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Abstract

Although many studies on exoskeleton control have been conducted, several challenges re-
main. For one, some approaches focus solely on the exoskeleton itself and neglect the in-
teraction and cooperation between humans and machines, resulting in the human having to
adapt their motion to the exoskeleton. Moreover, controls are often generated using tradi-
tional techniques that don’t leverage user data. Although these methods can yield satisfactory
results, one of the disadvantages is that they are often limited to providing support passively
through predefined parameters without individualization, thus leading to poor adaptability
across scenarios and latency in the motion. These disadvantages can reduce the effective-
ness of the wearable or even cause injury during gait correction in medical applications.
This thesis presents a control strategy for the exoskeleton that optimizes the generation of
healthy gait by correcting pathological gait based on the user’s dynamic properties. The
proposed solution employs inverse reinforcement learning to eliminate the need for manual
reward engineering. Experiments are conducted in different environments to evaluate the
feasibility of the approach, followed by training a unified policy capable of handling various
impairments, including zero-shot cases. The final results demonstrate the potential of inverse
reinforcement learning based methods for effective and adaptive gait rehabilitation.

Kurzfassung

Obwohl umfangreiche Forschung zur Regelung von Exoskeletten betrieben wurde, mehrere
Herausforderungen bestehen weiterhin. Zuerst, dass viele Ansätze sich ausschließlich auf
das Exoskelett alleine konzentrieren und die Interaktion sowie Kooperation zwischen dem
Menschen und dem Gerät vernachlässigen. Infolgedessen muss sich der Nutzer häufig an
die Bewegungen des Exoskeletts anpassen, anstatt rückkehrend. Darüber hinaus basieren
Regelungsstrategien oft auf traditionellen Techniken, die keine nutzerspezifischen Daten ein-
beziehen. Obwohl solche Methoden zufriedenstellende Ergebnisse liefern können, bieten
sie in der Regel nur passive Unterstützung durch vordefinierte Parameter ohne Individu-
alisierung. Dieser Mangel an Anpassungsfähigkeit kann zu Verzögerungen in der Bewe-
gungsreaktion führen und sogar das Risiko von Verletzungen während der Gangkorrektur
in medizinischen Anwendungen erhöhen. Diese Arbeit schlägt eine Regelungsstrategie für
Exoskelette vor, die die Erzeugung eines gesunden Gangs verbessert, indem sie patholo-
gische Gangmuster basierend auf den dynamischen Eigenschaften des Nutzers korrigiert.
Die vorgeschlagene Lösung nutzt Inverse Reinforcement Learning, um den Aufwand für die
manuelle Definition von Belohnungsfunktionen zu vermeiden. Es werden Experimente in
verschiedenen Umgebungen durchgeführt, um die Machbarkeit des Ansatzes zu evaluieren.
Die abschließenden Ergebnisse zeigen das Potenzial von Inverse Reinforcement Learning
basierten Methoden für eine effektive und adaptive Gangrehabilitation.
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Chapter 1

Introduction

Exoskeletons represent a compelling research direction in robotics due to their close interac-
tion between humans and machines. Applications of exoskeletons can be found in various
domains such as strength augmentation, motion assistance and gait correction for medical
purposes [MFS23; RLF21; Lee+23]. With exoskeletons in different formats, researches have
been conducted across multiple disciplines such as mechanics, electronics and computer sci-
ence [Zho+19; San+19; Naz+23; BHF23]. These studies not only advance the development
of exoskeleton technologies but also stimulate progress in related fields. One such field is
sports and motion science, as exoskeletons are ultimately worn by humans. This necessitates
a deeper understanding of how humans support their own movement in everyday life as well
as how they interact with complex environments to different extent [Li+22; Fir+25].

To facilitate the effective use of exoskeletons, the control strategies should be capable
of adapting to human motion patterns. This raises demands on exoskeleton control, espe-
cially given that humans are inherently able to accomplish tasks under diverse conditions and
environments. Although many studies have explored control methods for exoskeletons, sev-
eral challenges remain. For one, some approaches focus primarily on the exoskeleton itself
and neglect the interaction/cooperation between humans and machines. As a result, users
are often required to adapt their movements to the exoskeleton, rather than the other way
around [Luo+21]. Additionally, controls are often generated using traditional techniques
that don’t leverage user data. Although such approaches may yield acceptable performance,
they are often limited to providing support passively through predefined parameters without
individualization, thus leading to poor adaptability across scenarios and latency in the motion
[Che+22; Xue+19]. Another drawback is that some control models are based on simulations
that fail to accurately represent human biomechanics. In theory, the modeled systems should
be capable of executing motions without external support, just as humans can often perform
movements independently of assistive devices. However, these models often ignore the fact
that human motion is not driven by joint mounted motors, but by complex neuromuscular
dynamics. As such, the individual’s ego motion should also be taken into account. These
disadvantages can reduce the effectiveness of the wearable or even cause injury during gait
correction in medical applications or even lead to some unreal conclusions [Meh+23].

