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Abstract— Extracting modular segments from raw video
demonstrations of high-level actions is important to understand
the underlying building blocks for different tasks in human-
robot interaction. While (data-hungry) supervised learning
approaches for Action Segmentation show good performance
when the underlying segments are predefined, their perfor-
mance degrades when unseen actions are introduced on-the-
go as new data samples are scarce. In this regard, Zero- and
Few-Shot Learning approaches have shown good performance
in generalizing to unseen examples. In Action Segmentation,
where each frame needs to be labeled, annotating new data
even for a few tasks can become tedious as the number of
tasks scale. In this work, we propose Interactive Iterative
Improvement (I3) for Few-Shot Action Segmentation, a Semi-
Supervised Interactive Meta-Learning approach for Zero-Shot
Learning on unlabeled videos and Few-Shot Learning on small
amounts of labeled videos. I3 consists of a Prototypical Network
model for frame-wise prediction coupled with a Hidden-Semi-
Markov-Model to prevent over-segmentation. The model is
iteratively improved in an interactive manner through users’
annotations provided via a webinterface. This is done in a task-
agnostic manner that, in theory, can be reused for a number
of different actions. Our model provides sequentially accurate
segmentations using only a limited amount of labeled data
which shows the efficacy of our learning approach. A lower
edit distance compared to baselines indicates a lower number
of required user edits making it well suited for non-expert users
to smoothly provide annotations enabling them to have more
control over the learned model.

Index Terms— Interactive Learning, Action Segmentation,
Few-Shot Learning, Human-In-The-Loop

I. INTRODUCTION

The ability to recognize human actions is crucial for future
assistive robotics [34] and an essential building block for
robot behavior in more complex pipelines [9]. Similar to
other fields of computer vision, like pose estimation [4]
and image segmentation [19], the advancements of Deep
Learning approaches have also been successfully shown in
action classification on segmented videos [6, 13]. While
in traditional scenarios the action recognition problem may
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Fig. 1: We propose a framework for Iterative Interactive
Improvement for Few-Shot Action Segmentation. When an
action sequence is first provided, Zero-Shot Learning is used
(dotted line) to provide an initial segmentation which is
then iteratively improved using Few-Shot Learning (solid
line). During an improvement iteration, the user corrects a
predicted segmentation which is then used to train the model.

be well defined with pre-known tasks and readily available
datasets, there is a need for an ad hoc action recognition
solution that can be easily adapted to custom datasets.

Although supervised methods have been showing excellent
performance in the first conventional scenario [2, 32, 37],
they require huge amounts of data and frame-by-frame
labels, which is unfeasible for interactive settings. In contrast,
unsupervised methods [31, 25] are well suited for the task
but generally underperform their supervised counterparts.

In this regard, Few-Shot Learning has shown good perfor-
mance with good data efficiency such that a model is able to
generalize to unseen samples/classes given only a few or even
a single (in the case of One-Shot Learning) example. Such
a paradigm coupled with interactive improvement has been
commonly used for image segmentation [3, 14, 29], gesture
recognition [42] text synthesis (see [8] for an overview) and
spoken language understanding [15] where user inputs in the
form of annotations, prompts or labels enable the model to
adjust and correct themselves.

We introduce a novel framework I3: INTERACTIVE ITER-
ATIVE IMPROVEMENT for Few-Shot Action Segmentation
following the aforementioned idea of interactive Few-Shot
Learning. The framework aims to bridge the gap between un-



supervised and supervised solutions for Action Segmentation
in a Zero-/Few-Shot manner using interactive improvement
of the model from an end user.

Our approach consists primarily of two components: A
Prototypical Network (ProtoNet) that generates a segmenta-
tion of the input video and a Hidden-Semi-Markov-Model
(HSMM) that smooths the segmentation and reduces fre-
quent, undesirable changes of predicted action segments.
The ProtoNet applies Zero-Shot Learning to an unlabeled
and unseen video. The output predictions of the Zero-
Shot approach are then interactively adjusted by the user.
Subsequently, these adjustments are reused for Few-Shot
Learning to predict additional videos.

