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Figure 1: For our uncertainty detection model we collected video and audio data of 27 participants performing two decision
tasks, i.e. a Fruit Task and Dot Task. In the Fruit Task either a human (A) or robot (B) asks the participant which of two fruits is
heavier. In the Dot Task (C) the participant has to decide which of two images shown for one second contains more white dots.

ABSTRACT
In a question-and-answer setting, the respondent is often not only
communicating the requested information but also indicating their
confidence in the answer through various behavioral cues. Humans
excel at interpreting these cues and monitoring the uncertainty of
other persons. Being able to detect human uncertainty in human-
robot interactions in a similar way can enable future robotic systems
to better recognize uncertain and error-prone human input. Addi-
tionally, automatic human uncertainty detection can enhance the
responsiveness of robots to the user in moments of uncertainty
by providing help or clarification. While there is some work on
uncertainty detection based on a single modality, only a few works
focus on multi-modal uncertainty detection. Even fewer works ex-
plore how human uncertainty manifests through behavioral cues
in human-robot interactions. In this work, we analyze occurrences
of behavioral cues related to self-reported uncertainty on experi-
mental data from 27 participants across two decision-making tasks.
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Additionally, in the first task, we varied if participants interacted
with a human or a robot. On the recorded data, we extract fea-
tures accessible via a webcam and a microphone and train a multi-
modal classifier. Experimental evaluation of our developed classifier
shows that it significantly outperforms third-person annotators in
accuracy and F1 score. Humans report feeling less observed when
responding to a robot compared to a human. Nevertheless, we
found that the behavioral differences did not significantly affect the
performance of our proposed uncertainty classification.
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1 INTRODUCTION
In a conversational setting, the main goal of asking questions is
the exchange of information. However, the respondent is often not
only communicating the requested information but also indicates
the confidence in their answer [40]. Humans excel at monitoring
another person’s uncertainty conveyed through various behavioral
cues, including visual cues (facial expressions, gaze, gestures), as
well as auditory cues (intonation, fillers, pauses) [9, 22, 43]. Once
robots enter more real-world settings, they will inevitably face situa-
tions where they require not only the ability to process human input
on a factual level but additionally need to monitor their interaction
partners’ uncertainty about provided answers [24]. Specifically, the
estimated uncertainty can serve as an indication for the correct-
ness of human input, which can increase reliability in interactive
robotic systems and enable learning from sub-optimal human input
[18, 34, 35, 46]. Furthermore, the detection of human uncertainty
can improve the responsiveness of assistive systems such as in
student-tutor-frameworks by providing help or clarification to hu-
man users in moments of uncertainty [13, 29].

Studies indicate that humans transfer their behavior in human-
human interactions to human-machine interactions, suggesting
that humans also communicate their uncertainty in human-robot
interactions [23]. However, some studies indicate differences in
social reactions based on the presence and appearance of an em-
bodied agent [20]. Overall, we found a lack of studies that compare
how uncertainty manifests in behavioral cues in human-human
vs. human-robot interactions. This raises the two main research
questions of our work, i.e. how human uncertainty reflects in multi-
modal behavioral cues in a question-answer setting with a robotic
interaction partner (RQ1) and if a robot can learn to detect answer-
related human uncertainty at a human level of accuracy (RQ2).

While there is some existing work on uncertainty detection in a
non-robotic setting based on a single modality, such as acoustic cues
and lexical features [13, 26, 28–30, 37, 47], facial expressions [5, 41],
eye tracking data [10, 46], or brain activity [25, 38], only few works
focus on multi-modal uncertainty detection [14]. Unlike related
approaches that detect uncertainty in human-robot interaction
[11], we focus on human decision uncertainty corresponding to
a specific decision between options rather than uncertainty in a
conversational setting. In particular, monitoring human decision
uncertainty may help future robotic systems to asses an interaction
partner’s knowledge state [9] and increase reliability in processing
and evaluating human input.

Our main contributions here are threefold. First, we introduce a
Bayesian fusion-based method for multi-modal detection of human
decision uncertainty that significantly outperforms human anno-
tators regarding accuracy and F1 Score. Specifically, the proposed
classifier works solely on non-invasive features accessible over a we-
bcam and a microphone. Second, we find that even though humans
feel significantly less observed when interacting with a robot com-
pared to a human, they overall show similar behavioral cues related
to uncertainty. Third, we provide the research community a novel
multi-modal dataset for human decision uncertainty detection1
including self-reported uncertainty labels as well as third-person
annotations.

