
Learning Motor Skills from Partially Observed Movements Executed at
Different Speeds

Marco Ewerton1, Guilherme Maeda1, Jan Peters1,2 and Gerhard Neumann3

Abstract— Learning motor skills from multiple demonstra-
tions presents a number of challenges. One of those challenges
is the occurrence of occlusions and lack of sensor coverage,
which may corrupt part of the recorded data. Another issue
is the variability in speed of execution of the demonstrations,
which may require a way of finding the correspondence between
the time steps of the different demonstrations. In this paper,
an approach to learn motor skills is proposed that accounts
both for spatial and temporal variability of movements. This
approach, based on an Expectation-Maximization algorithm to
learn Probabilistic Movement Primitives, also allows for learning
motor skills from partially observed demonstrations, which may
result from occlusion or lack of sensor coverage. An application
of the algorithm proposed in this work lies in the field of
Human-Robot Interaction when the robot has to react to human
movements executed at different speeds. Experiments in which
a robotic arm receives a cup handed over by a human illustrate
this application. The capabilities of the algorithm in learning
and predicting movements are also evaluated in experiments
using a data set of letters and a data set of golf putting
movements.

I. INTRODUCTION

Researchers investigating how a robot can learn motor
skills from multiple human demonstrations face numerous
challenges. The recorded data may, for example, be corrupted
by occlusions or lack of sensor coverage and the demon-
strations may vary considerably in speed of execution. It
is necessary to identify the corrupted data or to be able to
extract useful information from the corrupted recordings. A
common approach to represent the learned movement is to
use time-dependent models. In this case, the variability in
speed of execution requires a way of finding the correspon-
dence between the time steps of the different demonstrations.
This paper presents an approach to deal with both challenges.
This approach is based on an Expectation-Maximization
(EM) algorithm to learn Probabilistic Movement Primitives
(ProMPs).

ProMPs [1] are movement representations based on a
probability distribution over trajectories. By representing
movements with ProMPs, it is possible to condition the
distributions over trajectories on observed positions. One of
the applications of this framework lies in the field of Human-
Robot Interaction, where it is possible to use probabilistic

1Intelligent Autonomous Systems group, department of
Computer Science, Technische Universität Darmstadt, Hochschulstr.
10, 64289 Darmstadt, Germany {ewerton, maeda,
peters}@ias.tu-darmstadt.de

2Max Planck Institute for Intelligent Systems, Spemannstr. 38, 72076
Tuebingen, Germany jan.peters@tuebingen.mpg.de

3Computational Learning for Autonomous Systems group, department
of Computer Science, Technische Universität Darmstadt, Hochschulstr. 10,
64289 Darmstadt, Germany geri@robot-learning.de

(a) (b)

Fig. 1. Experimental setups to evaluate our EM algorithm to learn ProMPs.
(a) The robot receives a cup from a human who executes the handover at
different speeds. (b) A golf putting data set is used to evaluate different
formulations of our phase function.

operations to condition the reactions of the robot on the
actions of the human [2], [3].

This work builds upon the concept of ProMPs and pro-
poses learning from multiple demonstrations probability dis-
tributions not only over trajectories but also over speed
profiles or the phase of the movement. The phase of the
movement is a function of time that can be associated with
a movement. By changing the phase of a movement, it
is possible to change its speed of execution. Learning a
distribution over phase profiles is important to learn motor
skills from demonstrations executed at different speeds and to
allow a robot to react to human actions executed at different
speeds.

The remainder of this paper is organized as follows:
Section II presents related work. Section III presents the main
contribution of this work, an EM algorithm to learn ProMPs,
capturing variability in the trajectories and in the phase
profiles. Section IV describes a number of experiments that
evaluate the proposed algorithm. Our experiments evaluate
the capabilities of the presented algorithm in learning move-
ments from demonstrations with missing data. Furthermore,
we evaluate two different formulations of the phase function:
a simple formulation with one single phase parameter and
a more general formulation with multiple phase parameters.
Section V summarizes the paper and presents ideas for future
work.