Overall, the main contribution of this paper is an interac-
tive learning framework for temporal Action Segmentation.
We focus specifically on the limited availability of labeled
data obtained during run-time via user-annotated sequences.
Here, we leverage Zero-/Few-Shot Learning via a ProtoNet
in combination with an HSMM to smooth out the predicted
segmentation. In addition to the algorithmic back-end, we
also develop a user interface to interactively improve the pre-
trained Action Segmentation model in a Few-Shot manner.

II. RELATED WORK

Action Segmentation: Action Segmentation refers
to the classification of a temporal sequence of
video/skeleton/sensor readings frame-by-frame. Various
methods have been proposed, ranging from Recurrent
Neural Networks and Hidden-Markov-Models (HMM)
[24] to coarse-to-fine encoder-decoder ensembles [32],
transformer-based approaches [2] and Gaussian Processes
[27]. Such methods are prone to over-segmentation, which
can typically be mitigated by smoothing an intermediate
result using regularization. In unsupervised settings,
clustering the features of each frame or different temporal
embeddings over frames [25, 31] is common. Enforcing
the number of occurrences of the action labels to prevent
over-segmentation may also be an option. However, the
feasibility of such methods depends heavily on the dataset.

For supervised approaches one could use labeling from
expert annotators [17, 23, 11], but this can be time consuming
and expensive. While crowd-sourcing is an alternative, it
involves non-expert annotators. The data must, therefore, be
validated manually which this work intends to avoid. We
circumvent this by having users interact with the system
directly, giving them direct control over the data quality.

Another common post-processing technique for tackling
over-segmentation is Viterbi decoding [30, 18, 24, 2], a
dynamic programming approach that returns the most likely
sequence of hidden states by modelling a sequence with an
HMM to smooth out an over-segmented sequence. Alterna-
tively, over-segmentation can be reduced by either learning
the length of each segment through an additional model [30,
2] or penalizing incorrect segment lengths [26, 2]. Semi-
supervised methods [18, 30, 26, 41] mainly focus on addi-
tional losses and constraints to reduce the required labeled
data for each frame. They appear to greatly improve overall

performance. Therefore, we explore such a semi-supervised
paradigm in a more aggressive manner with regards to data
scarcity by leveraging Few-Shot Learning.

Interactive Few-Shot Learning: Few-Shot Learning [16,
12] is a machine learning paradigm where a model learns
from limited data, typically in a supervised manner, for a
given task and has become a popular paradigm in computer
vision, natural language processing, robot learning, and more
[39]. In cases where annotated data is not always readily
available, one way to circumvent this issue is to enable an
interactive Human-in-the-Loop approach of providing labels
for the Few-Shot case. This has been extensively explored in
medical image segmentation not just for providing labels but
also in correcting wrong predictions that the model param-
eters are trained with [35]. The aforementioned techniques
can - among others - also be found in other vision [22, 36]
and robot learning [38, 1, 20] tasks.

The key takeaway from this line of work is that interactive
methods capture the benefits of fully automated learning-
based approaches while giving the user sufficient control
over the outputs [35], thereby making interactive Few-Shot
Learning a suited option to explore for iteratively improving
Action Segmentation. A general overview on interactive
Human-in-the-loop Machine Learning can be found in [40]
and on Few-Shot Learning can be found in [39].

III. I3: INTERACTIVE ITERATIVE IMPROVEMENT FOR
FEW-SHOT ACTION SEGMENTATION

In this section, we introduce our method I3: INTERACTIVE
ITERATIVE IMPROVEMENT for Few-Shot Action Segmenta-
tion. It consists of an interface through which videos can
be uploaded and segmented, as outlined in Section III-
C. We suggest an initial segmentation to the user, which
improves with each segmented video. To gain data from
videos of variable length, we use an automated way of
feature creation, as well as handcrafted features. The features
[xt]t=1...T ,xt ∈ RDx of a frame at time t get classified as
an action segment k ∈ {1 . . .K}. Initially, these features are
used to segment the first video with unsupervised Zero-Shot
Learning. This newly predicted segmentation is corrected
by the user and the resulting newly labeled data is used
to refine the model. After the user provides a corrected
segmentation of the first video, each following video is
iteratively segmented using Few-Shot Learning. The model
consists of a ProtoNet (Section III-A) and an HSMM to
smooth and correct the ProtoNets prediction (Section III-B).
The method is intended to be data and run-time efficient,
resulting in a tool that allows the user to segment a series
of videos more easily and accurately. A flowchart of this
segmentation process is visualized in Figure 1.

