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Abstract— The ability to optimally control robotic systems
offers significant advantages for their performance. While time-
dependent optimal trajectories can numerically be computed
for high dimensional nonlinear system dynamic models, con-
straints and objectives, finding optimal feedback control policies
for such systems is hard. This is unfortunate, as without a policy,
the control of real-world systems requires frequent correction
or replanning to compensate for disturbances and model errors.

In this paper, a feedback control policy is learned from a
set of optimal reference trajectories using Gaussian processes.
Information from existing trajectories and the current policy
is used to find promising start points for the computation
of further optimal trajectories. This aspect is important as it
avoids exhaustive sampling of the complete state space, which
is impractical due to the high dimensional state space, and to
focus on the relevant region.

The presented method has been applied in simulation to
a swing-up problem of an underactuated pendulum and an
energy-minimal point-to-point movement of a 3-DOF industrial
robot.

I. INTRODUCTION

Optimal control theory [1] enables the formulation of op-
timality criteria and provides a basis for numerical methods
for model-based computation of optimal trajectories [2], [3].
These enable the offline computation of optimal trajectories
even for large-scale nonlinear robot dynamics models, non-
linear cost functions as well as nonlinear state and control
constraints. Good nonlinear robot dynamics models are often
available and enable deep insights in the system’s dynamic
behavior which can be only fully utilized by an optimal
control approach. However, for practical applications, even
small model inaccuracies as well as inevitable external
disturbances or small deviations from the start position lead
to deviations from the precomputed trajectory. These must
be dealt with in a non-optimal manner, e.g., by real-time
trajectory tracking controllers. This motivates the search for
a near-optimal policy, that allows to proceed in real-time
even under disturbances acting on the robotic system.

The approach of machine learning to find a near-optimal
policy is usually either to approximate the value function
as a solution of the Hamilton-Jacobi-Bellman equation to
derive the optimal control, or to use policy iteration. Both
approaches lack the generalization to large scale nonlinear
system dynamics and nonlinear constraints. They usually do
not account for the capable model-based numerical trajectory
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optimization methods. However, some of these provide valu-
able information that can be highly beneficial to be utilized
for the learning process.

We explore the potential of generalizing trajectories gen-
erated from different start points using the direct collocation
method DIRCOL and its ability to estimate the optimal
trajectory’s co-states [4]. The policy is approximated using
a Gaussian process (GP) [5] which additionally provides
information about the certainty of the current model. We
iteratively select start points for new optimal trajectories to
exploit information from existing trajectories.

The rest of the paper is organized as follows. The next
two subsections present related work as well as the formal
definition of the considered problem. Section II describes
the main steps of our approach. Results of the evaluation
of the presented method for an under-actuated swing-up
problem and a variable-stiffness arm are given in Section III.
Section IV concludes this paper.

A. Relevant Prior Work

The generalization of trajectory data with a neural network
is explored in [6]–[8]. Pesch et al. use analytical solutions
of the considered problem, Hardt and Breitner employ direct
(DIRCOL [2], [4]) and indirect (MUMUS [9]) methods for
trajectory optimization. They did not investigate the selection
of start points for the optimal trajectories further.

Schierman et al. [10] deal with the guidance of re-entering
space shuttles with compensation of technical failures of
control effectors. Their aim is repeated fast online-generation
of an optimal trajectory for unknown start conditions. To
generalize from a set of precomputed trajectories, [10] use
polynomial neural networks that map (initial) states to coef-
ficients of basis functions describing a trajectory.

In [11], a learning classifier system (XCSF) is trained to
interpolate optimized trajectories, resulting in a parametric
approximation of the optimal policy. Training data has been
derived from demonstration as well as from optimal trajecto-
ries computed using direct policy search. The goals for these
trajectories have been selected using random sampling.

An improved dynamic programming algorithm based on
Gaussian process models that approximate the value function
is presented in [12]. Here, the state space is randomly
sampled to get the data points for the GP.

All work presented so far does not consider the selection
of new start values in a systematic and adaptive manner. They
choose all start points at once, compute in a second step all
respective optimal trajectories and subsequently generalize
towards optimal feedback control. The start points are mostly



located on a dense grid, Deisenroth et al. [12], [13] uses
randomly sampled points as input for the Gaussian process.

