
Movement Primitives with Multiple Phase Parameters

Marco Ewerton1, Guilherme Maeda1, Gerhard Neumann2, Viktor Kisner3, Gerrit Kollegger4,
Josef Wiemeyer4 and Jan Peters1,5

Abstract— Movement primitives are concise movement rep-
resentations that can be learned from human demonstrations,
support generalization to novel situations and modulate the
speed of execution of movements. The speed modulation mech-
anisms proposed so far are limited though, allowing only for
uniform speed modulation or coupling changes in speed to
local measurements of forces, torques or other quantities. Those
approaches are not enough when dealing with general velocity
constraints. We present a movement primitive formulation that
can be used to non-uniformly adapt the speed of execution
of a movement in order to satisfy a given constraint, while
maintaining similarity in shape to the original trajectory. We
present results using a 4-DoF robot arm in a minigolf setup.

I. INTRODUCTION

Learning from human demonstrations has been playing
an increasingly important role in robotics, especially since
robots are getting better at adapting demonstrated movements
to new situations and demands [1], [2], [3].

A commonly required adaptation is due to the necessity of
executing a certain demonstrated movement faster or slower.
For example, a robot playing table tennis has to hit the
ball at different speeds than the ones of the movements
demonstrated to the robot [2]. In a task such as golf, the
necessity of adapting a certain movement in order to achieve
new speeds also arises. Depending on the distance between
the ball and the hole or on the shape and friction properties
of the floor, a robot has to hit the ball faster or slower in
order to sink it.

When executing a golf swing, a human normally moves
the golf club first away from the ball and then towards
it. In order to hit the ball twice as fast, the human does
not need to move away from the ball twice as fast as
well. Uniformly accelerating the whole movement would be
energy inefficient. Therefore, adapting a golf swing to hit the
ball with different speeds requires a non-uniform change in
the speed of execution of the movement.

1Intelligent Autonomous Systems group, department of
Computer Science, Technische Universität Darmstadt, Hochschulstr.
10, 64289 Darmstadt, Germany {ewerton, maeda,
peters}@ias.tu-darmstadt.de

2Computational Learning for Autonomous Systems group, department
of Computer Science, Technische Universität Darmstadt, Hochschulstr. 10,
64289 Darmstadt, Germany geri@robot-learning.de

3Fachgebiet Regelungstechnik und Mechatronik, Technische Univer-
sität Darmstadt, Landgraf-Georg-Str. 4, 64283 Darmstadt, Germany
vkisner@iat.tu-darmstadt.de

4Institut für Sportwissenschaft, Technische Universität Darmstadt,
Magdalenenstr. 27, 64289 Darmstadt, Germany {kollegger,
wiemeyer}@sport.tu-darmstadt.de

5Max Planck Institute for Intelligent Systems, Spemannstr. 38, 72076
Tuebingen, Germany jan.peters@tuebingen.mpg.de

Fig. 1. Human demonstrating a putt
to a robot via kinesthetic teaching.

This paper presents an
approach to achieve such
non-uniform changes in
speed of execution in order
to adapt a demonstrated
movement to new situa-
tions and demands. This
approach consists of opti-
mizing with respect to a
given reward multiple pa-
rameters that define the
phase function associated
to the movement. The
phase function is a mono-
tonically increasing func-
tion of time. It describes
the speed of execution of
the movement at each time
step and its overall dura-
tion.

The remainder of this paper is organized as follows:
Section II presents related work. Section III explains our
movement primitive formulation with multiple phase param-
eters. Section IV shows how to use a reinforcement learning
algorithm to optimize the parameters of the phase function
and the amplitude of a movement. Section V presents two
sets of experiments. The first experiments explain the im-
portance of non-uniformly adapting the phase function of a
movement instead of simply adjusting some parameters that
define its shape or uniformly rescaling its speed of execution.
The second set of experiments has been conducted with an
elastically actuated robot arm and shows how the proposed
approach performs in practice at the task of adapting a
demonstrated golf swing to achieve desired speeds at specific
positions. Section VI presents conclusions and ideas for
future work.