1The recorded dataset is available at https://osf.io/48ksh/

2 RELATEDWORK
While there is a large body of literature for methods to enable
robots to recognize basic human emotions such as anger, happiness,
sadness, or fear [1, 2, 27, 31], there are fewer works that explore
human uncertainty recognition [11, 13, 15, 30]. Human uncertainty
can occur in different forms [6], and when growing up, humans de-
velop impressive abilities to detect behavioral cues for uncertainty
in other humans [9, 22, 43]. In decision tasks, human uncertainty is
often related to a high task difficulty, as well as inversely related to
answer correctness [18, 34, 46]. Being able to monitor uncertainty
is therefore helpful to assess the knowledge state of others and
evaluate the corresponding response [9]. In interactive systems,
automatic human uncertainty detection has the potential to im-
prove reliability by being able to evaluate human input based on
the corresponding human uncertainty [35].

In this paper, we focus on detecting decision uncertainty, which
occurs when a person has to decide between multiple options. This
includes question-and-answer settings where the respondent is
often not only communicating the requested information but also
indicates the corresponding confidence potentially as a form of
self-presentation to save face in case of an incorrect response [40].
This reflects the ability of humans to evaluate one’s own confi-
dence internally. The ability to infer another person’s confidence is
important in decision-making involving other individuals [42]. In
contrast to decision uncertainty, Cumbal et al. [11], for example, de-
tect listener uncertainty in human-robot dyadic conversation based
on facial expressions, gaze, head movements, and speech features.
Specifically, they focus on detecting uncertainty caused by a failed
understanding of spoken information from a conversational partner
rather than a decision-making scenario with specific options.

A multi-modal approach that combines the information from
multiple modalities can strengthen potential short-comings of each
modality and can improve predictive power [2]. While there are
only fewworks onmulti-modal uncertainty detection [11, 14], there
are several findings in the literature linking different modalities to
human uncertainty [5, 41], as well as some approaches to human
uncertainty detection based on a single modality [15, 17, 28, 37].

In dialogue systems or student-tutor frameworks, acoustic and
linguistic features are often used to detect uncertainty [13, 26, 28–
30, 37, 47]. Nevertheless, uncertainty is not only communicated
through speech but also reflected in facial expressions, as the find-
ings of Bitti et al. [5] and Stone and Oh [41] suggest. Furthermore,
response time as the time taken to form a decision can serve as
an indicator for uncertainty or the inversely related confidence
in decision-tasks [8, 19]. Kontogiorgos et al. [21] use a combina-
tion of gaze and pointing modalities in order to detect listener
uncertainty in human-human interactions. There seems to be a con-
nection between uncertainty or the related concept of confusion
and eye-tracking data such as gaze direction, pupil size, fixations,
and saccades [10, 32, 39, 46]. There is some work on uncertainty
detection or detection of the related Feeling-of-Knowing (FOK)
based on multi-modal behavioral data. Swerts and Krahmer [23]
reveal that low FOK answers tend to have a higher number of audi-
tory and visual cues, such as funny faces, eyebrow movements, or
high intonation. In addition, they show that human observers can
distinguish between high and low FOK responses. However, they

https://osf.io/48ksh/
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do not learn a model to predict the FOK. Greis et al. [14] analyze
the relation between response time, eye tracking data, and heart
rate connected to uncertainty in a quiz task. While EEG signals, as
well as the heart rate, are also related to uncertainty [14, 25, 38],
in this work, we are focusing on human uncertainty detection on
non-invasive behavioral signals that can be easily accessed in a
human-robot interaction scenario using a camera or microphone.

There are different ways of combining multiple modalities. Multi-
modal models can either be trained using early fusion to combine
multiple modalities on a feature-level [45], or by combining uni-
modal decision values on a decision level (late fusion) [1, 31, 36].
The Bayesian method Independent Opinion Pool (IOP) [4] is a
probabilistic optimal fusion method according to Bayes rule and
has already shown benefits for decision fusion in human inten-
tion recognition [44]. By combining multiple potentially inaccurate
classifiers using IOP, the final decision uncertainty can be reduced.

3 HUMAN UNCERTAINTY DETECTION
We propose an approach to detect human decision uncertainty from
multi-modal behavioral cues in human-robot interaction. In this
section, we describe the experiment procedure and data collection
(Section 3.1), the feature extraction process (Section 3.2), and how
we trained our proposed multi-modal classifier for human decision
uncertainty detection on the recorded data set (Section 3.3). An
overview of our approach is illustrated in Figure 2.

3.1 Data Collection
In an experiment with 27 participants, we collected multi-modal be-
havioral data corresponding to human decision uncertainty. Within
the experiment, the participants faced two different decision-making
tasks, where they had to decide between two choices. During the
first task (Fruit Task), we varied if a human or a robot interaction
partner posed the questions. In the second task (Dot Task), the sub-
jects interacted solely with a tablet. This results in three experiment
conditions fruits_human, fruits_robot, and dots. The experiment was
conducted in German, the participants’ native language.

