to a learner agent in the ’ant’ environment.
However, it’s worth mentioning that this aspect of trajectory analysis was only partially
implemented in our research due to time constraints.

4.1.4 Configurations and Parameters

In our experimental setup, we utilized Hydra for configuring the pipeline. Hydra facilitates
the organization and management of complex application configurations, providing a
structured way to declare and override parameters via YAML files.

Base Configuration File

defaults:
- experiment: ppo_double_pendulum
- _self_

# wandb configs
project: c4il
entity: ias-tudarmstadt
wandb_path: /home/alper/c4il/
save_path: /home/alper/c4il/data/weights/weights.pt

Experiment Configuration File

defaults:
- task: double_pendulum
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# collector
collector:

frames_per_batch: 64
total_frames: 1_600
collector_device: cuda

# logger
logger:

backend: wandb
exp_name: double_pendulum
log_interval: 64
record_video: True
wandb_kwargs:

entity: ias-tudarmstadt
project: c4il

# Optim
optim:
device: cuda
lr: 3e-4
weight_decay: 1e-4
lr_scheduler: True

# loss
loss:

gamma: 0.99
mini_batch_size: 64
ppo_epochs: 10
gae_lambda: 0.95
clip_epsilon: 0.20
critic_coef: 0.5
entropy_coef: 0.0
loss_critic_type: l2
normalize_advantage: True

# network architecture
nets:

47



policy_num_cells: [128]
value_num_cells: [128]

Task Configuration File

env_name: InvertedDoublePendulum-v4
env_task: ""
env_library: gym
frame_skip: 1
num_envs: 1
noop: 1
reward_scaling: 1.0
from_pixels: True
use_pixel_state: False
pixels_only: False
n_samples_stats: 3
device: cuda
seed: 0

The hyperparameters for alternative environments, such as the half cheetah, were config-
ured closely aligned with those of the primary experiments.

4.2 Main Findings

In this section, we present a thorough analysis of the correspondence-matching results com-
pared to classical Reinforcement Learning approaches. We then delve into the successes
achieved and challenges faced during this study.

4.2.1 Results and Analysis of Correspondence Matching

We conducted experiments to compare the efficacy of our correspondence-matching
method against classical Reinforcement Learning (RL). The vanilla RL approach was run
with six different seed values to ensure a comprehensive evaluation, and the mean results
are depicted in Figure 4.5.
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Figure 4.5: Mean training rewards of Vanilla RL

The rescaled mean curve version of the Vanilla RL approach is illustrated in Figure 4.6.

Figure 4.6: Rescaled mean training rewards curve obtained using Vanilla RL

Following this, we employed a correspondence reward function that leverages our correspondence-
matching technique and applied this function to a Proximal Policy Optimization (PPO)
agent. The results are presented in Figure 4.7.
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Figure 4.7: Mean training rewards using correspondence-matching integrated PPO agent

The rescaled mean curve version of the results obtained with the correspondence reward
function is shown below in Figure 4.8.

Figure 4.8: Rescaled mean training rewards curve using correspondence-matching inte-
grated PPO agent

Finally, we also experimented with a combined reward system that merges the correspon-
dence reward from the correspondence matching and the traditional rewards given by
the environment, as shown below in Figure 4.9.
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Figure 4.9: Mean training rewards using both correspondence and environmental rewards

The rescaled mean curve of the combined reward graph is also calculated and presented
in Figure 4.10 below.

Figure 4.10: Rescaled mean training rewards curve using both correspondence and envi-
ronmental rewards

Analysis: Upon evaluating the learning curves and the observed behavior of the systems,
we found that the combined reward system delivered the best performance. With this
approach, the systemwas able to stabilize the pendulum indefinitely. When we applied only
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the correspondence reward based on correspondence matching, the pendulum stabilized
well for a period, but then the reward levels decreased dramatically. This can be attributed
to the diminishing returns on the correspondence reward once the distances are minimized.
In this phase, however, the pendulum stabilized indefinitely and, in most cases, for over
20 seconds. Conversely, the classical RL approach managed to stabilize the pendulum for
a maximum of approximately 8 seconds at peak performance.