II. RELATED WORK

A number of distinct movement representations have been
proposed that allow for adapting demonstrations to new
requirements. Dynamical movement primitives (DMPs) [5],
for instance, allow for changing the goal, the speed and the
duration of a movement while preserving its overall shape.
The original DMP formulation, however, is not able to reach
a certain goal with an arbitrary velocity, because it enforces
zero velocity at the end of the movement.

Kober et al. [6] have designed an alternative DMP for-
mulation to achieve arbitrary velocities at the end of the



movement, however, as pointed out by Mülling et al. [2],
this solution is not necessarily accurate and may produce
very large accelerations if the desired final position and the
start position are very close to each other.

Mülling et al. [2] have used a two-stage movement primi-
tive in order to achieve the desired velocity at an intermediary
position along the movement. In a table tennis setup, the
stage of the movement primitive is switched when the racket
gets in contact with the ball. In our work, it is possible to
specify desired velocities at intermediary positions using one
single movement primitive with one single stage.

Nemec et al. [7] also proposed a method for adapting the
velocity of motor skills learned from user demonstration.
They have extended DMPs with a scaling factor ν(x), which
is a function of the phase variable x. By changing ν(x), it
is possible to accelerate or decelerate movements in order
to satisfy for example certain contact forces or contact
torques during the execution of a task. This acceleration or
deceleration does not need to be uniform. In their method, the
change in ν(x) depends on the difference between desired
and actual forces and torques at successive time steps along
the execution of the trajectory.

In [8], a similar approach has been adopted in order to
speed up the movement of a robot carrying a cup without
spilling the water inside it. In this approach, DMPs have
been extended with a scaling factor ν(t), which allows for
non-uniform change in speed. The change in ν(t) depends
on an intermediate cost function with value γ if the water is
about to be spilled or value 0 otherwise.

In contrast, our method deals with the problem of acceler-
ating, decelerating or changing the amplitude of trajectories
in order to satisfy velocity constraints. Our method allows for
non-uniform change in velocity also if there is only a final
reward, computed at the end of the execution of a trajectory.

In [4], van den Berg et al. showed how to speed up
the movement of a surgical robot by increasing a factor s
that rescales the time steps according to ∆t = ∆t0/s. By
increasing s, the time steps get shorter. Since the number of
time steps N is kept constant, the speed of the movement
increases uniformly and its duration decreases. In our work,
we deal with changing the speed of execution of a movement
in a non-uniform fashion. As previously discussed, when
adapting movements such as a golf putt swing to achieve
new desired velocities at specific positions, a non-uniform
change in the speed of execution is more suitable.

Englert et al. [9] presented a method for adapting online
the path and the phase of a movement to events such as
changes in the positions of obstacles and of the goal. Kim et
al. [10] have also developed a method for adapting online the
velocity of the movement of a robot to make it reach a certain
position at a certain time, for example when catching objects
on the fly. In contrast, we try to optimize the phase function
and the amplitude of a movement according to a given
reward, which can depend for instance on the difference
between the achieved velocity and the desired velocity at
a specific position.

In a remarkable work involving a minigolf setup, Kronan-

der et al. [11] proposed a method to infer the hitting speed
and hitting angle to sink the ball given multiple successful
demonstrations. In our experiments, the amplitude of the
movement and the phase function with multiple parameters
have been optimized starting from only one demonstration.

III. MOVEMENT PRIMITIVE WITH MULTIPLE
PARAMETERS FOR SHAPE AND PHASE

This section explains the proposed movement primitive
formulation. This formulation comprises a set of parameters
to define the shape of the movement in space and a set of
parameters to define its speed profile and duration.