Experiment Setup. Figure 1 shows the three experiment condi-
tions. In the Fruit Task the participants had to decide which of two
fruits is heavier based on their prior knowledge. The questions
were posed in the form "What is heavier - X or Y" and after each
question, the participants answered with voice input, naming one
of the fruits X or Y. In fruits_human (Figure 1 B), they were facing
a human investigator. The investigator did not react to the partici-
pants’ responses and kept a neutral facial expression. In fruits_robot
(Figure 1 A), a robot instead of a human asked the questions. The
robot consists of two Franka Emika Panda arms and a tablet dis-
playing an animated face as a head, allowing the robot to move its
mouth while talking. While posing the question, the robot moved
first one arm and then the other arm up and down emphasizing
two options. In the dots condition (Figure 1 C), the participants
interacted solely with a tablet. They were tasked to select which of
two images displayed for one second contained a higher amount of
white dots by voice input, saying "left" or "right". Variations of the
Dot Task have already been used in literature [33] as a decision-
making task with perceptual uncertainty compared to the Fruit
Task where participants have to query their internal knowledge.

Experiment Procedure. First, the participants provided informed
consent. At the beginning of each experiment condition, the corre-
sponding task was explained in form of written instructions. The
tasks were framed as a quiz. As an incentive, the participants were
promised a prize for achieving a new high score in number of
correct answers. We randomized the order of the Fruit Task and
Dot Task, as well as the order of the two conditions fruits_human
and fruits_robot within the Fruit Task. In addition, two sets of
questions for the Fruit Task with different pairs of fruits were ran-
domly assigned to the two Fruit Task conditions fruits_human and
fruits_robot. In all three experiment runs, the participants could
familiarize themselves with the task setting in two trial runs. Then,
the participants had to choose 30 times between pairs of fruits
or images, respectively. After selecting one option, a slider was
shown on the tablet in front of them where they reported their
certainty level regarding the choice on a 4-point Likert scale (very
uncertain, uncertain, certain, very certain). For feature analysis,
classifier training, and evaluation, we summarize the self-reported
categories "very uncertain" and "uncertain" into uncertain and the
self-reported "certain" and "very certain" into certain.

Data Recording. We collected data from 27 participants (18 fe-
male, 9 male), aged between 18 and 35. The recruitment process was
through university online platforms and word of mouth. The exper-
iments were approved by the ethics committee of TU Darmstadt on
November 28, 2022 (EK 80/2022). During the experiment, a Logitech
Brio StreamWebcam recorded the participants’ faces with 30fps and
1280x720 resolution. In addition, a KLIM microphone on the table
in front of the participants recorded audio files. We synchronously
started the data recording using ROS (Robot Operating System) and
saved ROS timestamps for all recordings. We manually labeled the
end of each posed question and the beginning of the corresponding
response of the participant. For the Fruit Task, the end of the ques-
tion marks the point in time when the robot or investigator fully
voiced the question and the participant has to name the heavier
fruit. In the dot task, the end of the question marks the point in
time when the two pictures disappear and the participant has to
choose the picture with more dots. Even though the participants
were instructed to not ask questions during the experiment, some
participants asked clarifying questions, e.g. whether tomatoes or
cherry tomatoes were meant. We excluded the corresponding six
responses. In addition, the data recording failed for one dots and
two fruits_human conditions due to technical problems.

Third-person annotations. We asked ten persons (6 male, 4 fe-
male) to manually annotate all responses of all participants, result-
ing in ten third-person annotations per response. First, we provided
context about the data recording by showing the annotators the ex-
periment instructions for all three experiment conditions. Then, the
annotators replayed the recorded audio and video for each response
from the end of the posed question until one second after the start
of the participant’s response. This duration was chosen since an
inspection of the data revealed facial expressions corresponding to
uncertainty even shortly after the response. The same time win-
dow is also used for the model training as described in Section 3.3.
Note here that the annotators only observe the participant’s re-
sponse without knowing the posed question. This prevents biased
annotations based on the question’s difficulty. The annotators were
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Figure 2: Overview of the model training pipeline. Features are extracted from all experiment recordings and used to train
models on each modality individually, all modalities combined (early-fusion), and all modalities except response time (audio-
visual). In addition, Independent Opinion Pool is used to combine the resulting response time model and audio-visual model.

then asked to decide whether the participant seemed uncertain or
certain. They entered their uncertainty annotations via key presses.

3.2 Feature Extraction
To analyze behavioral cues related to human decision uncertainty
and train a classifier on the collected data, we extracted several
features for each of the participants’ responses. Here, we consider
the time window from the end of the posed question until one
second after the participant’s response.