II. RELATED WORK

Time-dependent movement representations are heavily
used due to their small number of parameters. The most
prominent time-dependent movement representation is the

2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Congress Center Hamburg
Sept 28 - Oct 2, 2015. Hamburg, Germany

978-1-4799-9993-4/15/$31.00 ©2015 IEEE 456

Dynamical Movement Primitive (DMP) [4], which com-
prises a proportional-derivative (PD) controller and a non-
linear forcing function. This forcing function corresponds
to a weighted sum of time-dependent basis functions. The
weights for the basis functions are learned for example
through linear regression.

In the Probabilistic Movement Primitive (ProMP), which
is also a time-dependent movement representation, not a forc-
ing function, but the trajectories themselves are approximated
by a weighted sum of time-dependent basis functions.

In both approaches, the time-dependency of the basis
functions can be given through a phase variable, which is in
turn a function of time. Defining the basis functions through
a phase variable allows for time-rescaling trajectories and
synchronizing the movements of different limbs.

Those formulations of movement primitives have found a
large number of applications. They are used, for instance, to
model Human-Robot Interaction. The Interaction Primitives
(IPs), proposed by Ben Amor at al. [5], are based on DMPs.
The Interaction Probabilistic Movement Primitives, proposed
by Maeda et al. [2], and the Mixture of Interaction Primitives,
proposed by Ewerton et al. [3], are based on ProMPs.
All those interaction models are time-dependent. In their
current form, those models require the time-alignment of the
demonstrations. In [5], Dynamic Time Warping [6] is used
to time-align the demonstrations. In [2], a local optimization
method is proposed to this end. This same method is also
used in [3]. However, as it will be discussed in Section IV-
A.2, those procedures do not allow for reacting to actions
executed at different speeds.

Time-independent methods to learn trajectories by imi-
tation have also been proposed. For example, Calinon et
al. [7] propose an approach based on Hidden Markov Models
(HMM) and Gaussian Mixture Regression (GMR) to learn
and reproduce gestures by imitation. Each hidden state
corresponds to a Gaussian over positions and velocities,
locally encoding variation and correlation. ProMPs, however,
offer very useful properties for learning motor skills and
approaching the problem of Human-Robot Interaction, such
as the parameterization of trajectories with a relatively small
set of weights and the global encoding of variation and
correlation. Therefore, ProMPs have been chosen in our
work.

A number of other methods deal with the problem of phase
estimation or time-alignment. Englert et al. [8] present a
method to adapt the trajectory and the phase of a movement
to changes in the environment, such as changes in the
position of the goal or in the position of obstacles. Vuga
et al. [9] present a modified form of DMPs where the rate
of phase change is related to the speed of movement. They
use Reinforcement Learning and Iterative Learning Control
(ILC) to speed up the execution of a movement as much
as possible without violating some given constraints. For
example, they speed up the movements of a robot carrying
a glass full of liquid without spilling the liquid. Coates
et al. [10] learn how to follow a desired trajectory from
multiple sub-optimal expert’s demonstrations. They apply

their algorithm to the problem of autonomous helicopter
flight. They use Dynamic Time Warping in order to find
the relation between the time steps of the demonstrations
and the time steps of the desired trajectory. Similarly, van
den Berg et al. [11] use Dynamic Time Warping to learn
the time mapping between demonstrated trajectories and a
reference trajectory. With their approach, robots are able to
perform surgical tasks with superhuman performance.

Differently from the cited works, the work on online phase
estimation presented in this paper aims at inferring the phase
from a partial observation of a trajectory. The position of the
goal is not known a priori and there is no reference trajectory.

Meier et al. [12] propose a technique to perform movement
recognition, prediction and segmentation. This technique
assumes the existence of a library of DMPs with specific
weights and uses a reformulation of DMPs as linear dynam-
ical systems. Given a partial observation of a trajectory, an
EM algorithm is able to estimate the most probable primitive
corresponding to this trajectory, the duration and the goal of
this primitive. Their work is related to ours, especially since
they also use an EM algorithm that can also estimate the
completion of trajectories. In our work, an EM algorithm
is used to infer a different set of parameters of movement
primitives, specifically, the weights and the phase parameters
of ProMPs. While their technique is especially suitable for
movement segmentation, ours is able to model the correlation
between positions at different time steps and the correlation
between different joints, what is suitable for Human-Robot
Interaction applications, for instance.