In contrast, Atkeson et al. [14]–[16] explore the advan-
tages of successive selection of start points. To improve
the Differential Dynamic Programming (DDP) algorithm on
global optimization problems, they generalize trajectories
from different start positions. The advantage of the DDP
approach to get optimal local models is that a second-
order approximation of the value function and the policy is
computed at all points and can be used to build a parametric
representation of the value function and the policy at sampled
locations. Variants of random sampling [15] in combination
with a number of acceptance criteria is used to select
sampling states. Globalization of the local models is done
by using the nearest sampled state. Their approach allowed
to compensate moderate pushes of a four link balancing leg.

Da Silva et. al. [17] consider parameterized skills to solve
families of control tasks, they use Bayesian optimization
with a specially designed acquisition function to select new
training tasks that maximize expected improvement in overall
skill performance. Further, they reuse unsuccessful policies
that appeared during training as training samples for a
different goal [18]. Levine and Koltun [19] use optimized
trajectories to create samples (used for the gradient estima-
tion) that direct the policy search algorithm to regions of high
reward. Learning parameterized motor skills, [20] found out
that using the partially optimized policy as initial guess for
the optimization process of new tasks speeds up policy search
and also increases the number of successfully solved tasks.
We use this method as one of three approaches to get initial
guesses for trajectory optimization.

Special focus on the selection of new training tasks for
learning of parameterized policies for families of tasks is
in [21]. The authors present a detailed algorithm to actively
select new training tasks to explore the task space. The self-
generation of new tasks is based on a measure of interest,
defined as variation of competence, which is related to the
number of efficient attempts to reach a goal.

A widespread approach for model-based optimal feedback
control is Model Predictive Control (MPC). For systems with
linear dynamics and quadratic cost functions, the structure
of the underlying optimization problem can be exploited,
which allows MPC to compute a feedback control in real-
time [22]. But also for Nonlinear MPC, progress has been
made that brings real-time application for systems with fast
dynamics in reach [23]–[26]. Nevertheless, nonlinear MPC of
large systems with highly nonlinear dynamics and constraints
require considerable efforts to compute the control in each
control cycle in real-time. In [27], [28], a Model Predictive
Control approach with slow update rate is combined with
an optimized feedback controller with high input rate that
complies with equality and inequality constraints.

B. Problem Statement and Notation

In the following, we consider the general continuous
time nonlinear dynamic systems model for robot dynamics

Algorithm 1 Generalization of Optimal Trajectories
Input: problem description, start points startpts
Output: policy pi

for fixed number of iterations do
optTrajs← GETOPTIMALTRAJS(startpts, pi)
pointList← DISCRETIZEANDSELECT(optTrajs)
pi← TRAINGPS(pi, pointList)
startpts← GETNEWSTARTPOINTS(optTrajs)

end for

transformed from second to first order

ẋ(t) = f(x(t), u(t)) (1)

with state vector x ∈ X := {x ∈ Rnx : x ∈ [xmin, xmax]},
control u ∈ U := {u ∈ Rnu : u ∈ [umin, umax]}, f ∈
C1 (X × U ,X ) and t ∈ [0, tf ].

Given some cost function

J (x, u, tf ) := Φ (x(tf ), u(tf ), tf )+

∫ tf

0

L (x(τ), u(τ), τ) dτ

with terminal cost Φ and running cost L, as well as some
start state x0, the solution of an optimal control problem
consists of some control function ũ, state function x̃ and co-
state function λ̃ that minimize J satisfying equation (1). We
consider only problems with finite end time tf �∞.

The value function

V (x, t)=min
u

{
Φ (x(tf ), u(tf ), tf )+

∫ tf

t

L (x(τ), u(τ), τ) dτ

}
gives the minimum cost to proceed from the current system
state [1]. It should be noted that the approach presented in
this paper can be extended to cover also nonlinear state and
control constraints.

In this article, we aim to find some approximation of
the state-dependent feedback control π(x(t), t), such that its
application produces for all feasible initial states x0 ∈ X an
optimal trajectory x̃ such that u(t) = π(x(t), t) minimizes
J . We consider only problems without contact situation.

II. SUCCESSIVE OPTIMAL TRAJECTORY GENERATION
AND APPROXIMATION OF NEAR-OPTIMAL POLICY

To learn a policy for a given problem formulation, we use
information collected from a number of optimal trajectories
for different start points in the state space. These trajectories
are generated using the solver DIRCOL [4] that implements a
direct collocation method to solve optimal control problems.