Response Time. We calculate the response time as the difference
between the end of the posed question and the participant’s re-
sponse. This feature corresponds to the time the participant takes
to think about the question and respond.

Facial Behavior. We use OpenFace [3] to extract facial action
units, head pose, and gaze direction. The system detects the in-
tensity between zero and five of 18 action units corresponding to
individual components of facial muscle movements. More informa-
tion on the Facial Action Coding System can be found in [12]. We
calculate the minimum, maximum, mean, standard deviation, and
range based on the intensity of those action units for each frame in
the response window.

Gaze. OpenFace estimates the 3D eye gaze direction for both
eyes. We calculate the position and orientation change in x, y, and z
direction between two frames for both eyes in the response window.
We then take the minimum, maximum, mean, sum, and standard
deviation of the position and orientation changes as features. In
addition, we calculate the gaze velocity as degrees per second and
take the minimum, maximum, and mean over the response window.

Head Orientation. Similar to calculating the gaze features, we
calculate the changes in x, y, and z rotation of the head pose esti-
mation detected by OpenFace and take the minimum, maximum,
mean, sum, and standard deviation as features. For the head pose
position, we calculate the change between two frames using the
Euclidean distance and again calculate the minimum, maximum,
mean, sum, and standard deviation.

Speech. All speech features are extracted based on the recorded
audio data, using the Parselmouth library [7, 16]. Considering the
described time window, we calculate the minimum, maximum,

mean, and standard deviation of the pitch, intensity, and Harmonics-
to-Noice Ration (HNR), respectively. We also calculate the upper
and lower percentile for the intensity and pitch.

3.3 Multi-modal Uncertainty Classification
Multi-modal Classifiers. Let X ∈ R𝑁×𝐷 denote the input data,

where 𝑁 is the number of responses for all experiment conditions
and𝐷 the number of extracted features.Wewant to learn a classifier
that maps this input data to a probability for human uncertainty 𝑢

𝐶 : X ↦→ 𝑝 (𝑢 |X). (1)

Since, in particular, the self-reported labels "very uncertain" and
"very certain" appeared less often (Figure 3), we randomly upsample
less frequent labels such that the training data set is balanced for
each participant. For model training, we select all features described
in Section 3.2 that show a highly significant difference between un-
certain and certain responses according to a Wilcoxon signed-rank
test with significance level 𝛼 = .001. This feature selection based on
statistical testing is interpretable and showed better results in pre-
tests compared to other feature selection methods such as PCA or
feature importances. We normalize all features using the minimum
and maximum feature value of all responses of one participant and
experiment condition

𝑥
𝑠,𝑐

𝑛,𝑑
=

𝑥
𝑠,𝑐

𝑛,𝑑
− max
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𝑥
𝑠,𝑐

𝑛,𝑑
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0≤𝑛≤𝑁 𝑐 ,
𝑥
𝑠,𝑐

𝑛,𝑑

, (2)

where 𝑥𝑠,𝑐
𝑛,𝑑

, denotes the feature 𝑑 corresponding to response 𝑛 of
participant 𝑠 for experiment condition 𝑐 and 𝑁𝑐 is the number of
responses for experiment condition 𝑐 . Then, we standardize all fea-
tures by subtracting the mean and scaling them to unit variance.
We evaluate three different classifiers: Support Vector Machine
(SVM), Random Forest (RF), and Multilayer Perceptron (MLP). All
classifiers are implemented using the sklearn Python library. We
train and evaluate the models using leave-one-out cross-validation
by training the model on the data of all but one participant and
evaluating it on the remaining one participant. We report the av-
erage macro F1-score, accuracy, precision, and recall over these
validation splits. All model hyper-parameters are tuned first using
a broad random search over the parameter space and afterwards an
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exhaustive grid search using coarse-to-fine tuning. For the SVM,
we vary the kernel 𝑘 ∈ {rbf, poly, sigmoid}, 𝐶 , and 𝛾 parameter.
For the RF model, we vary the number of estimators, maximum
depth, and maximum number of features. Lastly, for the MLP we
choose the best values for the number of hidden layers, maximum
number of iterations, activation function Φ ∈ {tanh, relu}, solver
∈ {stochastic gradient descent (sgd), adam} and learning rate.

Feature Fusion. We compare early and late fusion to combine
features of different modalities. For early fusion, we combine fea-
tures of different modalities to one feature input vector 𝑋 and train
the classifier as described above. For late fusion, we train separate
probabilistic classifiers for each modality individually or a subset of
all modalities and then combine the resulting𝑀 categorical proba-
bility distributions 𝑝 (𝑢 |𝑋1), .., 𝑝 (𝑢 |𝑋𝑀 ) in a Bayesian optimal way
using Independent Opinion Pool (IOP) [4, 44]

𝑝 (𝑢 |𝑋1, .., 𝑋𝑀 ) ∝
𝑀∏
𝑛=1

𝑝 (𝑢 |𝑋𝑛). (3)

We test combinations of different classifiers trained on each
modality, as well as subsets of all modalities by combining the
resulting probability distributions using IOP. Out of these combina-
tions, we report the results of the best-performing IOP model.

