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Abstract— Robots that interact with humans must learn to
not only adapt to different human partners but also to new
interactions. Such a form of learning can be achieved by
demonstrations and imitation. A recently introduced method
to learn interactions from demonstrations is the framework
of Interaction Primitives. While this framework is limited
to represent and generalize a single interaction pattern, in
practice, interactions between a human and a robot can consist
of many different patterns. To overcome this limitation this
paper proposes a Mixture of Interaction Primitives to learn
multiple interaction patterns from unlabeled demonstrations.
Specifically the proposed method uses Gaussian Mixture Mod-
els of Interaction Primitives to model nonlinear correlations
between the movements of the different agents. We validate
our algorithm with two experiments involving interactive tasks
between a human and a lightweight robotic arm. In the first,
we compare our proposed method with conventional Interaction
Primitives in a toy problem scenario where the robot and the
human are not linearly correlated. In the second, we present a
proof-of-concept experiment where the robot assists a human
in assembling a box.

I. INTRODUCTION

Robots that can assist us in the industry, in the household,
in hospitals, etc. can be of great benefit to the society. The
variety of tasks in which a human may need assistance is,
however, practically unlimited. Thus, it is very hard (if not
impossible) to program a robot in the traditional way to assist
humans in scenarios that have not been exactly prespecified.

Learning from demonstrations is therefore a promising
idea. Based on this idea, Interaction Primitive (IP) is a
framework that has been recently proposed to alleviate the
problem of programming a robot for physical collaboration
and assistive tasks [1], [2]. At the core, IPs are primitives
that capture the correlation between the movements of two
agents—usually a human and a robot. Then, by observing
one of the agents, say the human, it is possible to infer the
controls for the robot such that collaboration can be achieved.

A main limitation of IPs is the assumption that the
movements of the human and the movements of the robot
assistant are linearly correlated. This assumption is reflected
in the underlying Gaussian distribution that is used to model
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Fig. 1. Illustration of a task consisting of multiple interaction patterns,
where each can be represented as an Interaction Primitive. In this work, we
want to learn multiple interaction patterns from an unlabeled data set of
interaction trajectories.

the demonstrations. While this assumption holds for tasks
that cover a small region of the workspace (a high-five task
in [1] or handover of objects in [2]), it limits the use of IPs in
two aspects. First, as illustrated in Fig. 1, a task such as the
assembly of a toolbox consists of several interaction patterns
that differ significantly from each other and therefore can not
be captured by a single Gaussian. Moreover, even within a
single interaction pattern, the correlation between the two
agents may be nonlinear, for example, if the movements of
the human are measured in the Cartesian space, while the
movements of the robot are measured in joint space.

Manually labeling each subtask (e.g. “plate handover",
“screw handover", “holding screw driver") is a way to model
interactions with multiple subtasks. Ideally, however, robots
should be able to identify different subtasks by themselves.
Moreover, it may not be clear to a human how to separate
a number of demonstrated interactions in different, linearly
correlated groups. Thus, a method to learn multiple inter-
action patterns from unlabeled demonstrations is necessary.
The main contribution of this paper is the development
of such a method. In particular, this work uses Gaussian
Mixture Models (GMMs) to create a Mixture of Interaction



Probabilistic Movement Primitives [2].
The remainder of this paper is organized as follows:

Section II presents related work. In Section III, Probabilistic
Movement Primitives (ProMPs) and Interaction ProMPs are
briefly introduced, followed by the proposition of the main
contribution of this paper: a Mixture of Interaction ProMPs
based on Gaussian Mixture Models (GMMs). Section IV
evaluates the proposed method first on a toy problem that is
useful to clarify the characteristics of the method and then on
a practical application of a collaborative toolbox assembly.
Section V presents conclusions and ideas for future work.

II. RELATED WORK

Physical human-robot interaction poses the problem of
both action recognition and movement control. Interaction
dynamics need to be specified in a way that allows for
robust reproduction of the collaborative task under different
external disturbances, and a common approach is based on
direct force sensing or emulation. Rozo et al. [3] propose a
framework for haptic collaboration between a human and a
robot manipulator. Given a set of kinesthetic demonstrations,
their method learns a mapping between measured forces and
the impedance parameters used for actuating the robot, e.g.,
the stiffness of virtual springs governing the collaborative
task. In another force-based approach, Lawitzky et al. [4]
propose learning physical assistance in a collaborative trans-
portation task. In the early learning phase, the robot uses the
measured force values to follow the human guidance during
the task. Recorded force and motion patterns are then used
to learn a Hidden Markov Model (HMM) which can predict
the human’s next action and over time the robot learns to
take over a more active role in the interaction. Kulvicius et
al. [5] also address a transportation task where the two agents
are modeled as two point particles coupled by a spring. The
forces applied by the other agent tell the robot how to adapt
its own trajectory.