A. Prototypical Network for Few-Shot Learning

The backbone classification is performed by a Prototyp-
ical Network (ProtoNet) [33], which has been adapted for
sequential data by using a recurrent structure and a temporal
window of inputs. The main task of the network fθ(·) is to
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Fig. 2: A flowchart representing the iterative interaction by the user with the webinterface. The initial steps are indicated
with blue arrows, while the steps of the iterative improvement loop are highlighted with orange.

encode the inputs with an encoding function into a Denc-
dimensional embedding space. At time t, given a sequence
of of features xt−w:t of a temporal window of size w,
they are first encoded by the network zt = fθ(xt−w:t)
into the embedding space. Using the embeddings of all
samples, a set of prototypes Cθ = {ck|k = 1 . . .K} are
computed which denote a representation of the classes in the
embedding space. Computing the prototypes can be different
for different tasks. Using the embeddings zt and the set of
prototypes Cθ, the probability of the predicted label yt being
assigned as the class k can be computed by the softmax over
the negative distances from the encoding to the prototypes:

Pθ(yt = k|xt−w:t;Cθ) =
exp(−d(zt, ck))∑K
i=1 exp(−d(zt, ci))

(1)

where d : RDenc → R+∪{0} can be any suitable distance
metric e.g. the euclidean distance. We denote this for an
entire set of inputs X = {xt−w:t}t=w...T as Ŷ = P θ(X).

For Few-Shot Learning as well as for pre-training, each
batch is randomly split into a support-set S and a query-set
Q. The prototypes are then computed by taking the class-
wise means of the encodings of samples from the support-set

ck =
1

|Sk|
∑
xs∈Sk

fθ(xs) (2)

where Sk ⊂ S contains only inputs labeled with class k.
The network is trained by minimizing the Negative-Log-
Likelihood of Eq. 1 with samples from the query-set xq ∈ Q
classified against prototypes ck from the support-set (Eq. 2).

Lθ(S,Q) =
1

|Q|
∑
xq∈Q

− logP (y = k|xq;Cθ(S)) (3)

θ = argmin
θ

L(S,Q) ∀S,Q ∈D (4)

where D is the labeled dataset and Cθ(S) is the set of
prototypes for a given support set S according to Eq. 2.

For Zero-Shot Learning there is no data which can be
divided into a query- and a support-set, thus a different ap-
proach is needed. The original work suggests producing the
prototypes by embedding meta-data which can, for example,
come from a textual description of the class. However, this

requires a separate trained model, which in turn increases
the amount of training data needed. As we aim to be data-
efficient, this is not viable in our case. Instead, we perform
k-means clustering on the encoded data and use the resulting
cluster centers as the class prototypes. Notably, the resulting
labels are relative to the cluster centers and thus need to be
mapped to the actual labels, which we achieve by the human
agent in the loop.

B. Hidden (Semi-) Markov Model

We employ a Hidden Semi-Markov Model [43] to smooth
and improve the ProtoNet’s predictions. An HMM is denoted
by a set of hidden states h ∈ {1, . . . ,H} with an intial
state distribution πh and state transition probabilities Ti,j
of changing from state i to j and a set of observations
Y = {y ∈ RDy} that can be emitted at each time t from a
state h with a given emission probability. In our use case, the
states correspond to the set of possible actions {1, . . . ,K},
and the observations correspond to the ProtoNet’s prediction
ŷt = [P (y = h|xt−w:t;Cθ)]h=1...H (Eq. 1). We characterize
the emission probabilities under state h via a Gaussian distri-
bution N (ŷt;µh,Σh) with the class-wise mean µh and the
covariance Σh of the observations ŷt. An HMM is, therefore,
defined with the parameters ψ = {πh, Ti,j ,µh,Σh} This
allows us to predict the segmentation using the forward
variable of the HMM:

argmax
h

αh(ŷt)∑H
i=1 αi(ŷt)

