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Abstract

Goal inference is crucial in robotics, enabling effective collaboration in Human-Robot Interaction (HRI) and assisted
teleoperation. Current approaches often rely on Markov Decision Processs (MDPs) and maximum entropy principles to
infer intentions by integrating over trajectory space. However, these methods commonly employ local approximations
around optimal trajectories, which oversimplify the integration and result in unimodal trajectory predictions. They
predominantly consider straight-line paths or user input-related costs, neglecting geometric and contextual constraints
such as obstacles. This paper proposes a Geometrically-aware goal inference framework that integrates motion planning
with Bayesian inference. By leveraging batch-wise motion planning to generate multimodal trajectory distributions
and employing belief updates through Sequential Monte Carlo methods, our approach demonstrates the efficiency of
capturing goal-directed behavior in complex environments. This preliminary study highlights the promise of combining
motion planning with goal inference and motivates future research toward more comprehensive evaluations.



1 Introduction
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Figure 1: Goal inference example in a 2D navigation task. The agent (green dot) starts at the ”Start” location and moves toward
one of three goals, following an unknown suboptimal policy that avoids obstacles. - Top row: Planned paths generated by Gaussian
Process Motion Planning (GPMP). - Bottom row: Evolution of goal probabilities over time for three methods. The amnesic predictor
(black) relies only on Euclidean distance to the goals. The memory-based predictor (orange) employs a direct, Euclidean-optimal path
between points without accounting for obstacles, leading to incorrect probability updates. Our predictor (green) integrates motion
planning to infer goals based on path smoothness and distance-to-go, dynamically updating beliefs as the agent progresses. This
conceptual demonstration highlights how leveraging motion planning can improve goal inference accuracy.

Goal inference is one of the foundational problems in robotics, particularly in human-robot interaction and assisted
teleoperation. In such scenarios, robots must collaborate with humans safely and efficiently, requiring an understanding
of the human’s objectives or goals. Inverse planning has emerged as a widely-used framework to tackle this challenge,
assuming that observed agent movements arise from an underlying intention [1, 2]. By leveraging this assumption,
inverse planning aims to predict the intention behind observed actions.

A key finding from the early work on inverse planning [1] is that humans consider geometric information, such as
obstacles, when forming beliefs about goals. Their experiments demonstrate that humans do not merely rely on straight-
line distances but integrate contextual information from the environment to infer an agent’s intention. This insight
underscores the importance of incorporating geometric and environmental constraints into computational models of
goal inference.

A substantial body of work has explored goal inference within the MDP, modeling it as a rational decision-making prob-
lem [3–7]. These methods assume the agent optimizes its behavior to minimize cost or maximize utility. Researchers
have adopted the Boltzmann agent model to better reflect real-world scenarios, where observed behavior is rarely op-
timal, first introduced by Baker and Ziebart [1, 2]. This model relaxes the strict assumption of perfect rationality by
treating actions probabilistically, assigning higher probabilities to lower-cost actions while allowing for suboptimal be-
havior. This probabilistic framing transforms intention prediction into an inference problem, enabling a more realistic
representation of human behavior.

Despite the progress, many existing approaches rely on simplified assumptions that limit their applicability. For exam-
ple, methods using Laplace approximations [3, 6] or Euclidean metrics often approximate the distribution over trajecto-
ries with straight-line paths, ignoring contextual information such as obstacles or environmental constraints. Similarly,
Bayesian inference methods [8–11] and deep learning approaches [12–14] refine goal inference by modeling temporal
dependencies or encoding task-specific dynamics. However, these methods frequently assume overly simplistic state
transitions or require extensive data, and they struggle to capture the inherent multi-modal nature of real-world trajec-
tories, where diverse paths may lead to different goals.