We do not determine all start points at the beginning but
use an iterative approach that allows to continually supervise
the improvement of the policy, select new start points based
on progress achieved until then, and add only relevant data.
The optimal control policy is approximated by a Gaussian
process (GP), retrained in each iteration with data points on
the optimal trajectories. The main steps of the algorithm are
outlined as pseudo-code in Algorithm 1. They are motivated
and described in more detail in the following subsections.



A. Computation of Optimal Trajectories
DIRCOL [2], [4] is a direct collocation method that

uses SNOPT [29], [30] to solve the respective nonlinear
optimization problem. It requires a rough initial guess of state
and control trajectories to start the numerical optimization,
however, this guess needs not to be feasible subject to the
dynamics and other constraints. Direct collocation methods
are in general more robust to poor initial guesses than
indirect methods [3], [31], nevertheless, a reasonably good
user-provided initial guess may make the difference between
success and failure of the iterative optimization method.
We use three different approaches to get initial guesses:

• The simplest and most unbiased initial guess is to
linearly interpolate between start and (expected) end
configuration, with the control constantly zero. In the
first iteration, this is the only initial guess that is used.

• Select an already computed trajectory that starts or
passes as close as possible to the current start config-
uration and use it as initial guess. While this approach
leads in most cases to convergence of the solver, it
produces not always optimal results, since close start
points do not necessarily lead to similar globally optimal
trajectories. If the distance to the closest data point is
too large, we add intermediate start points and compute
the corresponding trajectories before, such that each op-
timal control problem has at least one optimal trajectory
in close proximity that can be used as initial guess.

• Use the current approximation of the optimal feedback
control to generate an initial guess. To be applicable,
this approach requires a sufficiently accurate approxi-
mation in the relevant region, it is thus very error-prone
in the first iterations. This has also been done in [20].

For each start position, we run the solver with all three initial
guesses to avoid using suboptimal solutions and keep the best
valid solution (the one with lowest total cost). DIRCOL is
started with 11 equidistant grid points, at most ten grid re-
finements are allowed. Further, DIRCOL’s automatic scaling
of variables and functions is enabled.

If the solution process fails, we start a costly homotopy
approach where we solve a series of optimal control prob-
lems where the final time is stepwise increased from a small
fraction to the original value, using each time the solution of
the previous run as initial guess. An outlier detection method
is required to reject suboptimal results.

B. Discretization of the Trajectories
The GP learns the control values evaluated at discrete data

points, which makes it necessary to extract significant value
pairs (x(ti), u(ti)) from each computed trajectory and add
them to the data used to train and evaluate the policy. From
each trajectory, we get a set of at most N data points S =
{(x(ti), u(ti))}i=0,...,N with ti = i·tf/(N−1) that are used
to improve the learner. We found that N = min {50, tf/tmin}
gives good results, this extracts 50 data points from each
trajectory and reduces this number for short trajectories, as
it enforces a minimum distances tmin (in time) between the
discretization points.

Subsequently, all points that are closer than some mini-
mum distance dmin to any previously added state are removed
from S. The remaining data in S is used as training data for
the learner.

C. Start Point Generation

The selection of new start points is highly relevant for
the ”exploration” of unknown areas of the state space and
determines how the algorithm progresses. It is important to
acquire more information in regions where a deviation from
the optimal trajectory is more relevant, i.e., where suboptimal
actions cause a significant change in the total cost of the
executed path.

For some optimal trajectory x(t), the relation between the
co-states λ(t) (or adjoint variables) and the value function is
described by

λ(t) =
∂V (x(t), t)

∂x(t)
,

(see [1]), large (absolute) co-state values indicate where
some deviation from the trajectory in state has considerable
impact on the value function. This motivates the use of the
trajectory’s co-states λ(t) as an indicator for sensitive regions
where more neighboring trajectories are favorable. DIRCOL
allows to estimate the Lagrange multiplier function of a
computed approximation of an optimal trajectory.

We select points ti on the trajectory with local maxima
max {‖λ(ti)‖}, as well as points where the norm of the co-
states at the grid-points are outside the 67%-quantile (with
minimum distance between the grid-points enforced).