Our work differs significantly from the cited works in the
sense that our method does not use nor emulate force signals,
but instead learns the correlation between the trajectories of
two agents. Correlating trajectories not only simplifies the
problem in terms of hardware and planning/control but also
allows us to correlate multi-agent movements that do not
generate force during the interaction, for example, the simple
gesture of asking and receiving an object.

Graphical models have also been used to describe interac-
tion dynamics. In the computer vision community, HMMs
have been widely adopted to model interaction dynamics
from input video streams [6], [7]. As a result, graphical
models have also gained considerable attention in the field
of human-robot interaction. In [8], Hawkins and colleagues
use a Bayes network to improve the fluency in a joint
assembly task. The Bayes network learns to infer the current
state of the interaction, as well as task constraints and the
anticipated timing of human actions. Tanaka et al. [9] use
a Markov model to predict the positions of a worker in an
assembly line. Wang et al. [10] propose the Intention-Driven
Dynamics Model (IDDM) as a probabilistic graphical model

with observations, latent states and intentions where the
transitions between latent states and the mapping from latent
states to observations are modeled as Gaussian Processes.
Koppula et al. [11] use a conditional random field with
sub-activities, human poses, object affordances and object
locations over time. Inference on the graphical model allows
a robot to anticipate human activity and choose a corre-
sponding, preprogrammed robot response. Lee et al. [12]
learn a hierarchical HMM which triggers action primitives
in response to observed behaviors of a human partner.

While very successful for classifying actions, graphical
models, however, may not be the best option when it comes
to generating motions. In [13], for example, the use of a
HMM with discrete states, although very successful in action
classification, introduces artifacts into the motion generation
part that hinders motion generalization. Therefore, a clear
problem in physical human-robot interaction is that while
graphical models may be suitable in the action recognition
domain, motion generation at the continuous level must also
be taken into account. Llorens et al. [14] present a hybrid
design for a robot to be used on the shoulder. In their work,
Petri Nets accounts for discrete control transitions while, at
the motion level, Partial Least Squares Regression has been
used to find the best action of the robot at future time steps.

Perhaps the principal distinction of our method is the
use of Interaction Primitives (IPs), introduced by Ben Amor
et al. [1], initially based on Dynamical Movement Prim-
itives [15] and later extended to Probabilistic Movement
Primitives [16] with action recognition in the work of Maeda
et al. [2]. As shown in [2], Interaction Primitives can be
used to not only recognize the action of an agent, but also
to coordinate the actions of a collaborator at the movement
level; thus overcoming in a single framework both layers of
discrete action recognition and continuous movement con-
trol. Differently from [2], where different interaction patterns
must be hand-labeled, our contribution is the unsupervised
learning of a Mixture of Interaction Primitives.

III. MIXTURE OF INTERACTION PRIMITIVES

In this section, we will briefly discuss the Interaction
Primitive framework based on Probabilistic Movement Prim-
itives [2], [16], followed by the presentation of the proposed
method, based on Gaussian Mixture Models.

A. Probabilistic Movement Primitives

A Probabilistic Movement Primitive (ProMP) [16] is a
movement representation based on a distribution over trajec-
tories. The probabilistic formulation of a movement primitive
allows operations from probability theory to seamlessly
combine primitives, specify via points, and correlate joints
via conditioning. Given a number of demonstrations, ProMPs
are designed to capture the variance of the positions q and
velocities q̇ as well as the covariance between different joints.

For simplicity, let us first consider only the positions q
for one degree of freedom (DOF). The position qt at time
step t can be approximated by a linear combination of basis



functions,

qt = ψ
T
t w + ε, (1)

where ε is Gaussian noise. The vector ψt contains the N
basis functions ψi, i ∈ {1, 2, 3, ..., N}, evaluated at time
step t where we will use the standard normalized Gaussian
basis functions.