4 DATA ANALYSIS AND CLASSIFIER
EVALUATION

On our recorded data set, we first analyze behavioral feature occur-
rences in relation to self-reported decision uncertainty (Section 4.1).
Subsequently, we compare different classifier models trained on
identified relevant features with human annotator accuracy (Sec-
tion 4.2) and investigate differences between human-human and
human-robot interactions (Section 4.3).

4.1 Feature Analysis
Our data set consists of video and audio recordings, third-person
human annotations, and self-reported uncertainty labels of 27 par-
ticipants with in total 780 responses for the dots condition, 745
for the fruits_human, and 809 for the fruits_robot condition. The
distribution of the self-reported uncertainty values for each task is
shown in Figure 3.

Figure 3: Self-reported uncertainty over experiment condi-
tions. For model training we combine ’very uncertain’ / ’un-
certain’ (uncertain) and ’very certain’ / ’certain’ (certain).

Table 1: Features with a highly significant difference
(𝛼 = .001) between uncertain and certain questions.

Face Gaze Head Speech Time Total
dots 9/90 0/43 1/20 2/19 1/1 13/173

fruits_human 21/90 7/43 6/20 1/19 1/1 36/173
fruits_robot 10/90 1/43 3/20 6/19 1/1 21/173
all tasks 27/90 8/43 6/20 3/19 1/1 45/173

We extracted 173 features in total, as described in Section 3.2.
A Wilcoxon signed-rank test, comparing the participants’ average
feature values for uncertain and certain responses, shows a sta-
tistically highly significant difference in 45 features (significance
level 𝛼 = .001). Table 1 shows the share of these 45 features for the
different modalities. In addition, we analyzed feature differences
between uncertain and certain for the data of each task individually.
For the fruits_human data, the Wilcoxon signed-rank test finds a
difference between uncertain and certain for 36 features compared
to 21 for the fruits_human and 13 for the dots experiment condition.
For the fruits_robot data, speech seems to play an important role
compared to the other tasks. In contrast, for the fruits_human data,
a higher number of facial behavior, head, and gaze features show a
significant difference between uncertain and certain responses.

The response time shows a significant difference for all tasks indi-
vidually, as well as for the combined data (all 𝑝 < .001). The unnor-
malized response time in seconds for all participants and uncertain
vs. certain responses, as well as for the different tasks, are visualized
in Figure 5 (A). Here, the average response time over all experiment
conditions is higher for uncertain responses (Mean=2.98, Mdn=2.30)
than certain responses (Mean=1.69, Mdn=1.50).

When looking at the facial behavior in detail, at least three fea-
tures computed based on the intensity of action units AU07, AU09,
AU10, and AU17 show a highly significant difference (all 𝑝 < .001)
for uncertain and certain responses. These action units are de-
scribed as Lid Tightener (AU07), Nose Wrinkler (AU09), Upper Lip
Raiser (AU10), and Chin Raiser (AU17) [12]. Examples of facial ex-
pressions for uncertain responses with high intensity for some of
these action units (> 2.0) are shown in Figure 4. Figure 5 (B) visu-
alizes the unnormalized mean AU10 intensity for all participants
and each task and certain vs. uncertain responses. The mean AU10
intensity is significantly higher (Wilxocon, 𝛼 = .01) for uncertain
responses compared to certain responses for all tasks individually
(fruits_human: 𝑝 = .005, fruits_robot: 𝑝 = .002, dots: 𝑝 = .009).

For the speech features, three out of seven features based on
the speech intensity (mean, standard deviation, upper percentile:
all 𝑝 < .001) show a highly significant difference over all exper-
iment conditions (Wilcoxon, 𝛼 = .001). The unnormalized mean
intensity over all experiment conditions is slightly lower for cer-
tain (Mean=26.28, Mdn=25.98) compared to uncertain responses
(Mean=27.26,Mdn=26.81), suggesting that participants talked louder
when being certain of the answer. However, when looking at the
mean intensity feature for all three experiment conditions indi-
vidually, there is a significant difference for fruits_robot and dots
(𝑝 < .001) but no significant difference for fruits_human (𝑝 = .022)
between certain and uncertain responses.
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Figure 4: Example facial expression for uncertain responses
with detected facial landmarks, gaze direction, and head pose
by OpenFace. Here, participant ERMF18 shows a high AU02,
AU17, AU26 intensity in (A) and a high AU02 intensity in (B).
Participant XEAF02 shows a high intensity for AU07 (C).