For some point xi := x(ti) on a trajectory with large
co-state value λi := λ(ti), we choose a new start point
candidate x̃i in the direction of the co-state vector λi. The
Euclidean distance of x̃i from xi has to be in the interval
[bl, bu]. Since large absolute co-state values indicate more
sensitive regions, the distances between respective points are
smaller. The exponential decrease favors start points close to
the trajectory. In summary, the mapping from some trajectory
point to a new start point is described by

x̃i (xi, λi) = xi + κ (λi)λi

with κ : λ 7→ 1
λ

(
bl + (bu − bl)e−νλ

)
. The real-valued

parameter ν > 0 needs to be tuned depending on the range
of occurring co-state values.

The points in state space retrieved from the trajectory are
added to a list of candidate start points. If a start value for
a new optimal trajectory is needed, the variance of learned
policy is evaluated for all these candidates and the one with
the highest variance is selected.

An initial non-empty set of start values has to be provided
with the problem formulation. The solution trajectories for
these values should be not too difficult to compute, because,
contrary to the following iterations where already computed
trajectories and the approximation of the feedback control
can be used, no problem specific information to generate
initial guesses is available.

In contrast to [17], in which the acquisition of new
learning data is guided by Bayesian Optimization, we use
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Fig. 1: This example illustrates how start points are selected
based on co-state values and variance of the GP. Points of
an extremum in the co-state values (filled marker) as well as
the connected start point candidate are shown. The selected
new start point at the state with the largest variance (given
as contour) is marked with an x.

information about the sensitivity of the trajectory in the state
space with respect to the total cost and combine it with a
measure of the current approximation quality of the learned
near-optimal control.

D. Learning Optimal Control Policies from Trajectories

Gaussian processes [5] have been successfully used in
[12], [32] to approximate the control policy or the value
function of optimal control problems. We use GPs as non-
parametric model of the learned policy. The covariance
function is set to be a multi-layer perceptron kernel. The
GP is retrained each time the data points of a trajectory
are added. The main advantage of using a Gaussian process
function to approximate the near-optimal policy is that it
provides for each point a variance which serves as measure
of uncertainty.

The high order of differentiability that is inherent to many
GP kernels like the squared exponential or RBF covariance
function makes them unsuitable to model the control function
which may exhibit many different local properties. Instead,
we use a multi-layer perceptron kernel, which allows us to
fit functions with both steep slopes and smooth plateaus.

To better represent discontinuities in the control function,
the policy model can be further extended by a concept pre-
sented in [13]: Two separated GPs for positive and negative
control signals respectively are trained along with a classifier
that learns which GP to use at which point in the state
space. The applicability of this technique must be examined
in further work.

A large number of data points may slow down training as
well as evaluation of the GP. To attenuate this, it is possible
to use some sparse pseudo-input model as e.g. introduced in
[33] to reduce the computational cost for both operations.
However, the use of a sparse approximation degrades the
quality of the learned near-optimal policy.

It must be noted that a policy implemented by a GP is
likely to violate the box constraints of the control. Conse-
quently, it is necessary to reset values outside U to some
valid controls on the boundary of U .

E. Additional Samples around the Goal State
As can be seen in Fig. 2 left, the sampling of the state

space close to the goal state may stay sparse. All generated
trajectories approach this state in a narrow tube, leaving a
significant area around the goal state unexplored.

In the example shown in Fig. 2, the states are not con-
strained to the goal state at the end of the trajectory (the
convergence to the goal state is accomplished only by the
formulation of the objective function). This forces the co-
states to become zero at the end point of the trajectory (for
details see [1]), leading to small co-state values and hence
no new start points around the goal state.

Altogether, while the co-states give valuable information
about sensible regions around a large portion of the com-
puted optimal trajectories, they are of little use to promote
exploration in the direct proximity of the goal state. We
thus complement our start point selection strategy based
on co-state values by adding short trajectories starting at
additional (e.g. randomly placed) positions on a ball with
small (problem dependent) radius around the goal state.
These trajectories are much shorter and accordingly add less
data points to the policy learner than the ones starting from
points imposed by the method described in Section II-C.

III. EVALUATION AND EXPERIMENTS

The approach has been implemented in Matlab R2018b,
the used GP implementation is the package GPmat by
Lawrence and others [34]. The link to DIRCOL has been
established using mex-files that call interface classes in C++.