4.2.2 Successes and Challenges

Our work has successfully developed a correspondence-matching method, which, when
combined with a Proximal Policy Optimization (PPO) agent, shows promising results
compared to standard reward designs in Reinforcement Learning. The combined reward
system showed particular promise, stabilizing the pendulum indefinitely in tests. Despite
these achievements, challenges arose, notably due to time constraints that impacted
the full implementation of state-action pair matching for complex environments like
the half cheetah-ant case. The long-term effectiveness of correspondence rewards from
correspondence matching also presented a dilemma, necessitating additional methods to
maintain stability.
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5 Discussion

Here, we’ll dissect our results, and contemplate the broader implications, ensuring the
reader can discern the full scope of our research endeavors.

5.1 Interpretation of Results

The primary focus of this thesis is to leverage correspondence metrics into the reward
function design for reinforcement learning, thereby introducing an element of imitation
learning into the learning process. Specifically, we used a correspondence metric along with
a policy from a different embodiment to train another embodiment using Reinforcement
Learning.
Our contribution lies in integrating bi-directional correspondence matrices into the RL
framework as an auxiliary reward. This approach was employed in two distinct manners:
solely using the correspondence reward and combining it with the environment’s nominal
reward. The experimental results indicate the viability of incorporating correspondence
metrics into the reward function. This hybrid approach of using RL with imitation learning
elements demonstrates promising performance.
In summary, the outcomes from our empirical study validate the utility of integrating
imitation learning concepts into RL-based policy training, either as an exclusive reward
function or as a supplementary one combined with traditional rewards. This strategy
could potentially address the challenges in training robots with different embodiments
for complex tasks.
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5.2 Significance of Findings

The implications of this research are significant for robotics and reinforcement learning.
By successfully automating the process of establishing correspondence between dissimilar
robotic structures, the study enhances the adaptability and versatility of robotic systems.
This advancement allows these systems to learn from a diverse set of expert models,
thereby expanding the scope and effectiveness of imitation learning techniques.
Moreover, the generic and flexible nature of the metric-based imitation method introduced
in this research suggests its potential applicability across a wide range of robotic systems
and scenarios. While the current study focused primarily on rigid kinematic chains, the
foundational principles could be extended to other topologies, including tree-like structures
like humanoids or even free topologies such as swarms of flying objects. However, it’s worth
noting the limitations of the current approach, particularly the absence of a probabilistic
description and its current restriction to rigid kinematic chains. Future research could
delve deeper into these areas, further refining the method and expanding its scope.

5.3 Possible Limitations

In the ever-evolving domain of robotics, our approach presents to bridge the data gap,
especially concerning intricate embodiments. Historically, collecting data for complex
robotic forms was laborious and resource-intensive. Our methodology sidesteps this by
reducing the need for data collection, relying on a strategy of corresponding matching. It
facilitates the transfer of learned behaviors from one embodiment to another without the
arduous task of collecting new datasets for every complex robotic environment. However,
this methodology is not without its limitations.
One significant drawback to our method lies in the challenge posed by robot embodiments
that differ considerably in structure and functionality. For instance, matching data and
transferring learnings between a bipedal (two-legged) robot and a quadruped (four-
legged) robot might prove problematic. The physical differences between these two
types of robots are vast, and the underlying dynamics governing their movements and
interactions with the environment differ significantly. Thus, our corresponding matching
method might falter in scenarios where two embodiments are too different or when the
nuances of one robot’s functioning cannot be adequately captured or translated for the
other.
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5.4 Future Work