(5)

αh(ŷt) = N (ŷt;µh,Σh)

H∑
i=1

αi(ŷt−1) · Ti,h (6)

where αh(ŷ0) = πh. Using this, we denote the segmentation
obtained for an entire sequence as Ŷ

∗
=Hψ(P θ(X))

An HSMM is a special form of a Hidden Markov Model,
with a relaxation of the Markov rule where current state
depends not only on the previous state and the current ob-
servation but also on duration d ∈ 1 . . . τ spent in the current
state. This is characterised by an additional distributions
ph(d) over the durations d for each state h:

αh(ŷt) = N (ŷt;µh,Σh)

H∑
i=1

τ∑
d=1

αi(ŷt−1) ·Ti,h ·ph(d) (7)



(a) Move-to-lid (b) Grasp-lid (c) Move-to-dropoff (d) Release-lid
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Fig. 3: Images of each of the nine different segments in a video. Segments (a)-(d) are exclusive to the lid complexity type,
while (e)-(i) can be found in both lid and simple.

This time-dependent definition also allows the modeling
of random dependencies w.r.t. the length of the action seg-
ments. The HSMM parameters are trained using Expectation
Maximisation (EM), initially using the predictions from the
Zero-Shot segmentation as ground truth followed by the user
annotated labels in the subsequent iterations. An in-depth
explanation of HMMs, HSMMs and their training can be
found in [5, 28], which we omit due to space constraints.

C. User Interface for Iterative Refinement

In order to iteratively improve the underlying model with
human input, a webinterface is implemented that allows
users to upload a variable number of videos and optimize
the segmentation of each video. For the first video, the
interface initially suggests a Zero-Shot segmentation. The
one-hot versions of these predicted labels are used to ini-
tialize the HSMM. After smoothing the predictions, they are
presented in the webinterface. The user can then make any
necessary adjustments to the segmentation. This annotated
segmentation is then added to the dataset and is used to
improve the suggestion for the next video by training both
the ProtoNet and the HSMM with the updated dataset. This
process is repeated until all uploaded videos are segmented.
Since the suggestions for each video are more precise, the
amount of time and effort required by the user is reduced at
each iteration. An overview of the interactive framework is
shown in Figure 2, as well in Algorithm 1.

IV. EXPERIMENTS

Our model is evaluated on a dataset of humans demon-
strating a trash disposal task with two different levels of
complexity, as described in Section IV-A. The details of our
implementation and the baselines used are outlined in Section
IV-B following which we discuss our results in Section IV-C.

A. Dataset

The dataset used for evaluation consists of RGB-D videos
of 23 people performing a trash disposal task. Each person
provided three demonstrations for two levels of complexity:
simple and lid. In the simple setting, the participants demon-
strated how to pick up some trash from varying starting

Algorithm 1: I3 : Interactive Iterative Improvement
Input: Pre-trained ProtoNet Pθ, Features from N

videos {Xn = {xt−w:t}t=i...Tn
}n=1...N

Output: ProtoNet Pθ, HSMM Hψ

Ŷ
ZS

1 = P θ(X1) ; # Initially Zero-Shot

Ŷ
OH

1 = one-hot(Ŷ
ZS

1 )

Update ψ using EM on (Ŷ
ZS

1 , Ŷ
OH

1 ) as in [5, 28]
Ŷ 1 =Hψ(Ŷ

ZS

1 )
Y ∗

1 ←User Labels from Hψ(Ŷ 1)
D ← {(X1,Y

∗
1)} ; # Labeled Data

for n = 2 . . . N do
Ŷ n ←Hψ(P θ(Xn)) ; # Few-Shot
Y ∗

n ←User Labels from Ŷ n

D ←D ∪ {(Xn,Y
∗
n)}

Split D into S and Q
Update θ using Eq. 3 and 4 using S,Q
DH =

⋃
Xj ,Y j∈D(P θ(Xj),Y j)

Update ψ using EM on DH as in [5, 28]
end
return: P θ, Hψ

positions and put it in a trashcan. In the more complex
lid setting, a lid was placed on the trashcan, which had
to be removed before the trash could be disposed of. The
experiments were approved by the ethic committee of TU-
Darmstadt on 07/15/2022.