A. Shape Parameterization

The shape parameterization used in this work is basically
the same one used in Probabilistic Movement Primitives
(ProMPs) [12]. A trajectory τ = [q1, q2, · · · , qT ]

T com-
prising positions qt sampled at a certain number T of time
steps can be approximated by a weighted sum of normalized
Gaussian basis functions ψn. This approximation can be
expressed by

τ ≈ Ψw, (1)

where w = [w1, w2, · · · , wN ]
T is the vector of weights wn

for each normalized Gaussian basis function ψn and

Ψ =


ψ1 (z(1)) ψ2 (z(1)) · · · ψN (z(1))
ψ1 (z(2)) ψ2 (z(2)) · · · ψN (z(2))

...
...

. . .
...

ψ1 (z(T )) ψ2 (z(T )) · · · ψN (z(T ))

 (2)

is a matrix with each ψn evaluated over the phase z(t), which
is a monotonically increasing function of time.

Given a trajectory τ and a matrix of normalized Gaussian
basis functions Ψ, the vector of shape parameters w can be
determined by

w =
(
ΨTΨ

)−1
ΨT τ , (3)

which is the ordinary least squares solution for linear regres-
sion [13].

B. Phase Parameterization

The phase function z(t) is a monotonically increasing
function of time assuming non-negative real values between
0 and Z. In this work, Z = 100 has been chosen. When
z(t) = 0, the movement is just starting. When z(t) = Z, the
movement is over. We propose defining the phase function
with a few parameters that will be useful to manipulate the
evolution of a movement in time, as the shape parameters
wn allow for manipulating the trajectory of a movement in
space.

The rate of change of phase in relation to time can be
written as the vector ż = [ż (1) , ż (2) , · · · , ż (T − 1)]

T . In
fact, we parameterize ż according to

ż = Φα. (4)

The matrix Φ comprises M normalized Gaussian basis
functions evaluated from time step t = 1 until time step



time step

ph
as

e 
(z

)

0 200 400 600
0

20
40
60
80

100

time step

po
si

tio
n

0 200 400 600
0

50

100

150

200

α1=1, α2=4, T=400 α1=1, α2=0.25, T=600

(a) Phase functions (b) Trajectories

Fig. 2. Effects of changes in phase parameters. (a) Two different phase
functions. The blue one has phase parameters α1 = 1, α2 = 4 and T =
400. The red one has phase parameters α1 = 1, α2 = 0.25 and T = 600.
(b) Respective trajectories.

t = T − 1, where T is the total number of time steps of the
movement. This matrix can be written as

Φ =


φ1 (1) φ2 (1) · · · φM (1)
φ1 (2) φ2 (2) · · · φM (2)

...
...

. . .
...

φ1 (T − 1) φ2 (T − 1) · · · φM (T − 1)

 . (5)

The vector α = [α1, α2, · · · , αM ]
T contains the weights

αm for each basis function φm. Those weights are such that
αm > 0,∀m ∈ {1, 2, · · · ,M}, ensuring that the phase z
always increases with time.

Once ż has been defined according to (4), the phase z(t)
can be computed via Euler integration with z(0) = 0 and
z(t+ 1) = z(t) + ∆tż(t) until t = T − 1.

In order to ensure that the phase achieves its maximum
value exactly at the last time step of the movement, i.e.
z(T ) = Z, the phase is normalized with

znorm =
z

z (T )
Z. (6)

In summary, the weights αm and the total number of time
steps T are the phase parameters. They define the rate of
change ż of the phase in relation to time, which, via Euler
integration, defines the phase z of a movement.

Fig. 2 shows two phase functions. Each of them was
defined using two normalized Gaussian basis functions φ(t).
One Gaussian is centered at t = 0, the other at t = T .
The variance of those Gaussians is 30 × T . The number of
time steps T is 400 for the phase depicted in blue and 600
for the phase depicted in red. Observe how the proportion
between the parameters αm influence the phase function
and consequently the evolution in time of the trajectories
generated with the same shape parameters w. The first half
of the blue trajectory is slow compared to the second half,
because α1 < α2. The opposite happens in the red trajectory.

