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Abstract— Large vision-language-action (VLA) models have
shown remarkable capabilities for learning general robot poli-
cies. However, the predominance of English in both the large
language model (LLM) backbone training data and the robotics
data limits the accessibility of these models. Specifically, training
such policies for other languages, such as German, extends
their usefulness to the non-English-speaking rest of the world.
We present ALLMAN, the first German VLA model, built
upon LEOLM — a Llama 2-based LLM specifically fine-tuned
on large German datasets. To train ALLMAN, we machine-
translate several English vision-language and VLA datasets
into German. We then adapt the PRISMATIC and OPENVLA
training pipelines to create our German VLA model. Through
comparative analyses with OPENVLA, we demonstrate the
importance of incorporating German language capabilities
within the base model. Our findings underscore the importance
of training VLAs in other languages beyond English. This work
serves as a proof-of-concept for multi-language VLAs, paving
the way for broader, more inclusive robotics applications.

“Alman: [oft scherzhaft] Person, die stereotypisch deutsche Verhal-

tensweisen und Eigenschaften wie übermäßige Ordentlichkeit, Regelbefol-

gung und Pünktlichkeit aufweist”1

∼ Digital Dictionary of the German Language [1]

I. INTRODUCTION

The vision of integrating adaptable robots into our everyday
lives is a fast-approaching reality [3]. Robots can poten-
tially assist us in diverse areas, from elderly care to home
management. However, in many potential application areas,
robots must collaborate with or receive instructions from
humans. To make this collaboration accessible and seamless
for non-expert humans, it is important that the robot is
able to interpret, act upon, and respond in natural language.
Since many people prefer speaking in their native language,
multilingualism is critical to making robots accessible and
useful in our global, multilingual society.

Today’s VLA models enable robots to perceive their envi-
ronment visually, understand natural language instructions,
and transform these into physical robot actions [4], [5],
[6], [7], [8], [9], [10]. These models are often based on
pre-trained vision-language backbones. However, a com-
mon drawback of current VLAs is their limited support for
languages other than English. While multilingual LLM are
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1“Alman: [often jokingly] person who exhibits stereotypically German
behavior and characteristics such as excessive neatness, rule-following and
punctuality” (translated by the DeepL translation service [2])
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Fig. 1. The ALLMAN training stages from VLM to VLA training.

prevalent [11], [12], [13], there are few multilingual vision-
language model (VLM) [14], [15], [16] and no multilingual
VLA models yet. For example, LLAMA 2’s pre-training data
is approximately 90% English, with German — despite being
the third most supported language — making up only 0.17%
of the dataset [17].

We take the first step toward closing this gap by de-
veloping a VLA model specifically trained for the German
language, named ALLMAN. We base ALLMAN directly on
the German LLAMA 2-based model LEOLM [18], which we
transform into a VLM before training it to a VLA. We evaluate
ALLMAN on the LIBERO [19] evaluation benchmark and
show that our model can follow German language instruc-
tions. Our contribution marks an essential step in enabling
multilingual human-robot interactions, making robots more
adaptable to diverse linguistic environments.

II. CREATING ALLMAN

Translating VL(A) datasets into german. Training large
models like ALLMAN requires enormous amounts of train-
ing data. We used the DeepL [2] translation service to
translate existing datasets from English to German. In to-
tal, we created three German datasets listed in Table I
containing 200M tokens (587M characters) for the differ-
ent training stages of ALLMAN. We translated LLaVA-1.5
mix665k [20] for VLM training, the Open X-Embodiment



TABLE I
OVERVIEW OF THE MACHINE-TRANSLATED DATASETS.

Dataset #Tokens (DE) Function

LLaVA-1.5 mix665k DE 197 569 913 VLM Training
Open X-Embodiment DE 2 459 185 VLA Training
LIBERO DE 714 VLA Finetuning

Total 200 029 812

(OXE) dataset [5] for VLA training, and LIBERO [19] for
VLA finetuning and evaluation.