A. Under-actuated Pendulum Swing-Up
In the following, we consider an under-actuated pendulum

with system dynamics

θ̈(t) =
g

l
sin (θ(t)) +

u(t)

ml2
− µθ̇(t)

ml2
,
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Fig. 2: Left: Generated optimal trajectories approach the goal
state in a small tube. Right: Additional short trajectories
sampled in the proximity of the goal state amend this deficit.
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Fig. 3: The trajectories and selected data points used to learn
the near-optimal policy and the test set with 200 start points.
The figure shows the result for the MLP covariance function
(no sparse approximation).

Fig. 4: Left: The Euclidean distance from the goal state at
the end point. Right: Ratio ”simulated cost to optimal cost”
of the trajectories of the test set.

as given in [12], [35], [36] with link length l = 1 m, mass
m = 1 kg, friction coefficient µ = 0.05 kg m2/s and g =
9.81 m/s2 and define the state x = (θ, θ̇)T in (rad, rad/s)T .

We use a quadratic cost function of the form

J (x, tf ) =
1

2

(
10x̄1(tf )2 + 10x̄2(tf )2

)
+

1

2

∫ tf

0

x̄1(t)2 + x̄2(t)2 + u(t)2 + x̄1(t)u(t) dt

with x̄(t) := xf − x(t), similar to [13].
The applicable torque is constrained to be u ∈ [−5, 5] Nm.

This restriction makes the task non-trivial, as the maximum
available torque is not sufficient to bring the pendulum from
a hanging position (θ = π) to the goal state, so the solution
must contain some swing-up procedure [36].

We start with an initial start position θ = π, θ̇ = 0 and
apply the algorithm as described in Section II. To evaluate the
learned control, we simulate the swing-up problem starting
from 200 different points si in the state space with 0.3 ≤
‖ (π, 0)

T−si‖2 ≤ 1.0. We use the classical 4th order Runge-
Kutta scheme with time steps of 0.001 s. The total cost of
the trajectory is integrated using the trapezoidal rule.

The results of the simulations with a policy learned in
ten iterations of the presented algorithm is summarized in
Fig. 4. We performed 10 iterations, resulting in 10 trajectories

and 219 data points selected for training of the GP. The 8
additional trajectories around the goal state (see Section II-
E) increase the number of used data points to a total of
308. To give an unbiased view on the start point selection
procedure, we manually check all computed trajectories
during execution and, if necessary, initiate a re-computation
to make sure that the trajectories for all start points are used.

In the following, we consider the goal as reached, if
the Euclidean distance of the state x to the goal state is
less than 10−3 and we say that a near-optimal trajectory
has been found, if its approximated cost is at most 110%
of the trajectory cost computed by DIRCOL for the same
start point. With MLP we refer to a multi-layer perceptron
covariance function, based on a 2-layer feed-forward network
[34] with linear activation function, six inputs, one output
and five hidden units.

The result for the MLP covariance function with a non-
sparse posterior variance approximation is shown in Figs. 3
and 4. Green stars represent successful test cases, orange
stars indicate trajectories reaching the goal state with costs
more than 110% of the optimum and red stars show test cases
where the goal state has been missed. Further, for a small
number of test cases (here 20) the ratio is slightly lower than
1.0 (typically not lower than 0.95), indicating a lower cost
than the optimal trajectory computed with DIRCOL. The
reason is a less accurate cost estimation for the simulated
trajectories (linear approximation whereas DIRCOL uses
cubic spline interpolation of the states). For the Matérn-5/2
and the MLP covariance function, the goal has been reached
for all test cases. If we use a sparse approximation of the
GP the value decreases using the MLP covariance function
to 195 (for DTCVAR [37]) and 170 (for FITC [33]) out of
200. If the eight additional trajectories are not included, only
57 out of 200 trajectories reach the goal state.

Note that for the comparison of the different covariance
functions and posterior variance approximations the same
training set (created using the non-sparse MLP covariance
function) is used. The effect of the GP model on the start
point selection for new trajectories is therefore neglected.

B. Feedback Control of the Robot Manutec R3
In this section, we apply our approach to approximate

an optimal feedback control of the point-to-point movement
of an industrial Manutec r3 robot. The Manutec r3 has
six joints, we use the first three which mainly determine
the position of the end-effector. The dynamic model of the
Manutec r3 robot can be found in [38]. It has been formulated
with focus on realism and is highly non-linear, which makes
finding a near-optimal control for this model significantly
harder than for the underactuated pendulum.