In [14], we proposed a similar phase function param-
eterization as in this paper. In that formulation, it was
necessary to define the maximum number of time steps of the
demonstrated movements. By treating T as a phase parameter
and applying the normalization described by (6) we have

eliminated in this new formulation the necessity of defining
a maximum number of time steps.

IV. REINFORCEMENT LEARNING OF
MOVEMENT AMPLITUDE AND PHASE

This section explains how to use reinforcement learning
by Reward-weighted Regression (RWR) [15] in order to opti-
mize the amplitude and the phase parameters of a movement
with the objective of achieving a desired velocity at a specific
position.

The reward function has been defined as

R = exp(−β‖v̇ − v̇∗‖), (7)

where β is a task specific parameter tuned by the user and
‖v̇ − v̇∗‖ is the L2 norm of the difference between v̇ and
v̇∗. The term v̇ is the actual velocity at the specific position
q∗, while the term v̇∗ is the desired velocity at this same
specific position. Velocities have been computed using the
finite difference approximation

q̇(t) =
q(t+ 1)− q(t)

∆t
. (8)

The term β has been set equal to 10 in all our experiments,
because this value led to achieving the desired speed with
high precision within a reasonable number of reinforcement
learning iterations, compared to the values 0.1, 1 and 100.

The parameters that need to be optimized are given by the
vector θ = [α2, α3, · · · , αM , T, λ]

T . Due to the normaliza-
tion (6), not the absolute values of the parameters αm, but
the proportions between their values is important. Therefore,
α1 is simply always equal to 1 and it is not necessary to
optimize it. The scalar λ multiplies all the shape parameters
wn and determines the amplitude of the movement.

Let us adopt an upper-level policy given by a Gaussian
distribution N (θ;µθ,Σθ). Our objective is thus to maxi-
mize the expected reward with respect to µθ and Σθ. This
can be done iteratively according to

{µk+1
θ ,Σk+1

θ } = arg max
{µθ,Σθ}

S∑
i=1

RiN (θi;µθ,Σθ) , (9)

where S is the number of sampled parameter vectors θi from
the previous policy N

(
θ;µkθ,Σ

k
θ

)
.

The solution of (9) is given by

µk+1
θ =

∑S
i=1Riθi∑S
i=1Ri

, (10)

Σk+1
θ =

∑S
i=1Ri

(
θi − µkθ

) (
θi − µkθ

)T∑S
i=1Ri

. (11)

This iterative process continues until the expected reward
converges. The best parameters are then given by µθ.

The convergence properties of the Expectation-
Maximization (EM) algorithm [16] guarantee that the
reward converges to some local maximum. The initial
parameters µ0

θ and Σ0
θ influence the maximum expected

reward achieved by RWR. As it will be explained in



Section V, those parameters have been initialized in our
work by using a human demonstration and choosing an
exploration noise.

V. EXPERIMENTS

This section presents a number of experiments in which
the proposed movement primitive formulation with multiple
phase parameters has been applied. In these experiments, the
BioRob, a robot arm consisting of four elastically actuated
joints [17], has been used.

In the first experiments, we have assumed that the desired
trajectory could be perfectly tracked by the robot. Using this
simplifying assumption, a comparison between optimizing in
simulation different parameters has been made. Afterwards,
both the phase parameters and the amplitude of a putt swing
have been optimized such that the real robot arm could pass
through a specific position with a desired velocity.

A. Comparison between optimizing different parameters

In these experiments, a putt swing was demonstrated to
the robot via kinesthetic teaching as depicted in Fig. 1.
Subsequently, the robot tried to track the demonstrated
trajectory1. The trajectory executed by the robot was then
recorded. It comprises 5959 positions2 sampled at regular
intervals of 1/480s. We refer to this recorded trajectory as
the “original trajectory”.