Building on our findings and the challenges faced, an intriguing avenue for future research
is addressing the dichotomy between robots with similar structural skeletons but divergent
behaviors. The pressing question becomes: How can one effectively train and formulate
policies that cater to such intricacies?
One unexplored aspect is the effect of time-dependent behaviors in simple embodiments.
How would correspondence mapping adapt when the behavior of the more straightforward
entity changes over time? Addressing this issue could provide further insights into the
adaptability and robustness of our method.
Another interesting avenue for research involves investigating the limitations when em-
bodiments are too different. While the current study has made strides in matching corre-
spondence between different embodiments, a deeper understanding is needed to explore
the constraints and potential workarounds when the embodiments diverge significantly.
There’s a vast potential in exploring hybrid training techniques that combine traditional
data collection with advanced transfer learning algorithms. By doing so, one might
unlock the capability to quickly adapt policies crafted for one robot to another with
minor tweaks in its structure or behavior. Furthermore, diving deeper into meta-learning
could provide solutions that allow robots to learn how to learn, thereby becoming more
adaptive and less reliant on large datasets. The end goal would be to create a universal
reinforcement learning paradigm for robotics, where diverse robots could swiftly benefit
from the experiences and learnings of their counterparts. For instance, leveraging policies
from both a single pendulum and a double pendulum could inform a more robust approach
to stabilizing a cart-pole system.
Lastly, a question remains: When is behavior "close" when we have similar but still different
skeletons or graphs? Developing and defining metrics for behavioral divergence could be
a key part of future work in this area.
Overall, moving forward, further research will be essential to extend the current work,
addressing existing limitations and investigating new approaches for more comprehensive
solutions.
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6 Conclusion

This thesis explores the intricacies of the correspondence problem within the realm of
robotics and reinforcement learning. Through rigorous research and experimentation, we
have delved deep into the challenges and potential solutions associated with this problem,
particularly in the context of imitation learning. This problem arises when the learner and
expert agents possess different physical properties, making it challenging for the learner
to effectively imitate the expert.
Our research began with a foundational understanding of reinforcement learning, empha-
sizing its significance in sequential decision-making. The exploration of Markov Decision
Processes (MDPs) further solidified the theoretical underpinnings, providing a robust
framework for modeling sequential decision-making scenarios. The foundational concepts
of robotics, reinforcement learning, and inverse reinforcement learning were explored in
depth, providing the necessary theoretical backdrop for the research. The methodology
adopted was rigorous, ensuring that the investigation was both robust and replicable.
Through a series of experiments, the effectiveness of the proposed approach was demon-
strated, highlighting its potential to enhance the efficiency and adaptability of robotic and
artificial agents.
The core of our investigation revolved around the correspondence problem, where we
introduced a novel approach to address the challenges of imitation learning across dissim-
ilar embodiments. By transforming Unified Robot Description Format (URDF) files into
structured graphs, we were able to encapsulate the essence of each robot’s embodiment.
This transformation helped for our correspondence-matching phase, where features were
extracted and a graph-matching algorithm was applied to find the best correspondence
between the graphs.
Our primary contribution lies in the development and validation of a novel correspondence-
matching method. Unlike traditional approaches, our method leverages a bi-directional
correspondence matrix, allowing for a more dynamic and automated establishment of
correspondences between links. Also, the introduction of a distance measure, which
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utilizes the correspondence matrix, has provided a robust metric to gauge the similarity
between different embodiments.
Furthermore, the experiments and results section of this thesis has provided valuable
insights into the practical implications of our approach. The performance metrics used have
given us the effectiveness of our methodology, guiding future refinements and iterations.
Our experiments, conducted on the IAS Cluster, provided empirical evidence of the efficacy
of our approach.
While this research shows potential in specific applications, it has its limitations that
warrant further investigation. One area of concern is the scope of its applicability across
diverse robotic embodiments and diverging behaviors. These complexities require addi-
tional study. Furthermore, the issue of time-dependent policies, as we initially considered
for the cheetah and ant case, poses an additional layer of complexity that has not yet been
addressed. Lastly, challenges arising from the curse of dimensionality, a common obstacle
in machine learning problems, also require further examination in future work.
In conclusion, this thesis has made strides in addressing the correspondence problem in
imitation learning. The structured-graph correspondence approach has added a valuable
tool to the repertoire of solutions available to tackle this challenge. The contributions of
this work have the potential to inform future research in the fields of robotics and artificial
intelligence.
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