Recent advancements in motion planning and machine learning provide a unique opportunity to address these limita-
tions. In particular, batch motion planning has become increasingly potent due to advancements in CPU/GPU vector-
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ization, as demonstrated in [15–18]. These methods significantly accelerate computation, making it practical to handle
multiple trajectory hypotheses in parallel. Furthermore, the increasing computational power of GPUs and frameworks
like JAX [19] allows for scalable and efficient batch optimization. By integrating motion planning into goal inference, it
becomes possible to better model the complex interplay between goals, environmental constraints, and the multi-modal
nature of trajectories.

In this paper, we propose a geometrically-aware goal inference framework that leverages motion planning to address the
limitations of existing approaches. Specifically, we:

• Use batch-wise GPMP [20] to generate multi-modal trajectory distributions by sampling diverse initial condi-
tions [21].

• Incorporate path smoothness and obstacle-aware costs into a Bayesian inference framework for dynamic goal
prediction.

• Evaluate the method using two baseline predictors: an amnesic predictor, which relies solely on Euclidean dis-
tance, and a memory-based predictor inspired by [3].

Our method demonstrates the potential of combining motion planning with Bayesian inference to capture the complexity
of goal-directed behavior. By accounting for geometric constraints and leveraging optimal planning manifolds, this
approach improves predictive accuracy in scenarios where ambiguity between goals is prevalent. Furthermore, this
framework is computationally efficient, taking advantage of GPU-accelerated batch optimization to handle complex,
high-dimensional settings.

This work serves as a conceptual step toward bridging the gap between motion planning and goal inference, with impli-
cations for shared control in human-robot collaboration and extensions to multi-agent systems where goal negotiation is
critical.

2 Geometrically-Aware Goal Inference

In this work, we aim to infer the agent’s intended goal g ∈ G, where G ⊆ S is a known set of possible goals, based
on observations ot = {si,ai, ci}ti=1 up to the current time t. The observation includes the agent’s states s ∈ S, agent’s
actions a ∈ A, and additional environmental information c. The agent is assumed to follow an unknown, suboptimal
policy that avoids environmental constraints, such as obstacles. We model a pseudo-likelihood of the agent’s goal g using
a Boltzmann distribution over trajectories

p(Oot
= 1|g, τ ) ∝ exp(−L(g, τ ,ot)).

The cost function L : G × T ×O → R accounts for path feasibility, smoothness, and other constraints. Using Bayes’ rule,
the posterior over goals becomes

p(g|Oot
= 1) ∝

∫
T
p(Oot

= 1|g, τ )p(τ |g)p(g) dτ ∝ p(Og = 1 | g)
∫

p(Oτ = 1 | τ )p(τ | g) dτ p(g), (1)

assuming an independence between goal and trajectory related costs Lo(·) = Lg(·) + Lτ (·). Thus, p(g) is the prior over
goals, p(τ | g) a probability over possible trajectories and the pseudo-likelihoods p(Og = 1 | g) and p(Oτ = 1 | τ ).
Marginalizing over the entire trajectory space T in equation 1 is computationally intractable for continuous state and
action spaces [3,6]. We do not follow a Laplace approximation around an optimal trajectory to address this issue. Rather,
we approximate the posterior by leveraging motion planning to compute a batch of maximum a-posteriori (MAP) trajec-
tories. These trajectories are conditioned on the observed portion ot and represent the most likely completions of τ for
each goal g. In this paper, we use batch-wise GPMP [20] to optimize these MAP trajectories, incorporating geometric
constraints such as obstacle avoidance. To capture the multimodality of T , we initialize the GPMP instances with diverse
initial states, sampling them in a manner similar [21]. For each goal g, the MAP cost is given

LMAP(g) = L(g) + Eτ∼p(τ |g,ot)[L(τ ,ot)] ≈ L(g) + 1

B

∑
TMAP

L(τMAP,ot) (2)

with L(g) and L(τ ,ot) being goal-specific costs and the trajectory-related costs, respectively. This approximation reduces
the need to integrate over the entire trajectory space while still capturing the most relevant information for inference.