The weight vector w is a compact representation of a
trajectory1. Having recorded a number of trajectories of q,
we can infer a probability distribution over the weights w.
Typically, a single Gaussian distribution is used to represent
p(w). While a single w represents a single trajectory, we
can obtain a distribution p(q1:T ) over trajectories q1:T by
integrating w out,

p(q1:T ) =

∫
p(q1:T |w)p(w)dw. (2)

If p(w) is a Gaussian, p(q1:T ) is also Gaussian. The distri-
bution p(q1:T ) is called a Probabilistic Movement Primitive
(ProMP).

B. Interaction ProMP

An Interaction ProMP builds upon the ProMP formula-
tion, with the fundamental difference that we will use a
distribution over the trajectories of all agents involved in
the interaction. Hence, q is multidimensional and contains
the positions in joint angles or Cartesian coordinates of all
agents. In this paper, we are interested in the interaction
between two agents, here defined as the observed agent
(human) and the controlled agent (robot). Thus, the vector q
is now given as q = [(qo)T , (qc)T ]T , where (·)o and (·)c
refer to the observed and controlled agent, respectively.

Let us suppose we have observed a sequence of positions
qot at m specific time steps t, m ≤ T . We will denote this
sequence by D. Given those observations, we want to infer
the most likely remaining trajectory of both the human and
the robot.

Defining w̄ = [wT
o , w

T
c ]

T as an augmented vector that
contains the weights of the human and of the robot for
one demonstration, we write the conditional probability over
trajectories q1:T given the observations D of the human as

p(q1:T |D) =

∫
p(q1:T |w̄)p(w̄|D)dw̄. (3)

We compute a normal distribution from n demonstrations
by stacking several weight vectors [w̄1, ..., w̄n]

T , one for
each demonstration, such that w̄ ∼ N (µw,Σw). A posterior
distribution can be obtained after observing D with

µnew
w = µw +K(D −HT

t µw),

Σnew
w = Σw −K(HT

t Σw),
(4)

1In order to cope with the different speeds of execution during demon-
stration, the trajectories must be time-aligned before parameterization. The
interested reader is referred to [2] for details.

where K = ΣwH
T
t (ΣD + HT

t ΣwHt)
−1, ΣD is the

observation noise, and

Ht =


(ψo

t )(1,1) 0 0 0

0 (ψo
t )(P,P ) 0 0

0 0 0c
(1,1) 0

0 0 0 0c
(Q,Q)

 (5)

is the observation matrix where the unobserved states of the
robot are filled with zero bases. Here, the human and the
robot are assumed to have P and Q DOFs, respectively.

Now, by combining (1), (3) and (4), we can compute the
probability distribution over the trajectories q1:T given the
observation D. For a detailed implementation the interested
reader is referred to [2].

C. Mixture of Interaction ProMPs

The goal of our method is to learn several interaction
patterns given the weight vectors that parameterize our unla-
beled training trajectories. For this purpose, we learn a GMM
in the weight space, using the Expectation-Maximization
algorithm (EM) [17].

Assume a training set with n vectors w̄ represent-
ing the concatenated vectors of human-robot weights as
defined in section III-B. In order to implement EM
for a GMM with a number K of Gaussian mix-
ture components, we need to implement the Expecta-
tion step and the Maximization step and iterate over
those steps until convergence of the probability distribution
over the weights, p(w̄;α1:K ,µ1:K ,Σ1:K), where α1:K =
{α1, α2, · · · , αK}, µ1:K = {µ1,µ2, · · · ,µK} and Σ1:K =
{Σ1,Σ2, · · · ,ΣK}. Here, αk = p(k), µk and Σk are the
prior probability, the mean and the covariance matrix of
mixture component k, respectively. We initialize the param-
eters α1:K , µ1:K and Σ1:K using k-means clustering before
starting the Expectation-Maximization loop. The number K
of Gaussian mixture components is found by leave-one-out
cross-validation.

The mixture model can be formalized as

p(w̄) =

K∑
k=1

p(k)p(w̄|k) =
K∑

k=1

αkN (w̄;µk,Σk). (6)

Expectation step: Compute the responsibilities rik, where
rik is the probability of cluster k given weight vector w̄i,

rik = p(k|w̄i) =
N (w̄i;µk,Σk)αk∑K
l=1 αlN (w̄i;µl,Σl)

. (7)

Maximization step: Update the parameters αk, µk and
Σk of each cluster k, using

nk =

n∑
i=1

rik, αk =
nk
n
, (8)

µk =

∑n
i=1 rikw̄i

nk
, (9)



Σk =
1

nk

(
n∑

i=1

rik(w̄i − µk)(w̄i − µk)
T

)
. (10)

Finally, we want to use our model to infer the trajectories
of the controlled agent given observations from the observed
agents. We need to find the posterior probability distribution
over trajectories q1:T given the observations D, as in Section
III-B.