The shape of the original trajectory has been parameter-
ized according to (1). Twenty normalized Gaussian basis
functions ψ (z) have been used. These basis functions have
variance equal to 100 and their means are evenly distributed
between z = 0 and z = 100. In a first experiment, the phase
function was defined as z(t) = αt, where α = 100/T . The
vectors of shape parameters w for each of the four DoFs of
the robot have been determined with (3).

The shape parameters have then been optimized according
to (9), using however θ = w, to generate a trajectory in
which the double of the original velocity of the 1st joint
is achieved when this joint crosses position 0.1 rad for the
first time. The desired velocity for the other three joints
is the same as the original velocity and is close to zero.
Our algorithm iterated over equations (10) and (11) 100
times. In each iteration, fifty vectors of parameters θ were
sampled. Results are depicted in Fig. 3. The plot on the
left shows the time at which the original trajectory and the
trajectory after optimization cross the joint position 0.1 rad
for the first time. The plot on the right shows the joint
velocity of both trajectories. The shape of the trajectory has
changed considerably. Such changes in shape may result in
unnecessary movements, collisions, reaching joint limits, etc.

1The control of the robot has been performed using a PD controller for
joint and motor angles with compensation for stiction and gravity. System
identification methods have been used to estimate gravitational torques,
elastic transmission and stiction.

2Cubic spline interpolation has been used to compress the original
trajectory to 500 time steps before determining the parameters of the
movement primitive and running reinforcement learning. The optimized
trajectory is then decompressed also with cubic spline interpolation in the
experiments where the real robot executes the trajectories.

time [s]

jo
in

t p
os

iti
on

 [r
ad

]

(5.7188,0.10077)

(1.3667,0.10106)

0 5 10 15
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3

time [s]

jo
in

t v
el

oc
ity

 [r
ad

/s
]

(5.7188,0.17703)

(1.3667,0.3502)

0 5 10 15
-0.4

-0.2

0

0.2

0.4

original with desired velocity

Fig. 3. Optimizing only shape parameters to achieve double the velocity
of an original movement when the 1st joint angle crosses the value 0.1 rad
for the first time. Assuming the desired trajectory could be exactly tracked
by the robot.

time [s]
jo

in
t p

os
iti

on
 [r

ad
]

(5.7188,0.10077)

(2.1792,0.1008)

0 5 10 15
-0.2

-0.1

0

0.1

0.2

0.3

time [s]

jo
in

t v
el

oc
ity

 [r
ad

/s
]

(5.7188,0.17703)

(2.1792,0.33229)

0 5 10 15
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6

original with desired velocity

Fig. 4. Optimizing a phase function of the form z(t) = αt to achieve
double the velocity of the original movement when the 1st joint angle
crosses the value 0.1 rad for the first time. Assuming the desired trajectory
could be exactly tracked by the robot.

Further constraints would be required in order to keep the
shape of the movement similar to the original one when
optimizing only the shape parameter vectors w as in this
example.

By optimizing not the shape parameters, but only the phase
parameter α, assuming z(t) = αt and α = 100/T , we have
obtained solutions as the one depicted in Fig. 4. This solution
rescales the velocity of the movement uniformly and results
in unnecessary accelerations. Speeds are considerably higher
than the original ones also when the joint position is far away
from the position of interest.

Finally, the same experiment was performed optimizing
multiple phase parameters and the amplitude of the move-
ment, as in Section IV. The shape parameterization is the
same as the one in the previous experiment. The phase
function has been defined as in Section III-B, with nine
Gaussian basis functions φ (t). The basis functions φ (t) have
variance equal to the duration T and their means are equally
distributed between t = 0 and t = T . The upper-level policy
N (θ;µθ,Σθ) was initialized with mean

µ0
θ = [α2 = 1, α3 = 1, · · · , α9 = 1, T = 500, λ = 1]

T

and a diagonal covariance matrix Σ0
θ with its diagonal

defined by the vector[
σ2
α2

= 10, · · · , σ2
α9

= 10, σ2
T = 1000, σ2

λ = 0.1
]
.