We observed that some participants leaned down to the micro-
phone in the fruits_robot and dots conditions. They might suspected
a speech recognition system and therefore tried to articulate their
response loud and clear, leading to differences in speech features
compared to fruits_human.

For the head movement features, there is a significant difference
(Wilcoxon, 𝛼 = .001) for the mean rotation change in x direction or
pitch between uncertain and certain responses for the fruits_human
condition (𝑝 < .001), as well as for the combined data (𝑝 < .001).
For fruits_robot (𝑝 = .006) and dots (𝑝 = .002) there is no significant
difference. In addition, the minimum position change shows a sig-
nificant difference for all data combined, as well as all experiment
conditions individually with 𝑝 < .001. For the mean rotation change
in x direction, the participants tend to show a higher change for
certain responses (Mean=0.40, Mdn=0.26) compared to uncertain
responses (Mean=0.32, Mdn=0.27), which might reflect a nodding
behavior. The minimum position change shows lower values for
uncertain responses (Mean= 0.28, Mdn=0.23) than certain responses
(Mean=0.38, Mdn=0.33), so the participants seemed to have moved
less if they were uncertain.

For the gaze features, the normalized minimum position change
shows a significant difference (Wilcoxon, 𝛼 = .001) between uncer-
tain and certain responses for left (𝑝 < .001, uncertain: Mean=0.30,
Mdn=0.23, certain: Mean=0.37, Mdn=0.32) and right eye (𝑝 < .001,
uncertain: Mean=0.29, Mdn=0.24, certain: Mean=0.37, Mdn=0.31).

4.2 Multi-modal Uncertainty Detection
We compare different models trained on identified relevant features
with the third-person annotations (RQ1). While self-reported uncer-
tainty and perceived uncertainty are not to be equated, we consider
this a valuable baseline that was also used before [30]. The human
annotators (Section 3.1) achieve an average accuracy of 0.695 and
an F1 score of 0.658. Here, the lowest accuracy and F1 score is
achieved for the dots condition with 0.666 and 0.610, respectively,
compared to fruits_robot (Acc=0.723, F1=0.678) and fruits_human
(Acc=0.709, F1=0.673). There was a moderate agreement between
the annotators with an average kappa inter-annotator agreement
of 0.546 and standard deviation of 0.158.

For early feature fusion a RF model with a maximum depth of
4, 48 maximum features, and 850 estimators achieves the best per-
formance (Acc=0.722, F1=0.711, precision=0.662, recall=0.728) com-
pared to SVM (Acc=0.716, F1=0.694, precision=0.699, recall=0.654.)
and MLP (Acc=0.707, F1=0.703, precision=0.664, recall=0.662).

Figure 5: Average response time in sec. (A) andAU10 intensity
(B) for each participant shown for each task and uncertain vs.
certain responses according to self-reported labels. *** marks
significant difference with 𝛼 = .001, ** marks significant
difference with 𝛼 = .01, Median is solid, mean is dashed line.

Figure 6: Accuracy of all RF models, human annotators,
and IOP model for each participant. Highlighted: ZAMM05
(yellow triangle), SHTB31 (pink cross), XEAF02 (green star),
RHMZ14 (orange star). Median is solid andmean dashed line.

Figure 6 visualizes the accuracies for each participant for the
human annotations and the best RF model trained on each modality
separately (response time, speech, head, gaze, facial expressions),
as well as trained on all modalities combined (early-fusion). For
late fusion we compared IOP combinations of different classifiers
trained on each modality individually, as well as IOP combinations
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of subsets of all modalities. Out of these combinations, the IOP
model that fuses the response time model with the model trained
on all remaining modalities (audio-visual) performed best. The re-
sults of this model are also visualized in Figure 6. Table 2 reports
the average accuracy, balanced accuracy, macro F1 score, preci-
sion, and recall over all participant cross-validation splits for all RF
models and the IOP model. The IOP model (Acc=0.725, F1=0.726)
outperforms human annotations (Acc=0.696, F1=0.662). AWilcoxon
signed-rank test over all participants shows a significant difference
(𝛼 = .01) for F1 score (𝑝 < .001) and accuracy (𝑝 = .005).

The early-fusion model trained on all modalities achieves a sim-
ilar balanced accuracy of 0.725 compared to the IOP model but
slightly lower values for Acc=0.711 and F1=0.702. There is no sig-
nificant difference in accuracy (𝑝 = .196) and F1 score (𝑝 = .348)
between the two models (Wilcoxon, 𝛼 = .001). The early-fusion
model does not significantly outperform human annotators in F1
score (𝑝 = .026) and accuracy (𝑝 = .645).