In order to compute this posterior using our GMM prior,
first we find the most probable cluster k∗ given the obser-
vation D, using the Bayes’ theorem. The posterior over the
clusters k given the observation D is given by

p(k|D) ∝ p(D|k)p(k), (11)

where
p(D|k) =

∫
p(D|w̄)p(w̄|k)dw̄

and
p(w̄|k) = N (w̄;µk,Σk).

Thus the most probable cluster k∗ given the observation
D is

k∗ = argmax
k

p(k|D). (12)

The output of the proposed algorithm is the posterior
probability distribution over trajectories q1:T , conditioning
cluster k∗ to the observation D,

p (q1:T |D) =

∫
p (q1:T |w̄) p (w̄|k∗, D) dw̄. (13)

Algorithms 1 and 2 provide a compact description of the
proposed methods for training and inference, respectively.

IV. EXPERIMENTS

This section presents experimental results in two different
scenarios using a 7-DOF KUKA lightweight arm with a 5-
finger hand2.

The goal of the first scenario is to expose the issue of
the original Interaction Primitives [1], [2] when dealing with
trajectories that have a clear multimodal distribution. In the
second scenario we propose a real application of our method
where the robot assistant acts as a third hand of a worker
assembling a toolbox (please, refer to the accompanying
video3).

A. Nonlinear Correlations between the Human and the
Robot on a Single Task

To expose the capability of our method for dealing with
multimodal distributions, we propose a toy problem where
a human specifies a position on a table and the robot must
point at the same position. The robot is not provided any
form of exteroceptive sensors; the only way it is capable

2Regarding the control of the robot, the design of a stochastic controller
capable of reproducing the distribution of trajectories is also part of ProMPs
and the interested reader is referred to [16] for details. Here we use a
compliant, human-safe standard inverse-dynamics based feedback controller.

3Also available at http://youtu.be/9XwqW_V0bDw

Algorithm 1 Training
1) Parameterize demonstrated trajectories:
Find vector of weights w̄ for each trajectory, such that qt ≈
ψT

t w̄.
2) Find GMM in parameter space, using EM:
Initialize GMM parameters α1:K , µ1:K and Σ1:K with k-
means clustering.
repeat

E step

rik = p(k|w̄i) =
N (w̄i;µk,Σk)αk∑K
l=1 αlN (w̄i;µl,Σl)

M step

nk =

n∑
i=1

rik, αk =
nk
n

µk =

∑n
i=1 rikw̄i

nk

Σk =
1

nk

(
n∑

i=1

rik(w̄i − µk)(w̄i − µk)
T

)
until p(w̄;α1:K ,µ1:K ,Σ1:K) converges

Algorithm 2 Inference
1) Find most probable cluster given observation:

p(k|D) ∝ p(D|k)p(k)

k∗ = argmax
k

p(k|D)

2) Condition on observation, using cluster k∗:

p(q1:T |D) =

∫
p(q1:T |w̄)p(w̄|k∗, D)dw̄

of generating the appropriate pointing trajectory is by cor-
relating its movement with the trajectories of the human.
As shown in Fig. 2, however, we placed a pole in front of
the robot such that the robot can only achieve the position
specified by the human by moving either to the right or to
the left of the pole. This scenario forces the robot to assume
quite different configurations, depending on which side of
the pole its arm is moving around.

During demonstrations, the robot was moved by kines-
thetic teaching to point at the same positions indicated by
the human (tracked by motion capture) without touching
the pole. For certain positions, as the one indicated by the
arrow in Fig. 2(a), only one demonstration was possible. For
other positions, both right and left demonstrations could be
provided as shown in Fig. 2(a) and 2(b). The demonstrations,
totaling 28 pairs of human-robot trajectories, resulted in a
multimodal distribution of right and left trajectory patterns
moving around the pole.