III. EM ALGORITHM TO LEARN PROMPS

This section explains an EM algorithm to determine the
vectors of weights that compactly represent the training
movements of a ProMP and a probability distribution over
those weights as well as the phase parameters for each
training movement and a probability distribution over those
phase parameters. First, the algorithm is introduced for the
case in which the phase function can be defined by one
single parameter. Afterwards, an extension of this method
for the case in which the phase function depends on multiple
parameters is presented.

A. Algorithm with a Single Phase Parameter

Assume there are a number K of training movements in
the form of trajectories. Each training movement can be
compactly represented by a vector w of weights for basis
functions1 and, for now, by a single non-negative phase
parameter α. The phase function z(t) is defined as z(t) = αt
and assumes values between 0 and Z. The higher the value
of α, the faster the phase goes from 0 to Z and the faster
the movement gets executed.

The phase parameter αi of a trajectory indexed by i is
given by

αi =
Z

Ti
, (1)

1We use normalized Gaussian basis functions.

457

where Ti is the duration of the training trajectory i.
Assuming pθ (w) is a multivariate Gaussian defined by

a set of parameters θ = {µw,Σw}, i.e. its mean and
covariance, one of the objectives of the algorithm is to
determine θ. The training trajectories may have missing
values, as it would be the case for example due to occlusion
or lack of sensor coverage. The observed part of trajectory i
is represented by Di. Finding the parameters θ of pθ (w) can
be formulated as an Expectation-Maximization [13] problem,
where w is a hidden, vector-valued variable.

The joint probability of the observations2,∏
i

pθ (Di|αi) =
∏
i

∫
p (Di|w, αi) pθ (w) dw, (2)

with p (Di|w, αi) = N
(
Di; Ψiw, σ

2I
)
, must be maxi-

mized with respect to θ. The term σ2I is a covariance matrix
modeling a uniform observation noise.

Assuming that an observation Di comprises the positions
qt from time step t = 1 to time step t = m, where m ≤ Ti,
this observation can be represented by

Di = [q1, q2, · · · , qm]
T ≈ Ψiwi, (3)

where wi is the unobserved vector of weights that compactly
represents the training trajectory i. We assume a number N
of basis functions, i.e. the weight vectors are given by wi =
[wi1, wi2, · · · , wiN]

T .
The matrix Ψi has each basis function ψn evaluated at

the phase value correspondent to the observed time steps t.
This matrix can be written as

Ψi =

ψ1 (zi(1)) ψ2 (zi(1)) · · · ψN (zi(1))
ψ1 (zi(2)) ψ2 (zi(2)) · · · ψN (zi(2))

...
...

. . .
...

ψ1 (zi(m)) ψ2 (zi(m)) · · · ψN (zi(m))

 , (4)

where zi(t) = αit.
Note that the observations Di do not need to be comprised

of positions at successive time steps. There may be gaps
between the observed parts as well.

As the parameter vector wi for each demonstration Di

is unobserved, an EM algorithm is used to maximize the
likelihood of the demonstrations. First, θ is initialized
with a rough estimate θ0 = {µw0,Σw0}. Next, the algo-
rithm performs the Expectation step (E step), by estimating
for each observation Di the posterior pθ0(w|Di, αi) ∝
p(Di|w, αi)pθ0(w), which is a Gaussian with mean µwi
and covariance Σwi. The posterior for each observation
Di is necessary to define the complete data log-likelihood
Q (θ,θold),

Q (θ,θold) =
∑
i

Eθold [log pθ (Di,w, αi) |D = Di] , (5)

which is maximized with respect to θ in the Maximization
step (M step), i.e.

θ = arg max
θ

Q (θ,θold) . (6)

2Assuming w and α independent variables.

The algorithm keeps iterating over the E step and the M step
until

∏
i pθ (Di|αi) converges. The parameters µwi, Σwi

and Equation (6) have closed-formed solutions as follows:
E step:

Σwi =
(
σ−2ΨT

i Ψi + Σ−1
wold

)−1
, (7)

µwi = Σwi

(
σ−2ΨT

i Di + Σ−1
wold
µwold

)
, (8)

M step:

µ∗
w =

∑
i µwi
K

, (9)

Σ∗
w =

(
ETE +

∑
i Σwi

)
K

, (10)

with

µwi = [µwi1 , µwi2 , · · · , µwiN
]
T
,

µ∗
w =

[
µ∗
w1
, µ∗
w2
, · · · , µ∗

wN

]T
,

ei = µwi − µ∗
w, E = [e1, e2, · · · , eK]

T
.