We adopt the definition of the optimal control problem
described in [39] with varying start values to compute
optimal trajectories. In contrast to [39], we only consider
minimum energy movements to reach some fixed goal state
with cost function

J (x, u, tf ) = tf + ρ

∫ tf

0

3∑
i=1

ui(t)
2 dt
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Fig. 5: Euclidean distances from the goal configuration
at optimal end time (T1) and at the closest point (T2).
Further, the ratio ” simulated Lagrange-term cost to optimal
Lagrange-term cost” and the time at which the closest point
to the goal state has been reached.

with ρ = 10−3. Further, the six state variables and
three control variables are restricted by box constraints.
The initial joint configuration qstart of the first tra-
jectory is at (qstart,1, qstart,2, qstart,3, q̇start,1, q̇start,2, q̇start,3) =
(0,−1.5, 0, 0, 0, 0), the goal configuration is set to be
(1,−1.95, 1, 0, 0, 0). After 20 iterations we have 869 data
points from 18 optimal trajectories to train the GP (two
generated trajectories have been rejected because the opti-
mization process failed). Together with 9 additional short
optimal trajectories around the goal state, this results in a
total of 1006 from 27 trajectories. We again use the non-
sparse GP with MLP covariance function.

We simulate the movement of the robot arm caused by the
learned control from 200 start configurations. The Euclidean
distance of these start configurations to qstart in joint space
is between 0.1 and 0.3. The result is presented in Fig. 5.
We denote the end time of the optimal trajectory of a test
instance with T1, T2 is the time at which the minimum
distance to the goal state is reached by the test instance.
It can be seen that at the end time of the respective optimal
trajectory, the test instances have a large distance from the
goal state. This distance is reduced to 0.1 at T2, but with a
significant time delay. Considering the Lagrange part of the
objective function which is proportional to the energy cost,
the approximated cost of the simulated trajectories are for
three out of four test instances below 110%. However, the
total cost of the simulated movements is much higher than
the optimum, as it includes the final time.

C. Comparison with Naive Approach

In the following, we compare our approach with a naive
start point sampling strategy. We use data points from 16
trajectories that start at random start points in the state
space to train a GP with a MLP covariance function. These
trajectories provide 877 data points which is comparable to

the number of data points used above. We reuse the nine
trajectories close to the goal state and get a total of 1013 data
points. The results on our test set of 200 start configurations
is given in Fig. 6. At T1, the distance to the goal state
is comparable to the distance achieved with the proposed
method. At T2 the distance is reduced to values between 0.12
and 0.15, which is slightly worse than with our approach.
However, the naively learned policy needs much longer to
bring the arm close to the goal state, in consequence, the
overall cost at T2 is typically also substantially higher.

IV. CONCLUSION

An optimal feedback control of dynamic systems to handle
unknown disturbances is computationally expensive to obtain
for most problems. In this paper, we iteratively improved
a policy with samples from optimal trajectories. Focus has
been on the placement of start positions. With a sophisticated
strategy of new start point selection using information from
existing trajectories, we are able to avoid full sampling of
the joint space in the relevant region. We proposed an al-
ternative to random sampling that uses information provided
by the co-states of the optimal feed-forward solutions and
the covariance of the learned policy. The method has been
successfully applied to a 3-DOF industrial robot representing
realistic highly nonlinear problems with time-invariant cost
function.

The model of the Manutec r3 arm does not include models
of the actuator and transmission dynamics. In principle,
the modeling can be extended to also include higher order
dynamics as well as bandwidth limitations introduced by the
actuators. An important limitation of the presented approach
is its dependency on a sufficiently accurate model, which
is used in the trajectory optimization step. This model may
be difficult to obtain in practice. A possible solution is the
implementation of a feedback compensation of model errors
using a locally optimal tracking controller, e.g. similar to the
approach introduced in [27]. In [27], [28], the cost function
used for Model Predictive Control has been extended to
penalize high frequencies of the actuators in the trajectory.
The examination of possible extensions to compensate for
model inaccuracies or uncertainties and the implementation
on an actual robot will be subject to further work.
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Fig. 6: Results for the naive sampling approach. The left
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state has been reached.
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