The RF model trained on only the response times (Acc=0.713,
F1=0.704) performs slightly worse than the IOP model. However, a
Wilcoxon signed-rank test (𝛼 = .01) does not show a statistically
significant difference for both accuracy (𝑝 = .241) and F1 score
(𝑝 = .441). The performance comparison of the response time
model to the human annotations reveals no significant difference
in accuracy (𝑝 = .645) or F1 score (𝑝 = .019).

Figure 7: High correlation between IOP and annotator F1
score. For most participants, IOP is better (grey dots). For 3
participants the annotator F1 score is higher (pink squares).

In general, we see person-dependent variations in model per-
formance. To illustrate this person-dependence, in Figure 6, the
performance of some participants is highlighted in color across
all models. For participant XEAF02, the models trained on only
facial expressions (Acc=0.820), head movements (Acc=0.764), or
speech data (Acc=0.775) perform well, resulting in an even higher
performance for the audio-visual model (Acc=0.831). The response
time model (Acc=0.629), however, performs poorly compared to
the audio-visual model. In contrast, for participant SHTB31, re-
sponse time is an important indicator of uncertainty. Here, the
response time model achieves a high accuracy of 0.888. In addi-
tion, the model trained on only speech data (Acc=0.809) performs
well, whereas the model using facial expressions as input performs
poorly (Acc=0.472). For participant ZAMM05, both human annota-
tors (Acc=0.489) and the audio-visual model (Acc=0.477) perform

poorly with below-chance accuracies. However, the response time
model performs well with an accuracy of 0.784. Both accuracy and
F1 score of the best-performing IOP model shows a strong positive
Pearson correlation 𝑟 between model and annotator performance
over all participants (Acc: 𝑟 = .795, 𝑝 < .001, F1: 𝑟 = .784, 𝑝 < .001).
Figure 7 shows the annotators’ F1 score vs. the IOP model.

4.3 Behavioral Differences between Conditions
We analyze differences in behavioral cues related to uncertainty for
human-human vs. human-robot interactions (RQ2). We compare
the average feature values for each participant between fruits_human
and fruits_robot using a Wilcoxon signed-rank test with signif-
icance level 𝛼 = .01. Note here that we compare unnormalized
features values and focus on features that showed a significant
difference between uncertain and certain responses (Section 4.1).
For the majority of these features, there is no significant differ-
ence between fruits_human and fruits_robot. This includes the re-
sponse time, mean change in head pitch, and most features re-
lated to action units AU07, AU09, and AU17, which are linked to
uncertainty. However, all features related to action units AU12
and AU10 (except minimum intensity), as well as the average
AU07 intensity, and minimum head position change show a sig-
nificant difference for these two experiment conditions (all 𝑝 <

.001). AU12 (Lip Corner Puller) shows a higher average intensity
for fruits_human (Mean=0.53, Mdn=0.33) compared to fruits_robot
(Mean=0.24, Mdn=0.05) which suggests that the participants smiled
more when interacting with the human. Similarly, AU10 shows a
higher average intensity for fruits_human (Mean=0.28, Mdn=0.10)
compared to fruits_robot (Mean=0.11, Mdn=0.02) as shown in Fig-
ure 5 (B). In addition, four out of seven speech intensity features
show a difference between fruits_human (Mean=26.87, Mdn=26.38)
compared to fruits_robot (Mean=27.62, Mdn=27.23) (Wilcoxon, 𝛼 =

.01). The participants might have talked louder to the robot to
improve a suspected speech recognition or since the robot pro-
duced some background noise. Furthermore, the minimum gaze
position change for both eyes is significantly higher (𝑝 < .001) for
fruits_human (left/right eye: Mean=0.17/0.17, Mdn=0.15/0.15) com-
pared to fruits_robot (left/right eye:Mean=0.14/0.13,Mdn=0.11/0.11).
One participant specifically stated after the experiment that he
tried to read the face of the opposite person, resulting in multiple
in-between gazes at the experimenter. This behavior might have oc-
curred less when interacting with the robot, leading to differences
in gaze behavior. Similarly, the minimum head position change
is significantly higher (𝑝 < .001) for fruits_human (Mean=0.93,
Mdn=0.87) compared to fruits_robot (Mean=0.79, Mdn=0.71).