Note that this approach to learn ProMPs incorporates all
available observations when estimating the mean µwi and
the covariance Σwi, which define the probability distribu-
tion over the weights for each training trajectory i. Equa-
tions (7) and (8) involve the terms µwold and Σwold , which
represent the mean and the covariance from the previous EM
iteration of the Gaussian over the weights of all the training
trajectories.

B. Algorithm with Multiple Phase Parameters

A set of movement demonstrations may present local
variabilities in speed of execution. For example, consider
a data set in which the beginning of the movements has
approximately the same speed of execution, but the end dif-
fers considerably in speed. A phase function with one single
parameter cannot account for this kind of variability, because
changing its phase parameter would result in accelerating or
decelerating the whole movement.

In order to learn movement primitives that model local
variabilities in speed of execution, the rate of change ż(t) of
the phase function with respect to time t can be defined as
a weighted sum of Gaussian basis functions,

ż(t) = φ(t)Tα, (11)

where φ(t) is a vector of normalized Gaussian basis func-
tions evaluated at time step t and α is a vector of phase
parameters, which are the weights for the basis functions.

The phase function can be obtained by first defining its
value at time step t = 0 and then using Euler Integration
until a time limit tmax is achieved,

z(0) = 0, z(t+ 1) = z(t) + ∆tż(t).

However, once z(t) = Z, it no longer increases, remaining
with the value Z until t = tmax. Movements may have any
duration that does not surpass the time limit tmax.

When learning ProMPs with multiple phase parameters,
the estimation of the phase parameters is incorporated into
the EM algorithm. This time, w and α are both hidden,

458

vector-valued variables. The set of parameters θ is initialized
with a rough estimate θ0 = {µw0,Σw0,µα0,Σα0}. In the
beginning of each iteration of the algorithm, a number S
of vectors αj are sampled from N (α;µαold ,Σαold), where
µαold and Σαold are parameters determined by the previ-
ous iteration. The algorithm optimizes the parameter vector
θ = {µw,Σw,µα,Σα} to maximize

∏
i,j pθ (Di|αj). This

operation is performed by executing iteratively an EM to
determine {µw,Σw} and an EM to determine {µα,Σα}:

E step for w:

Σwij =
(
σ−2ΨT

ijΨij + Σ−1
wold

)−1
, (12)

µwij = Σwij

(
σ−2ΨT

ijDij + Σ−1
wold
µwold

)
, (13)

M step for w:

µ∗
w =

∑
i,j p (αj |Di)µwij∑

i,j p (αj |Di)
, (14)

Σ∗
w =

(
ET
d E +

∑
i,j p (αj |Di) Σwij

)
∑
i,j p (αj |Di)

, (15)

with

µwij =
[
µwij1

, µwij2
, · · · , µwijN

]T
,

µ∗
w =

[
µ∗
w1
, µ∗
w2
, · · · , µ∗

wN

]T
,

eij = µwij − µ∗
w, E = [e11, e12, · · · , eKS]

T
,

edij = p (αj|Di) (µwij − µ∗
w) ,

Ed = [ed11, ed12, · · · , edKS]
T
.

Having executed the EM for w, the algorithm recomputes
the terms p (αj |Di) according to {µ∗

w,Σ
∗
w} and executes

the EM for α:
E step for α:

E [α|Di] =

∑
j p (αj |Di)αj∑
j p (αj |Di)

, (16)

M step for α:

µ∗
α =

∑
i E [α|Di]

K
, (17)

Σ∗
α =

∑
i,j p (αj |Di) (αj − µ∗

α) (αj − µ∗
α)
T∑

i,j p (αj |Di)
. (18)

The mean µ∗
α and the covariance Σ∗

α become the mean
µαold and the covariance Σαold of the Gaussian probability
distribution from which the vectors αj are sampled in
the beginning of the next iteration of the algorithm. The
iterations continue until

∏
i,j pθ (Di|αj) converges.