The elements σ2
αm

represent the variance of the parameters
αm. The element σ2

T represents the variance of the duration



time [s]

jo
in

t p
os

iti
on

 [r
ad

]

(5.7188,0.10077)

(6.0479,0.10075)

0 5 10 15
-0.4

-0.2

0

0.2

0.4

time [s]

jo
in

t v
el

oc
ity

 [r
ad

/s
]

(5.7188,0.17703)

(6.0479,0.35732)

0 5 10 15
-0.4

-0.2

0

0.2

0.4

0.6
original with desired velocity

Fig. 5. Optimizing multiple phase parameters and amplitude to achieve
double the velocity of an original movement when the 1st joint angle crosses
the value 0.1 rad for the first time. Assuming the desired trajectory could
be exactly tracked by the robot.

time [s]

ph
as

e

0 5 10 15
0

20

40

60

80

100

original
with desired velocity

time [s]

ph
as

e

0 5 10 15
0

20

40

60

80

100

original
with desired velocity

(a) Using only one phase 
parameter

(b) Using one amplitude parameter 
and multiple phase parameters

Fig. 6. Phase functions before and after optimization. (a) Phase functions
of the form z(t) = αt. (b) Phase functions with multiple phase parameters.

T of the movement. Finally, σ2
λ represents the variance of

the amplitude parameter λ.
Fig. 5 depicts the results of optimizing the phase parame-

ters and the amplitude parameter after 100 iterations with 50
samples θi each. The optimized trajectory has shape similar
to the original one, except for the change in its amplitude.
Velocities are not much higher than original ones far from
the position of interest. Fig. 6 shows the phase functions
before and after optimization with one and multiple phase
parameters.

B. Optimizing trajectories executed by the robot

In these experiments, the same Gaussian basis functions
for shape and phase were used as in Section V-A. The upper
level policy N (θ;µθ,Σθ) was initialized with the same
mean µ0

θ as in Section V-A. The initial covariance matrix
Σ0
θ was again a diagonal matrix and its diagonal was defined

by the vector[
σ2
α2

= 10, · · · , σ2
α9

= 10, σ2
T = 50000, σ2

λ = 0.25
]T
.

In a first experiment, the phase parameters were opti-
mized to reach the half of the original velocity when the
1st joint crosses position 0.1 rad for the first time. In a
second experiment, those same parameters were optimized
to reach the double of the original velocity when the 1st

joint crosses this same specific position for the first time.
In both experiments, there were 20 reinforcement learning
iterations with 30 samples θi each3. Fig. 7 shows how the

3The experiments with the real robot were time-consuming, since the
robot took approximately 32 seconds on average to position the golf club and
perform the putt swing. This motivated the choice of running 20 iterations
with 30 samples θi each.

Fig. 7. Iteration of reinforcement learning algorithm versus expected reward
with mean and standard deviation. (a) Evolution of the expected reward by
trying to achieve half the original velocity at position 0.1 rad. (b) Evolution
of expected reward by trying to achieve twice the original velocity at position
0.1 rad.

original with desired velocity

time [s]

jo
in

t v
el

oc
ity

 [r
ad

/s
]

(5.7188,0.1779)

(10.8229,0.081204)

0 5 10 15 20 25
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3

time [s]
jo

in
t p

os
iti

on
 [r

ad
]

(5.7188,0.097404)

(10.8229,0.10037)

0 5 10 15 20 25
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3

Fig. 8. Optimizing phase parameters and amplitude to achieve half the
velocity of an original movement when the 1st joint angle crosses the value
0.1 rad for the first time. In this case, trajectories executed by the real robot
have been evaluated.

expected reward changed with the number of iterations of the
reinforcement learning algorithm. Figs. 8 and 9 show the
trajectories found by the reinforcement learning algorithm
that achieve the desired velocity in comparison to the original
trajectories.