1) Segments: The videos were manually labeled on a
framewise level with the corresponding high-level action.
These labels serve as the ground truth segments in the
following experiments. All nine segments included in the
dataset are visualized in Figure 3. In the simple setting,
the task demonstrations can be segmented into five actions:
Move-to-trash, Grasp-trash, Move-to-trashcan, Release-trash,
and Retrieving (Figure 3 (e)-(i)). In the lid setting, the
additional actions Move-to-lid, Grasp-lid, Move-to-dropoff,
and Release-lid (Figure 3 (a)-(d)).
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Fig. 4: Different metrics in relation to the number of training videos for the ProtoNet alone and with the HSMM, the
sequence accuracy (a) describes how well the model learns the segment order (higher is better), the average F1-score (b)
describes how well the classes are aligned (higher is better), and the average Edit-Distance (c) indicating how many edits
have to be performed in order match the sequence (lower is better).
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Fig. 5: Sample segmentations produced by the ProtoNet and the ProtoNet with the HSMM in comparison to the ground
truth for the pre-training dataset in a supervised learning scenario (a), as well as for the main dataset in a Zero-Shot (b) and
a Three-Shot Learning scenario (c). The clusters for Zero-Shot Learning have been remapped to match the ground truth.

2) Features: We use a 66-dimensional feature space con-
sisting of automatic and handcrafted features to train the
model. In order to extract those features from the RGB-
D videos, we use MediaPipe Hand [44] to automatically
track 25 hand landmarks and obtain 3D data for each of
those landmarks. Additionally, AR-Tags are used to capture
the position and the rotation data of task-relevant objects
such as the trash, trash can, and lid. Based on the extracted
object and hand positions, different features are calculated.
These include velocities and the distance between index
finger and thumb, object-object and hand-object distances.
The handcrafted features are designed to provide additional
information and make the features easier to handle and more
invariant to changes in e.g. the camera position. In addition,
models using raw data as input (e.g. transformers) come with
a significantly higher computational cost, which could hinder
interactivity. The incorporation of automatic and handcrafted
features proved to be an effective alternative.

B. Experiment Setup

We perform an ablation study on the dataset used for
pre-training and the Zero-Shot and the Few-Shot task with
the added segment labels. More specifically, we evaluate the

Three-Shot Learning task of the ProtoNet on its own and in
combination with the HSMM and compare it against the two
baselines. Our model and all baselines are first pre-trained on
the simple task in a fully supervised setting and then trained
on the lid task in a Zero- and Few-Shot setting.

1) Model Details: The encoding function fθ(xt−w:t) of
the ProtoNet consists of 3 layers of bidirectional Gated
Recurrent Units (GRU) [7] each with a hidden size 10
followed by a Fully Connected Network layer that maps
the output to a 10-dimensional encoding space. A sliding
window size of 60 and a dropout of 0.5 was used. The
network was trained with a batch size of 70 for 150 Epochs
during pre-training and 40 Epochs during each Few-Shot
iteration.

2) Baselines: The first baseline is a simple three-layer
Long-Short-Term-Memory (LSTM) [21] model and the sec-
ond baseline is the UVAST model proposed by Behrmann
et al. [2], which utilizes a Transformer seq2seq model that
predicts the sequence order and the duration separately.