(a) (b)

Fig. 2. Experimental setup of a toy problem used to illustrate the properties
of the Mixture of Interaction Primitives. The robot is driven by kinesthetic
teaching to point at the positions specified by the human (pointed with
the wand). Certain pointed positions can be achieved by either moving the
arm to the right (a) or to left (b) of the pole placed on the table. Other
positions, such as the one indicated by the arrow, can only be achieved by
one interaction pattern.

ground truth
prediction

(a) (b)

Fig. 3. Results of the predictions of the robot trajectories in Cartesian
space. Both subplots show the same ground truth trajectories generated
by driving the robot in kinesthetic teaching. The predictions are generated
by leave-one-out cross-validation on the whole data set comprised of 28
demonstrations. (a) Prediction using the conventional Interaction ProMPs
with a single Gaussian. (b) Prediction using the proposed method with a
mixture of Gaussians.

In this scenario, modeling the whole distribution over
the parameters of the trajectories with one single Gaussian
(as in the original Interaction Primitive formulation) is not
capable of generalizing the movements of the robot to
other positions in a way that resembles the training, as the
original framework is limited by assuming a single pattern.
This limitation is clearly shown in Fig. 3(a), where several
trajectories generated by a single cluster GMM (as in the
original Interaction Primitive) cross over the middle of the
demonstrated trajectories, which, in fact, represents the mean
of the single Gaussian distribution.

Fig. 3(b) shows the predictions using the proposed method
with a mixture of Gaussians. By modeling the distribution
over the parameters of the trajectories using GMMs as
described in section III-C, a much better performance could
be achieved. The GMM assumption that the parameters are
only locally linear correlated seemed to represent the data
much more accurately. As shown in Fig. 4, this improvement
is quantified in terms of the Root Mean Square (RMS) Error
of the prediction of the trajectory in relation to the ground
truth using leave-one-out cross-validation over the whole data
set. The same figure also shows that there is a sharp decrease
in the RMS error up to six clusters, especially when taking

Number of clusters

R
M

S
 e

rr
or

 (m
)

2 4 6 8 10 12 14 16
0

0.02

0.04

0.06

0.08

0.1

Fig. 4. Root Mean Square Error with models using up to 17 Gaussians.

into account the variance among the 28 tests. Beyond seven
clusters it is observed that the prediction error fluctuates
around 4 cm. The experiments previously shown in Fig. 3(b)
were done with eight clusters.

B. Assembling a Box with a Robot Assistant

In this experiment, we recorded a number of demon-
strations of different interaction patterns between a human
and the robot cooperating to assemble a box. We used the
same robot described in the previous experiment. During
demonstrations, the human wore a bracelet with markers
whose trajectories in Cartesian coordinates were recorded
by motion capture. Similarly to the first scenario, the robot
was moved in gravity compensation mode by another human
during the training phase and the trajectories of the robot in
joint space were recorded.

There are three interaction patterns. Each interaction pat-
tern was demonstrated several times to reveal the variance of
the movements. In one of them, the human extends his/her
hand to receive a plate. The robot fetches a plate from a
stand and gives it to the human. In a second interaction, the
human fetches the screwdriver, the robot grasps and gives
a screw to the human as a pre-emptive collaborator would
do. The third type of interaction consists of giving/receiving
a screwdriver. Each interaction of plate handover, screw
handover and holding the screwdriver was demonstrated 15,
20, and 13 times, respectively. The pairs of trajectories of
each interaction are shown in Fig. 54.

As described in section III, all training data are fed to
the algorithm resulting in 48 human-robot pairs of unlabeled
demonstrations as shown in the upper row of Fig. 7. The
presented method parameterizes the trajectories and performs
clustering in the parameter space in order to encode the
mixture of primitives. In the upper row of Fig. 7, each
mixture is represented by a different color. The human is
represented by the (x, y, z) Cartesian coordinates while the
robot is represented by the seven joints of the arm. The figure
shows the first four joints of the robot (starting from the
base).

4Due to the experimental setup, for the sub-tasks of plate and screw
handover we added an initial hand-coded trajectory that runs before the
kinesthetic teaching effectively starts. These trajectories are used to make
the robot grasp and remove the plate or screw from their respective stands.
This is reflected in the figure as the deterministic part at the beginning of
the trajectory of the robot. This initial trajectory, however, has no effect on
the proposed method itself.
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Fig. 5. Demonstrations of the three different interactions and their respective trajectories. For the case of plate and screw handover the beginning of the
robot trajectory shows a deterministic part that accounts for the fact that the robot has to remove objects from their respective stands, which is not part of
the kinesthetic teaching and does not affect the algorithm in any sense.
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Fig. 6. Root Mean Square Error of the joint trajectories (averaged over all
tests) using a leave-one-out cross-validation as a function of the number of
clusters (mixture components). The plateau after three clusters seems to be
consistent with the training data since it consists of three distinct interaction
patterns.