In the solution for achieving half the original speed at
a certain position, the overall duration of the movement is
considerably longer than the original duration. The change
in velocity is non-uniform, as can be clearly observed by the
different slopes along the red curve in Fig. 10a.

In the solution for achieving twice the original speed at
a certain position, the overall duration of the movement
is slightly longer than the original duration. However, the
movement accelerates in between, producing the desired
velocity. This acceleration can be noticed by the slight
change in slope along the red curve in Fig. 10b.

VI. CONCLUSION AND FUTURE WORK

This paper presented a movement primitive formulation
with multiple phase parameters. Changes in these phase pa-
rameters allow for non-uniform acceleration or deceleration
of a movement. We have shown that, using a reinforcement
learning algorithm, it is possible to adapt the phase param-
eters and the amplitude of a movement demonstrated by
a human in order to satisfy new velocity constraints. This
was demonstrated in practice with experiments where an
elastically actuated robot arm learned how to execute a golf
putt swing, achieving new desired velocities at a specific



time [s]

jo
in

t v
el

oc
ity

 [r
ad

/s
]

(5.7188,0.1779)

(6.925,0.34436)

0 5 10 15 20
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4

original with desired velocity

time [s]

jo
in

t p
os

iti
on

 [r
ad

]

(5.7188,0.097404)

(6.925,0.096199)

0 5 10 15 20
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3

Fig. 9. Optimizing phase parameters and amplitude to achieve double the
velocity of an original movement when the 1st joint angle crosses the value
0.1 rad for the first time. In this case, trajectories executed by the real robot
have been evaluated.

(b) Achieving twice the original velocity at
specific position

time [s]

ph
as

e

0 5 10 15
0

20

40

60

80

100

(a) Achieving half the original velocity at
specific position

ph
as

e

40

60

80

100

time [s]
0 5 10 15 20 25

0

20 original
with desired velocity

original
with desired velocity

Fig. 10. Phase functions before and after optimization. The blue curve
represents the original phase function, which was defined with constant
slope. (a) The red curve represents the phase function after optimization to
achieve half the original velocity when the 1st joint reaches 0.1 rad for the
first time. (b) The red curve represents the phase function after optimization
to achieve double the original velocity when the 1st joint reaches 0.1 rad
for the first time.

position.
Experiments with more sophisticated reward functions

might be performed with the real robot. For example, the
reward function could favor energy-efficient movements.
Our phase function with multiple parameters might play an
important role in this case, since it allows for non-uniform
changes in speed of execution. Unnecessary accelerations or
decelerations could then be avoided.

In the future, we will use a camera to detect the ball
and a reward will be assigned to the movement of the
robot depending on the final distance between the ball and
the hole. Furthermore, we will evaluate the applicability of
our movement primitive formulation to other tasks such as
throwing or catching an object, moving objects around in an
energy-efficient and safe way, etc.

So far in our experiments, only a small change in the
shape of the movement through an amplitude parameter has
been allowed. In a future work, we intend to allow for more
general changes in shape alongside changes in phase in order
to let the robot adapt to new constraints in space as well.

VII. ACKNOWLEDGMENTS

The research leading to these results has received funding
from the project BIMROB of the “Forum für interdisziplinäre
Forschung” (FiF) of the TU Darmstadt and from the Eu-
ropean Community’s Seventh Framework Programme (FP7-
ICT-2013-10) under grant agreement 610878 (3rdHand).

The authors would also like to thank Rudolf Lioutikov,
Hany Abdulsamad, Alexandros Paraschos and Elmar Rueck-
ert. Their help was essential for us to perform the real robot
experiments.

We are also indebted to Jérôme Kirchhoff, who has
provided us with a great technical support, and to Josef Noll,
who has made an excellent work in building a support to
attach the golf club to the end effector of the BioRob.