3) Ablation Study: We evaluate all models on the ac-
curacy, the Macro F1-score, the Macro IoU, the Sequence
Accuracy, and the Edit-Distance. Each experiment was per-
formed five times with different random seeds. We report



Accuracy (↑) Macro F1-Score (↑) Macro IoU (↑) Sequence Accuracy (↑) Edit-Distance (↓)
ProtoNet 87.856± 1.351% 82.505± 1.788% 72.136± 2.314% 97.143± 5.714% 0.057± 0.114

ProtoNet + HSMM 88.685± 1.479% 81.165± 1.890% 72.581± 2.052% 100.000 ± 0.000% 0.000 ± 0.000
simple LSTM 77.297± 3.549% 62.799± 8.231% 50.573± 7.171% 0.000± 0.000% 4.000± 0.000

UVAST [2] 91.027 ± 0.574% 85.939 ± 0.897% 78.172 ± 1.286% 91.429± 6.999% 0.086± 0.070

TABLE I: Performances measured on the simple dataset for our proposed model with and without HSMM smoothing as
well as for the two baselines. We report the average values and the standard deviation of each metric. (↑ - higher is better,
↓ - lower is better)

n Model Accuracy (↑) Macro F1-Score (↑) Macro IoU (↑) Sequence Accuracy (↑) Edit-Distance (↓)

ze
ro ProtoNet 12.069± 7.417% 9.294± 4.211% 5.596± 2.794% 0.000± 0.000% 8.493± 1.301

ProtoNet + HSMM 36.860 ± 5.697% 25.255 ± 4.737% 18.087 ± 3.718% 0.000± 0.000% 6.191 ± 0.848

th
re

e

Simple LSTM 66.551± 6.499% 42.699± 4.518% 32.585± 4.603% 0.000± 0.000% 8.000± 0.000
ProtoNet 67.993± 2.898% 57.016± 2.581% 43.585± 2.268% 25.674± 7.232% 2.036± 0.405
ProtoNet + HSMM 73.586± 2.950% 59.290± 3.046% 49.033± 2.927% 55.254 ± 14.755% 0.877 ± 0.310
UVAST [2] 82.917 ± 1.363% 71.385 ± 1.538% 61.585 ± 1.922% 50.551± 19.075% 1.025± 0.475

TABLE II: Performance measured on the lid task for our proposed model with and without HSMM smoothing and for the
two baselines. The first column indicates the number of videos used for training (n-shot). All models were pre-trained on
the simple task. We report the mean and standard deviation of each metric. (↑ - higher is better, ↓ - lower is better)

the average metric performance with the standard deviation
in Tables I and II. In addition, we visualize some video
segmentation examples of each scenario in Figure 5. The
Zero- and Few-Shot performance is evaluated by performing
five-fold on the dataset and sub-sampling n videos from
the training fold for n = 1 . . . 11. The separate models
from the k − 1th iteration are refined at the kth iteration
to mimic the iterative workflow of the user interface. Since
the Zero-Shot classification produces labels w.r.t. the learned
clusters, these are automatically remapped to the ground
truth labels with the most overlap before computing any
metric. This step would usually be performed by the human
annotator using the interactive user interface alongside the
correction of the initial prediction. To analyze the models
performance dependent on the amount of training videos,
Figures 4a and 4b visualize the average performance and
standard deviation of the folds for each n for the sequence
accuracy, the macro F1-score, and the Edit-Distance.

We determine the quality of the models using a set of
different metrics. First of all, we compute the average frame-
wise accuracy. This metric on its own, however, is not par-
ticularly strong as feature imbalances skew it towards well-
represented segments. Therefore, we additionally compute
the macro F1-score and the macro IoU (intersection over
union). The macro F1-score

F1macro(ŷ,y) =
1

K

K∑
k=1

F1k(ŷ,y)

is computed as the class-wise mean of the F1-score, where

F1k(ŷ,y) =
2 ·#TP

2 ·#TP +#FP +#FN

is the F1-score with respect to class k. Here #TP, #FP, and
#FN denote the number of true positives, false positives, and
false negatives, respectively.