When testing the best-performing IOP model on only the data of
the fruits_robot (Acc=0.719, F1=0.687) and fruits_human (Acc=0.687,
F1=0.716) condition for each participant, we see no statistical differ-
ence in accuracy (𝑝 = .493) and F1 score (𝑝 = .361) (Wilcoxon, 𝛼 =

.01) even though themodel performs slightly better for fruits_human.
The difference in performance is even higher for the response
time only model with Acc=0.743, F1=0.732 for fruits_human and
Acc=0.705, F1=0.684 for fruits_robot. However, a Wilcoxon signed-
rank test with significance level 𝛼 = .01 shows no statistically
significant difference in accuracy (𝑝 = .197) and F1 score (𝑝 = .136).
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Annotator IOP Early-Fusion Time Audio-Visual Speech Head Gaze Face
Acc 0.696 0.725 0.711 0.713 0.658 0.625 0.603 0.612 0.563

Balanced Acc 0.678 0.726 0.725 0.726 0.649 0.598 0.590 0.607 0.559
F1 score 0.662 0.726 0.702 0.704 0.630 0.570 0.580 0.592 0.539
Precision 0.709 0.691 0.635 0.637 0.642 0.574 0.537 0.553 0.514
Recall 0.514 0.684 0.786 0.786 0.546 0.429 0.494 0.522 0.486

Table 2: Performance of the annotators, IOP model, and all Random Forest models. We report the average accuracy, balanced
accuracy, macro F1 score, precision, and recall over all participant cross-validation splits. The highest values are highlighted.

Figure 8: Questionnaire results for the two items: "I felt ob-
served during the task" and "I had a hard time answering the
questions" for each condition. ** marks significant difference
with 𝛼 = .01. Median is the solid and mean the dashed line.

In a questionnaire, we asked the participants after each exper-
iment condition if they felt observed and if they found it diffi-
cult to answer the questions on a 7-point Likert scale. The results
are shown in Figure 8. There is no significant difference between
the experiment conditions regarding how difficult it felt for the
participants to answer the questions (𝑝 = .308) according to a
Friedman test with a significance level of 𝛼 = .01. However, there
is a significant difference in how observed they felt during each
experiment run (𝑝 < .001). A Nemenyi-Friedman posthoc test re-
veals a significant difference between fruits_human and fruits_robot
(𝑝 = .001), as well as between fruits_human and dots (𝑝 = .001).
The participants felt more observed when interacting with a hu-
man (Mean=5.04, Mdn=5.0) compared to interacting with a robot
(Mean=3.15, Mdn=3.0) or during the dots task (Mean=2.63, Mdn=2.0).
Between the dots and fruits_robot condition, there was no statisti-
cally significant difference. One participant explicitly commented
that she tended to show her uncertainty in order to avoid embar-
rassment. This is in line with Smith and Clark [40] who hypothesize
that humans signal their uncertainty to maintain self-esteem.

4.4 Implications and Limitations
While we contribute a valuable dataset and a first multi-modal ap-
proach to detect human decision uncertainty in HRI, the size and
diversity with respect to different tasks, persons, and environmental
conditions is still limited and might influence model performance
in different scenarios. Individual variations in how uncertainty

manifests itself in behavioral cues are challenging and a person-
dependent model calibration should be considered to increase ro-
bustness. Furthermore, bad lighting or environmental noise might
lead to a decrease in model performance. Here, late-fusion methods
with situation-dependent weighting of different modalities are an
interesting line of future research. While human uncertainty is of-
ten related to answer correctness [18, 34, 46], the two are not to be
equated and in some cases humans might not even be able to assess
their own uncertainty correctly. Moreover, while we used a 4-point
Likert scale in our experiments, the best way of letting humans rate
their own uncertainty is still an open research question.

5 CONCLUSION AND FUTUREWORK
In this work, we proposed an experimental setup to collect behav-
ioral data related to human decision uncertainty. The resulting
dataset includes video and audio data of 27 participants facing
two decision-making tasks in which they interacted with another
human, a robot, or a tablet. From 2334 responses, we extracted
multi-modal features, including response time, facial behavior, gaze,
head movements, and speech features. The evaluation of classifiers
trained on the extracted feature shows that a late Bayesian Fusion
approach that combines a response time classifier with a classi-
fier based on audio-visual features outperforms single modality
classifiers and early feature fusion classifiers in terms of precision.
The proposed classifier also significantly outperforms human an-
notators in terms of accuracy and F1 score. While there are some
behavioral differences between human-robot and human-human
interaction, and participants report feeling more observed when in-
teracting with a human compared to a robot, most features show no
significant difference, and the classifier performance is unaffected.

However, we saw variations of magnitude in behavioral features
related to uncertainty across participants. One line of future work is,
therefore, to investigate such differences further and develop meth-
ods for how a robot can learn to adapt its uncertainty detection and
automatically re-calibrate across persons and tasks. Furthermore,
Long Short-Term Memory (LSTMs) networks might be beneficial to
exploit potential sequential patterns in the data. Lastly, we see hu-
man uncertainty detection as an important feature to integrate into
interactive learning paradigms, such as interactive reinforcement
learning, where it can enable the robot to weigh human feedback
or advice based on its estimated certainty.
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