To refine the belief over goals, we consider a pseudo-posterior problem that minimizes the divergence between the
current belief and the MAP-based cost distribution

π∗(g) = argmin
π(·)∈P(G)

DKL(π(g), exp(−αLMAP(g))p(g))

s.t. DKL(π(g), πi(g)) ≤ ϵ,
∑n

j=1 π(gj) = 1
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The update rule includes a relative entropy term to ensure smooth belief updates between iterations [22, 23]. Follow-
ing [22], we know that a closed-form update for π(g) is

π(g)∗ = Q−1 exp(−αL(g))ηp(g)ηπi(g)
1−η,

where Q is the normalization constant, and η = 1/(1 + λ1) controls the learning rate.

Since the direct computation of the posterior remains intractable, we implement an iterative approximation scheme using
Sequential Monte Carlo (SMC) [24, 25]. The update process is as follows: (i) Start with the observed trajectory o, a
prior p(g) and the current belief distribution πi(g); (ii) For each goal g, use GPMP to compute the MAP cost LMAP(g),
conditioned on the observed trajectory τ̂ ; (iii) Then update the belief distribution over goals using a

πi+1(g) =
∑n

j=1 a
i+1
j δ(gj)

ai+1
j :=

aij exp(−αLMAP(gj))
ηp(gj)

ηπi(gj)
−η∑n

k=1 a
i
k exp(−αLMAP(gk))ηp(gk)ηπi(gk)−η

.

(iv) Iterate steps 2 - 4 until the belief converges or additional observations are made. Thus, our proposed approach
systematically incorporates optimal trajectories into goal inference, effectively incorporating geometric constraints to
infer the most likely goal.

3 Experiment

We conducted a preliminary study to explore the potential of geometrically-aware goal inference in a 2D navigation task
(see figure 1). In this task, the agent moves from an initial state toward one of three possible goal locations, following an
unknown, suboptimal policy that avoids constraints like obstacles. Our method aims to infer the agent’s intended target
based on its observed trajectory. All computations and updates were implemented in JAX [19], leveraging its efficient
automatic differentiation and GPU acceleration capabilities to scale the method effectively.

Our predictor leverages batch-wise motion planning to approximate the trajectory distribution from the start state
through the agent’s current state to each potential goal. Specifically, we sample initial trajectory particles from an initial
high-variance GP for GPMP optimization, resulting in diverse initial conditions discovering multiple solutions [21]. The
motion planner generates paths assuming the initial state, the current agent state, and each goal state as inputs. These
planned paths are used to compute two key costs: (i) the path length from the current state to the goal and (ii) the
smoothness of the whole trajectory. These costs are incorporated into our framework to update the belief distribution
over potential goals.

We compared our method to two heuristic-based baselines: an amnesic predictor, which only considers the squared
Euclidean distance to each goal, and a memory-based predictor inspired by [3], which uses the sum of squared velocities
as the cost. These baselines were selected to align with our current cost-based framework, which does not yet incorporate
learned priors. The results illustrate how our predictor dynamically adjusts goal probabilities based on the observed
trajectory. Initially, it assigns a high probability to a likely goal, adapts as the agent’s path evolves, and eventually
converges to the true goal as the agent approaches it. These results suggest that integrating motion planning with
Bayesian inference provides a promising framework for goal inference.

This experiment serves as a conceptual demonstration of the method, illustrating its potential while acknowledging
current limitations. Future studies will explore incorporating learned priors into the optimization process and extending
the approach to more complex environments and higher-dimensional tasks.

4 Conclusion

In this work, we introduced a goal inference framework that seamlessly integrates motion planning as a subproblem. By
approximating the trajectory distribution, we consider key geometric and topological factors in the framework. Although
recent advances suggest computationally efficient motion planning approaches [15,16,18], the scalability of our approach
remains to be further investigated in high-dimensional spaces. Nonetheless, our approach lays a basis for practical
applications in areas such as assisted teleoperation and HRI, and enables a geometrically-aware goal inference pipeline
for real-world scenarios.
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