C. Online Phase Estimation and Movement Prediction

Given a set Di of observed positions at specific time steps
of a movement i being observed3, the phase associated with
this movement can be online estimated and the unobserved
part of this movement can subsequently be predicted, as long

3This movement does not need to be part of the training data. In fact, for
any practical application, this movement most likely does not match exactly
any of the demonstrations.

as its trajectory and phase fit into the probability distributions
learned in the training phase.

In order to perform this prediction, a number of vectors αj
are sampled from N (α;µα,Σα) resulting from the training
phase performed with the algorithm explained in Section III-
B. The probability of αj given observation Di is given by4

p (αj |Di) ∝ p (Di|αj) , (19)

where5

p (Di|αj) =

∫
p (Di|w,αj) p (w) dw. (20)

Equation 20 can be solved in closed form, yielding
p (Di|αj) = N (Di;µDij ,ΣDij) with

µDij = Ψijµwij , (21)

ΣDij = σ2I + ΨijΣwijΨ
T
ij . (22)

The terms µwij and Σwij can be computed using (13) and
(12), respectively.

Finally, the mean µτ and covariance Στ of the predicted
trajectory τ for the whole duration Ti of the movement i can
be computed with

µτ =

∑
j p (αj |Di)µτj∑
j p (αj |Di)

, (23)

Στ =

∑
j p (αj |Di)

(
Στj + µτjµ

T
τj − µτµTτ

)∑
j p (αj |Di)

, (24)

where

µτj = Ψjµwij , (25)

Στj = σ2I + ΨjΣwijΨ
T
j . (26)

While Ψij is defined only at the time steps of observed
positions, Ψj is defined over the whole duration Ti of the
movement according to αj .

This prediction is thus a weighted average of the pre-
dictions with all sampled vectors αj . Equations (23) and
(24) can be derived by minimizing the Kullback-Leibler
divergence [13] between a mixture of Gaussians with pa-
rameters {p (αj |Di) ,µτj ,Στj} and a single Gaussian with
parameters {µτ ,Στ}.

IV. EXPERIMENTS

This section presents a number of experiments that eval-
uate some of the applications of our algorithm described in
Section III. Those applications are online phase estimation
with subsequent movement prediction, learning from incom-
plete data and inferring distributions over trajectories asso-
ciated with phase functions defined by multiple parameters.

4Note that p(αj) is not part of the expression, since the vectors αj are
being sampled.

5Assuming w and α independent variables.

459

Fig. 2. Data set consisting of different trajectories of the letter "a". The
trajectories differ in shape, scale and duration.

A. Experiments on Online Phase Estimation and Movement
Prediction

In this first set of experiments, we evaluate online phase
estimation and movement prediction assuming all move-
ments can be associated with a phase function defined by
one single phase parameter. Each movement has, however, its
own phase parameter α. This evaluation is performed in two
scenarios: with artificially generated trajectories of the letter
“a” and in a Human-Robot Interaction scenario, in which a
robot receives a cup from a human.

1) Using Artificially Generated “a” Trajectories: Con-
sider a data set comprising several (x, y) trajectories of
the letter “a”, differing in shape, scale and duration. Fig. 2
exemplifies such a data set, showing different letters “a” and
their correspondent x trajectories. Given a partial observation
of a test trajectory, our objective is to predict the unobserved
part. The prediction should be as close as possible to the
ground truth. In the experiments presented in this section, the
training data set was comprised only of whole trajectories,
without any gaps.

The training and test data were constructed by sampling
weights w for a set of 20 Gaussian basis functions and phase
parameters α from Gaussian distributions. Forty trajectories
were generated with the sampled values, using (3). Twenty
of them were selected at random as training and the other
twenty as test data. This data set fulfills perfectly the
assumptions that both the weights w of the basis functions
and the phase parameters α are normal distributed. For this
reason, it was chosen as a starting point to test the method
proposed in Section III-C to estimate the phase online and
predict the unobserved part of a movement.

In training phase, the weights w for each training trajec-
tory were computed with linear regression and the phase vari-
ables α were computed with Equation (1). Then, Gaussian
probability distributions p (w) and p (α) over the computed
values were defined.