Figure 6 shows the RMS prediction error averaged over
all tests as the number of mixture components increase. The
prediction is obtained by leave-one-out cross-validation over
the whole set of 48 demonstrations. As one would expect,
since the unlabeled data contains three distinct interaction
patterns, the improvement is clearly visible up to three
mixture components. No significant improvement is obtained
afterwards, thus the GMM with three mixture components
was selected for experiments.

In the inference/execution phase, the algorithm first com-
putes the most probable Interaction Primitive mixture com-
ponent based on the observation of the position of the wrist
of the human with (12). Using the same observation, we
then condition the most probable Interaction Primitive, which
allows computing a posterior distribution over trajectories for
all seven joints of the robot arm as in (13). Finally, the mean
of each joint posterior distribution is fed to a standard inverse

dynamics feedback tracking controller.
The lower row of Fig. 7 depicts the posterior distribution

for one test example where a three-cluster GMM was trained
with the other 47 trajectories. The GMM prior is shown in
gray where the patches of different clusters overlap. The
observation consists only of the final position of the wrist,
shown as asterisks in the figure. The black lines are the
ground truth trajectories of each degree of freedom. The
posterior, in red, is represented by its mean and by the region
inside ± two standard deviations. The mean of this posterior
is the most probable trajectory for each degree of freedom
given the observed end position of the wrist of the human.

We assembled the toolbox, consisting of seven parts and
12 screws, two times. The experiments demanded more than
40 executions of the Interaction Primitives. The selection of
the right mixture component was 100% correct. (Please refer
to the accompanying video).

We evaluated the precision of the interactions by com-
puting the final position of the hand of the robot with
forward kinematics. The forward kinematics was fed with
the conditioned robot trajectories predicted by leave-one-
out cross validation. The interactions of plate handover
and holding screwdriver resulted in mean error with two
standard deviations (mean error ±2σ) of 3.2 ± 2.6 cm and
2.1±2.3 cm, respectively. We did not evaluate the precision
of the handover of the screw, as the position at which the
robot hands the screw is not correlated with the human
(please refer to the accompanying video). As an example,
Fig. 8 shows the robot executing the plate handover at three
different positions based on the location of the wrist marker.
Note that the postures of the arm are very different, although
they are all captured by the same Interaction Primitive.



Fig. 7. Upper row: Mixture components represented by their mean trajectories and the region inside two standard deviations (µ ± 2σ). Each mixture
component is represented by a different color and corresponds to a different interaction pattern. The light gray trajectories are the training trajectories. Obs.:
The plots show only the part of the trajectories generated by kinesthetic teaching. Lower row: Posterior probability distribution (red) given observation
depicted by the blue asterisks. The GMM prior is shown in gray.

Fig. 8. Handover of a plate. Conditioning on three different positions of
the wrist (using motion capture) of a human coworker.

V. CONCLUSIONS

In this paper we presented a Mixture of Interaction
Primitives where Gaussian Mixture Models are used to
model multiple interaction patterns from unlabeled data. The
multimodal prior probability distribution is obtained over pa-
rameterized demonstration trajectories of two agents working
in collaboration. During the execution, the algorithm selects
the mixture component with the highest probability given the
observation of the human, which is then conditioned to infer
the appropriate robot reaction. The proposed method is able
to learn and recognize multiple human-robot collaboration
tasks from an arbitrary number of demonstrations consisting
of unlabeled interaction patterns, what was not possible with
the previous Interaction Primitive framework.

In the context of human-robot interaction we are currently

addressing the estimation of the phase of the execution of
the primitive for switching tasks in real time. Also, we
are addressing the use of the stochastic feedback controller
provided by the original ProMP work in [16]. Although this
work focused on human-robot trajectories, we are currently
considering extensions of our work where the human is
replaced by other variables of interest. For example, the
same framework can be used to correlate joint and end-
effector trajectories of the same robot to learn nonlinear
forward/inverse kinematic models. Similarly the Mixture of
Interaction Primitives can be used to correlate the interaction
between motor commands and joint trajectories to learn
inverse dynamics models.
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