The ALLMAN model training pipeline. The main back-
bone of ALLMAN is the German Llama 2-based model
LEOLM [18]. Following [21], we transform the LLM into
a VLM by adding the ensemble of DINO V2 [22] and
SigLIP [23] as visual backbones. The patch features are
projected into the embedding space of LEOLM using a small
MLP projector. We train the newly obtained architecture by
using the Prismatic training pipeline [21] on our German
translated LLaVA-1.5 mix665k DE dataset. Training of
the German VLM was performed on 16 Nvidia A100 GPUs
for 3 full epochs (250 GPU hours).

Using the OPENVLA framework and the OCTO-
weighted [8] data mixture of our German translated
Open X-Embodiment DE dataset, we train ALLMAN for
a total of 17,545 GPU hours on 64 Nvidia A100 GPUs. Out
of time and resource constraints, we prematurely stopped
training after 18 epochs (OPENVLA was trained for 27
epochs) and can report an obtained training action token
accuracy of 0.75, compared to 0.95 reported by OPENVLA.
We plan to continue training from this checkpoint.

Finally, we finetune ALLMAN on our translated
LIBERO DE dataset for evaluation against OPENVLA. The
LIBERO dataset [19] consists of four task suites. Following
the OPENVLA protocol, we finetune ALLMAN separately
on each LIBERO task suite until convergence at 100%
action token accuracy. Finetuning takes 50k-80k gradient
steps depending on the task suite and requires 19 hours on
32 Nvidia A100 GPUs.

III. INVESTIGATING ALLMAN’S AND OPENVLA’S
PERFORMANCE ON GERMAN TASKS

Based on the LIBERO benchmark [19], we evaluate the
performance of ALLMAN and OPENVLA on German tasks.
Since ALLMAN is a compute-intensive approach, we also
explore less demanding options: (i) naively evaluating the
OPENVLA model on German instructions, (ii) using a
translation model to convert German instructions into En-
glish and querying the original OPENVLA model, and (iii)
directly fine-tuning the OPENVLA model on the translated
LIBERO DE dataset.

We compare the models’ performances across four
datasets, as shown in Fig. 2. These consist of the
LIBERO DE dataset as well as a paraphrased version of it to
assess the generalization ability across linguistic variations.
In addition, we test the models with random instructions from
the LIBERO DE dataset and with no prompts at all to ensure
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Fig. 2. Evaluation results of the different versions of OpenVLA as well
as AllmAN. We report success rates averaged over four LIBERO DE task
suites on 3 seeds each. For reference, we report the average OPENVLA
success rate over the (English) task suits of the original paper [9] by the
grey dotted line.

the VLAs responds appropriately to language prompts and
does not overfit on the visual input.

We first evaluated the original OPENVLA on German in-
structions, achieving only 1% success (not displayed). Trans-
lating German instructions back to English using DeepL[2]
restores performance to 64%, confirming the model’s issue is
language understanding. Fine-tuning OPENVLA on German
instructions improves success to 72%. The performance
drops when faced with misleading or missing German in-
structions but is still much higher than expected, suggesting
overfitting to visual inputs. In fact, in the VLM literature,
some works have reported that multimodal models can learn
to ignore modalities completely [24], [25], [26]. So far, the
ALLMAN model underperforms due to early stopping in
training.

IV. CONCLUSION

We introduce ALLMAN, the first VLA based on a Ger-
man backbone capable of understanding and executing Ger-
man language instructions. Our approach involves machine-
translating existing VL(A) datasets to the German lan-
guage and adapting the training protocol of PRISMATIC
and OPENVLA to the LEOLM backbone model. ALLMAN
provides proof of concept for the feasibility of non-English
VLAs, encouraging further research into multilingual models
that can accommodate a broader range of linguistic and
cultural contexts.

Limitations and future work. While ALLMAN is a
promising step towards multilingual VLAs, several limita-
tions exist. First, ALLMAN is a German-specific model, not
a truly multilingual one. Expanding this approach to cover
additional languages requires further adaptation and the cre-
ation of new datasets. Additionally, we prematurely stopped
ALLMAN’s training due to time and resource constraints,
which likely impacted its performance, especially compared
to fine-tuned OPENVLA. We evaluate the model solely on
the LIBERO DE dataset in a simulated environment; future
work focuses on evaluating in real-world robotic settings.
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