In test phase, 50 values for the α parameter were sampled
from the prior probability distribution p(α). For testing,
we provided for each test trajectory observations with an
increasing number of time steps. After each new observed
position, the remaining test trajectory was predicted using
the method described in Section III-C. Fig. 3 shows the
probability density function p (α|D) over the sampled values
for α after observing 5%, 10%, 20%, 40% and 60% of
a test trajectory. The vertical red line corresponds to the
ground truth phase parameter. In general, the larger the

Fig. 3. Phase estimation after observing 5, 10, 20, 40 and 60 percent of
a test trajectory. The darker the curve representing the probability density
function, the larger the observed part. The vertical red line corresponds to
the ground truth phase parameter.

Fig. 4. Predictions after observing 5 and 40 percent of a test trajectory.

Fig. 5. Observed part versus RMS error with mean and standard deviation.

observed part, the better the estimation of α and the better the
prediction. Fig. 4 shows the prediction after observing 5%
and 40% of a test trajectory in comparison to the ground
truth.

The accuracy of the predictions was evaluated by comput-
ing the root-mean-square (RMS) error between prediction
and ground truth. The RMS error was computed for each of
the twenty test trajectories every time the number of time
steps of the observed part increased 1% in relation to the
total number of time steps of the trajectory. Fig. 5 shows the
mean and the variance of the RMS error as the observed part
increases.

2) Human-Robot Interaction Experiment: We evaluated
the same algorithm on a human-robot collaborative task of
an object handover (see Fig. 6 and accompanying video).

460

Fig. 6. A sequence of snapshots of a cup handover interaction between a human and a robot. The robot infers online the phase of the human movement
and computes the expected reaction to this movement, according to the training.

(b)

(a)

Human Robot

Demonstrations Observation Prediction Ground truth

Human Robot

Fig. 7. One of the test cases where the robot reaction is computed based on a partial observation of the human movement. The (x, y, z) coordinates of
the human wrist and four joint angles of the 7 DOF robotic arm are shown. (a) Conditioning after time-alignment with the method proposed in [2], which
does not allow for online conditioning. (b) Conditioning online, without time-alignment, using the method proposed in this paper.

During training, the human moved with different speeds
in the direction of the robot but also varying the position at
which he handed over the cup, while the robot was moved by
kinesthetic teaching to receive the cup at the correct position.
The trajectories of the human were about 150 cm long. Each
of those trajectories was a sequence of (x, y, z) coordinates
of the human’s left wrist, which had markers attached to it
detectable by a motion capture system.

During test, the human was observed only during the
first 50 cm of his trajectory. Then, 15 values for the phase
parameter α were sampled from the p(α) learned in the
training phase. Subsequently, the rest of the movement of
the human and the expected reaction of the robot6 were
computed online using the method presented in Section III-
C.

Fig. 7 shows one of the test cases from a leave-one-
out cross-validation (LOOCV) procedure run over a data
set of recorded trajectories (22 in total). Fig. 7(a) shows
the result of conditioning the learned probability distribution

6For more details on how to apply the ProMP framework to interaction
scenarios, the interested reader is referred to [2].

over trajectories on the observed sequence of positions of
the human with the method proposed in [2]. The method
proposed in that work performs first the time-alignment of
the recorded trajectories using a local optimization algorithm
and then performs the conditioning. That method cannot
condition online on the beginning of the human’s movement,
since it is not possible to time-align his trajectory before
it has been completed. Fig. 7(b) shows the result of our
method, in which the training movements, in gray, preserve
their original speed profile. Using the same observations as in
the previous case, the robot’s joint trajectories could still be
predicted with similar accuracy, but now also with variable
phases, inferred from the human movement.

B. Experiments on Dealing with Missing Data

This section presents experiments that show the applica-
bility of the EM algorithm proposed in Section III to learn
ProMPs in the face of training trajectories with missing data
points.

The training and test trajectories were artificially generated
letters “a” as in Section IV-A.1. This time, however, random

461

sequences of 180 time steps were removed from the training
trajectories. Since the shortest training trajectory comprised
355 time steps and the longest, 1129, the missing parts
corresponded approximately to between 16% and 51% of
the entire trajectories. Fig. 8 shows three of those training
trajectories.

In a first experiment, linear regression was used to learn
the weight vectors w for each of those training trajectories
and a Gaussian distribution was fitted to the resulting set of
weight vectors. Fig. 9(a) shows the approximation generated
by linear regression to one of the training trajectories. In
a second experiment, the EM algorithm proposed in Sec-
tion III-A was used instead of linear regression to learn the
weights w. Fig. 9(b) shows the approximation generated
by the EM algorithm to the same training trajectory as in
Fig. 9(a).