REFERENCES

[1] S. Calinon, F. Guenter, and A. Billard, “On learning, representing,
and generalizing a task in a humanoid robot,” Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol. 37, no. 2,
pp. 286–298, 2007.

[2] K. Mülling, J. Kober, O. Kroemer, and J. Peters, “Learning to
select and generalize striking movements in robot table tennis,” The
International Journal of Robotics Research, vol. 32, no. 3, pp. 263–
279, 2013.

[3] J. Schulman, J. Ho, C. Lee, and P. Abbeel, “Learning from demon-
strations through the use of non-rigid registration,” in Proceedings of
the 16th International Symposium on Robotics Research (ISRR), 2013.

[4] J. Van Den Berg, S. Miller, D. Duckworth, H. Hu, A. Wan, X. Fu,
K. Goldberg, and P. Abbeel, “Superhuman performance of surgical
tasks by robots using iterative learning from human-guided demon-
strations,” in Proceedings of the 2010 IEEE International Conference
on Robotics and Automation, 2010, pp. 2074–2081.

[5] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Movement imitation
with nonlinear dynamical systems in humanoid robots,” in Robotics
and Automation, 2002. Proceedings. ICRA’02. IEEE International
Conference on, vol. 2. IEEE, 2002, pp. 1398–1403.

[6] J. Kober, K. Mulling, O. Kromer, C. Lampert, B. Scholkopf, and
J. Peters, “Movement templates for learning of hitting and batting,” in
Proceedings of the 2010 IEEE International Conference on Robotics
and Automation. IEEE, 2010, pp. 853–858.

[7] B. Nemec, A. Gams, and A. Ude, “Velocity adaptation for self-
improvement of skills learned from user demonstrations,” in Humanoid
Robots (Humanoids), 2013 13th IEEE-RAS International Conference
on. IEEE, 2013, pp. 423–428.

[8] R. Vuga, B. Nemec, and A. Ude, “Speed profile optimization through
directed explorative learning,” in Humanoid Robots (Humanoids),
2014 14th IEEE-RAS International Conference on. IEEE, 2014, pp.
547–553.

[9] P. Englert and M. Toussaint, “Reactive phase and task space adaptation
for robust motion execution,” in Intelligent Robots and Systems (IROS
2014), 2014 IEEE/RSJ International Conference on. IEEE, 2014, pp.
109–116.

[10] S. Kim, E. Gribovskaya, and A. Billard, “Learning motion dynamics to
catch a moving object,” in Humanoid Robots (Humanoids), 2010 10th
IEEE-RAS International Conference on. IEEE, 2010, pp. 106–111.

[11] K. Kronander, M. S. Khansari-Zadeh, and A. Billard, “Learning to
control planar hitting motions in a minigolf-like task,” in Intelligent
Robots and Systems (IROS), 2011 IEEE/RSJ International Conference
on. IEEE, 2011, pp. 710–717.

[12] A. Paraschos, C. Daniel, J. Peters, and G. Neumann, “Probabilistic
movement primitives,” in Advances in Neural Information Processing
Systems (NIPS), 2013, pp. 2616–2624.

[13] C. M. Bishop et al., Pattern recognition and machine learning.
springer New York, 2006, vol. 1.

[14] M. Ewerton, G. Maeda, J. Peters, and G. Neumann, “Learning motor
skills from partially observed movements executed at different speeds,”
in Accepted: Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2015.

[15] J. Peters and S. Schaal, “Reinforcement learning by reward-weighted
regression for operational space control,” in Proceedings of the 24th
international conference on Machine learning. ACM, 2007, pp. 745–
750.

[16] C. J. Wu, “On the convergence properties of the em algorithm,” The
Annals of statistics, pp. 95–103, 1983.

[17] T. Lens and O. von Stryk, “Design and dynamics model of a
lightweight series elastic tendon-driven robot arm,” in Robotics and
Automation (ICRA), 2013 IEEE International Conference on. IEEE,
2013, pp. 4512–4518.