Similarly, the macro IoU

IoUmacro(ŷ,y) =
1

K

K∑
k=1

IoUk(ŷ,y)

is the class-wise mean of the IoU, with

IoUk(ŷ,y) =
|Ik|
|Uk|

=
|{t|ŷt = yt = k}|
|{t|ŷt = k ∨ yt = k}|

,

where ŷt ∈ ŷ, yt ∈ y. Here, Ik is the intersection of
the prediction and the ground truth on k and Uk is the
union thereof. Lastly, we compute the average Levenshtein
Edit-Distance, which is the minimum number of changes
(insertions, deletions, or replacements) needed to convert
the predicted sequence into the ground truth. Therefore,
the Levenshtein Edit-Distance roughly corresponds to the
number of changes the user needs to make. Additionally,
we refer to the fraction of videos with correctly ordered
sequences as the sequence accuracy. Both of these metrics
are computed w.r.t. the resulting segment order and do not
take the alignment of the start and end points w.r.t the ground
truth into account.

C. Results

When inspecting the pre-training metrics reported in
Table I, one can see that the ProtoNet is able to outper-
form the simple LSTM across all metrics with and without
the added HSMM smoothing. However, the more complex
UVAST model [2] outperforms our model for the metrics,
which take alignment into account. This indicates that while
our model is able to learn the correct sequence of segments,
there is still room for improvement when it comes to aligning
them correctly. This discrepancy also becomes obvious when
inspecting the Few-Shot results presented in Table II. While
we still outperform the Few-Shot LSTM, the UVAST model
is still able to predict the segmentations more accurately



when it comes to alignment. However, our method reaches a
higher sequence accuracy and lower edit distance compared
to both baselines. Because of that, the amount of correction
needed by the user is lowered, making the labeling process
quicker and easier. Moreover, further usage of the resulting
segmentation e.g. in Reinforcement Learning may benefit
more from an accurate sequence ordering than from a well-
aligned but over-segmented prediction. In Figures 5a and 5c
sample segmentations for ProtoNet and ProtoNet combined
with HSMM are visualized in comparison to the ground
truth. The order is accurately predicted for the most parts,
but there are noticeable offsets in the start and endpoints of
some segments reflecting the aforementioned lower accuracy.

For the Zero-Shot Learning scenario, there is plenty of
room for improvement. Furthermore, we observe a high
standard deviation in the results (Table II). Although the lid
task contains some of the actions of the simple task, the
model does not seem to adapt well to the new classes during
Zero-Shot as is shown in Figure 5b. In this case, as well as
for Few-Shot Learning, the HSMM improves the results a
lot (see Table II and Figures 4a, 4b, and 4c).

Lastly, our analysis regarding the effect of training videos
(see Figure 4a, 4b, and 4c) shows that the performance starts
to converge at around six training videos.

V. CONCLUSION

In this paper, we proposed I3: Interactive Iterative Im-
provement for Few-Shot Action Segmentation from limited
labeled data obtained via user-annotated sequences. We do
so using a pre-trained Action Segmentation model that is
interactively improved in a Few-Shot manner by an end user
via a webinterface. This framework was designed as a basis
for Action Segmentation with non-experts end users in mind.

We evaluated our method on human demonstrations of a
trash disposal task and compared the performance against
two baselines. While the accuracy of our model is lower
compared to the UVAST baseline, our model reaches a higher
sequence accuracy and lower Edit-Distances which is linked
to a lower number of required user edits and makes it suitable
for use cases that require accurate sequence orderings such
as in robot skill learning from human demonstrations.

In future work, we want to investigate ways to improve
the overall performance by adding some regularization from
related works to the ProtoNet to ensure smoother segment
transitions or exploring different clustering methods or an
ensemble of methods. In addition, this approach could be en-
hanced by better incorporating the HSMM with the ProtoNet
thereby learning temporally coherent encodings. The HSMM
could also be improved by adding constraints regarding the
order of transitions, similar to left-to-right HSMMs [45].
Moreover, we want to explore a more diverse set of tasks
without such a high similarity, as this can influence the pre-
training of the Zero-/Few-Shot Learning. In order to enhance
the comparability of future investigations, it is imperative
to incorporate a broader spectrum of baselines for more
comprehensive comparative analyses. Finally, performing a
user study to evaluate the fit of the proposed framework with

principles for interactive machine learning [10] is something
we would explore in our future work, along with learning
robotic controllers to imitate the segmented actions.
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