The approximation generated by the EM algorithm resem-
bles a letter “a”, while the one generated by the linear re-
gression method does not. The reason is that, while learning
the weights for one training trajectory, the linear regression
method only takes into consideration the observed positions
of this trajectory, not using any information from other train-
ing trajectories, which may have observed positions comple-
menting the observations currently under consideration. The
EM algorithm, on the other hand, takes into consideration
all training trajectories while computing the mean and the
covariance that define a probability distribution over the
weights w for each trajectory i with (7) and (8). Note that
those equations involve the terms µwold and Σwold , which
represent the mean and the covariance from the previous EM
iteration of the Gaussian over the weights of all the training
trajectories.

After training a ProMP with the linear regression method
and another ProMP with the EM method, both models were
used to estimate the phase and predict the unobserved part
of test trajectories. Fig. 10 shows the mean and the standard
deviation of the RMS error as the observed part of the test
trajectories increases. As the observed part gets larger, the
RMS gets in general lower for both methods, because the
prior probability distribution over the weights w gets less
and less relevant in the face of new observations. However,
the EM approach reaches lower values for the RMS sooner
than the linear regression method.

C. Experiments on Using Multiple Phase Parameters

In this section, we evaluate differences between models
with only one phase parameter and models with multiple
phase parameters. In the experiments here presented, whole
trajectories, with no missing data, were used for training.
Nevertheless, the data sets used here have speed profiles
that make predicting unobserved parts more challenging than
with the previously used data sets.

In a first set of experiments, training and test data
comprised artificially generated “a” trajectories. This time,
however, these trajectories were associated to phase functions
with two phase parameters, i.e. these trajectories could for
instance start slowly and end fast or start fast and end slowly.

Fig. 8. Training trajectories with missing data points.

Fig. 9. Approximation to a training trajectory by linear regression versus
approximation by EM.

Fig. 10. Comparison between error of the predictions after training with
EM and error of the predictions after training with linear regression, for the
case in which the training trajectories have missing data points.

After training and having observed a part of a test trajectory,
our objective was to predict the unobserved part. The predic-
tion should be as close as possible to the ground truth. Fig. 11
shows the prediction produced by the model with two phase
parameters, in red, and the prediction produced by the model
with only one phase parameter, in green, after observing 30%
of a test trajectory. The model with two phase parameters
produced a much better prediction, because it accounts for
local changes in speed of execution.

We performed the same experiment also using a data set
of golf putting movements executed by a human. Fig. 12
shows the prediction produced by the model with two phase
parameters, in red, and the prediction produced by the model
with only one phase parameter, in green, after observing a
sequence of positions in the beginning of a test trajectory.
This sequence of observations comprised positions before
the x degree of freedom (DOF) had reached its minimum
value. The x DOF is the one with the largest range of values,

462

Fig. 11. Comparison between prediction (µ± 2σ) of the model with two
phase parameters (red) and prediction of the model with only one phase
parameter (green), having observed 30% of a test trajectory. The training
and test trajectories were in this case artificially generated letters “a”.

Fig. 12. Comparison between prediction (µ ± 2σ) of the model with
two phase parameters (red) and prediction of the model with only one
phase parameter (green), having observed part of a test trajectory before the
minimum value of x had been reached. The training and test trajectories
were in this case golf putting trajectories demonstrated by a human.

from left to right in Fig. 1(b). While both predictions are
considerably far away from the ground truth, the prediction
from the model with two phase parameters has a covariance
that better represents the training trajectories, what can be
observed in Fig. 12 by the fact that the red shade covers more
of the training trajectories than the green shade. Moreover,
the prediction of the model with two phase parameters had
an average RMS error of approximately 18.93 cm with a
standard deviation of 8.23 cm, while the model with only one
phase parameter had an average RMS error of approximately
24.69 cm with a standard deviation of 13.52 cm.

V. CONCLUSIONS

This paper presented an Expectation-Maximization algo-
rithm to learn motor skills in the form of Probabilistic
Movement Primitives. The presented algorithm allows for
learning from trajectories with missing data and accounts
for the spatial-temporal variability of the demonstrations.
Experiments demonstrated the applicability of this algorithm
to movement prediction and to Human-Robot Interaction
scenarios in which the robot must react to human movements
executed at different speeds.

Possible extensions of this work involve using Gaussian
Mixture Models to account for nonlinear correlations be-

tween joints or interacting agents and to learn multiple tasks
as in [3]. Applications to real data of models with multiple
phase parameters deserve further investigation, as well as
different phase function formulations with different numbers
of parameters.

VI. ACKNOWLEDGMENTS

The research leading to these results has received funding
from the project BIMROB of the “Forum für interdisziplinäre
Forschung” (FiF) of the TU Darmstadt, from the Euro-
pean Community’s Seventh Framework Programme (FP7-
ICT-2013-10) under grant agreement 610878 (3rdHand) and
from the European Community’s Seventh Framework Pro-
gramme (FP7-ICT-2009-6) under grant agreement 270327
(CompLACS).

REFERENCES

[1] A. Paraschos, C. Daniel, J. Peters, and G. Neumann, “Probabilistic
movement primitives,” in Advances in Neural Information Processing
Systems (NIPS), 2013, pp. 2616–2624.

[2] G. Maeda, M. Ewerton, R. Lioutikov, H. Ben Amor, J. Peters, and
G. Neumann, “Learning interaction for collaborative tasks with prob-
abilistic movement primitives,” in Proceedings of the International
Conference on Humanoid Robots (HUMANOIDS), 2014.

[3] M. Ewerton, G. Neumann, R. Lioutikov, H. Ben Amor, J. Peters, and
G. Maeda, “Learning multiple collaborative tasks with a mixture of
interaction primitives,” in Proceedings of the International Conference
on Robotics and Automation (ICRA), 2015.

[4] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical movement primitives: learning attractor models for motor
behaviors,” Neural computation, vol. 25, no. 2, pp. 328–373, 2013.

[5] H. Ben Amor, G. Neumann, S. Kamthe, O. Kroemer, and J. Peters,
“Interaction primitives for human-robot cooperation tasks,” in Pro-
ceedings of 2014 IEEE International Conference on Robotics and
Automation (ICRA), 2014.

[6] H. Sakoe and S. Chiba, “Dynamic programming algorithm optimiza-
tion for spoken word recognition,” Acoustics, Speech and Signal
Processing, IEEE Transactions on, vol. 26, no. 1, pp. 43–49, 1978.

[7] S. Calinon, E. L. Sauser, A. G. Billard, and D. G. Caldwell, “Evalu-
ation of a probabilistic approach to learn and reproduce gestures by
imitation,” in Robotics and Automation (ICRA), 2010 IEEE Interna-
tional Conference on. IEEE, 2010, pp. 2671–2676.

[8] P. Englert and M. Toussaint, “Reactive phase and task space adaptation
for robust motion execution,” in Intelligent Robots and Systems (IROS
2014), 2014 IEEE/RSJ International Conference on. IEEE, 2014, pp.
109–116.

[9] R. Vuga, B. Nemec, and A. Ude, “Speed profile optimization through
directed explorative learning,” in Humanoid Robots (Humanoids),
2014 14th IEEE-RAS International Conference on. IEEE, 2014, pp.
547–553.

[10] A. Coates, P. Abbeel, and A. Y. Ng, “Learning for control from
multiple demonstrations,” in Proceedings of the 25th international
conference on Machine learning. ACM, 2008, pp. 144–151.

[11] J. Van Den Berg, S. Miller, D. Duckworth, H. Hu, A. Wan, X. Fu,
K. Goldberg, and P. Abbeel, “Superhuman performance of surgical
tasks by robots using iterative learning from human-guided demon-
strations,” in Proceedings of the 2010 IEEE International Conference
on Robotics and Automation, 2010, pp. 2074–2081.

[12] F. Meier, E. Theodorou, F. Stulp, and S. Schaal, “Movement segmen-
tation using a primitive library,” in Intelligent Robots and Systems
(IROS), 2011 IEEE/RSJ International Conference on. IEEE, 2011,
pp. 3407–3412.

[13] C. M. Bishop et al., Pattern recognition and machine learning.
springer New York, 2006, vol. 1.

463