In recent years, reinforcement learning (RL) techniques have been developed and ap-
plied across various domains. Given that the core principle of RL is to take actions based
on real-time observations, it presents a promising approach for exoskeleton control. Among
the different RL methods utilized in control applications, one of the most critical factors for
successfully training a policy is the design of a reward function tailored to the specific prob-
lem. However, reward engineering remains one of the most challenging and time consuming
aspects of RL. Designing an effective reward function is rarely straightforward and often
requires extensive domain knowledge and iterative refinement.

Inverse reinforcement learning (IRL), by contrast, tries to eliminate the need for manual
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reward engineering. Instead of explicitly designing a reward function, IRL aims to infer the
reward function from observed expert behavior. In doing so, the task specific problem of
reward design is transferred to a more general learning problem, which is how to enable the
agent to learn the underlying reward structure autonomously. Solving this problem has the
potential to improve efficiency, as the learned reward models can be adapted and transferred
across multiple scenarios.

In light of these observations, this thesis proposes an IRL control strategy for exoskeletons
aiming at optimizing healthy gait by correcting pathological gait based on the user’s dynamic
properties. To evaluate the effectiveness of this approach, a musculoskeletal human model
is first modified to simulate various medical conditions. Then IRL control method is adapted
and applied to each condition independently to demonstrate its feasibility in gait correction.
Following this, the study explores the development of one unified policy capable of address-
ing multiple gait disorders simultaneously. Several zero-shot cases are presented to further
validate the robustness and adaptability of the proposed method as well.

The remainder of this thesis is organized as follows. Chapter 2 provides a brief review
of related work, analyzing previous approaches and techniques for exoskeleton control in-
cluding RL and IRL. Chapter 3 introduces the key concepts and mathematical foundations
underlying the methods used in this thesis. Chapter 4 details the methodology for gait re-
habilitation, while Chapter 5 presents the experimental setup and results. Finally, Chapter 6
offers a conclusion and outlines potential directions for future research.



Chapter 2

Related work

In this chapter, previous work on exoskeleton control is first reviewed in section 2.1 to pro-
vide an overview of the current state of control strategies in the field. To gain a deeper
understanding of how reinforcement learning techniques can be applied to control models,
we review relevant literature and studies on inverse reinforcement learning in section 2.2.

2.1 Exoskeleton control

Since their invention, exoskeletons have been designed to provide external support or assis-
tance to humans at different stages of mobility or rehabilitation. One of the most common
applications of exoskeletons is gait rehabilitation. Zhu et al. investigated the effects of ex-
oskeleton assistance on human gait and demonstrated that such support can improve the
muscle coordination from the sense of muscle synergy [Zhu+21]. Similarly, De Luca et al.
reported that exoskeleton devices could affect walking patterns, which further supports their
feasibility for gait rehabilitation [De +19]. In terms of control strategies, Qian et al. sim-
ulated a post-stroke case including gait asymmetry. They developed a system that provides
support exclusively at the hip joints using a series elastic actuator (SEA) as the driving mech-
anism. Their method employed adaptive oscillators to detect gait asymmetry, followed by PI
controllers to generate the control signals [QYF22]. Likewise, Aguirre-Ollinger et al. adopted
a similar approach using SEAs and adaptive frequency oscillators to extract phase informa-
tion. However, they proposed a different control strategy involving disturbance rejection and
formulated the control pipeline using the Riccati equation [AY20]. Beyond purely control
based on gait history, Unluhisarcikli et al. developed a lower extremity exoskeleton using
impedance control, which accounts for motion and contact forces simultaneously to produce
more accurate control signals [Unl+11]. There are also structural innovations in exoskele-
ton design. For instance, Wang et al. introduced additional degrees of freedom in the frontal
plane. These were controlled using a PID controller together with the sagittal plane actuators,
thereby improving flexibility [Wan+13]. To address variability in patient data, Zhang et al.
trained a XGBoost model to generate usable reference trajectories. These were then paired
with impedance control to ensure stability and safety of the output signals. Their method
also integrated neural networks to further enhance data utilization and control performance
[Zha+22].
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2.2 Control using reinforcement learning

One of the advantages of reinforcement learning (RL) is its ability to interact dynamically
with the environment. Thus, it is a promising approach for training policies that output ac-
tions based on real-time observations. Consequently, RL has been applied to robotic control
systems. Peng et al. developed a physics-based motion animation framework that com-
bines prior expert data via RL. Their work showed that a single RL agent could generate
appropriate actions across different environments to enable the model to follow expert be-
havior [Pen+18]. Shan et al. proposed a method for generating locomotion commands for
quadruped robots. They extracted critical information from weak sensor inputs and detected
the environments via Fourier analysis. They also designed a multifunctional reward to accom-
modate diverse scenarios [Sha+24]. Zhang et al. introduced an RL approach for adaptive
motion control on complex terrains. They used a time-cluster mechanism to store sensor
data and analyze it afterwards. Their reward function included an energy term to promote
relatively efficient movement as well [Zha+24]. To incorporate biological insights into RL,
several studies have been conducted on musculoskeletal models. For instance, Schumacher et
al. proposed an algorithm to improve the policy exploration efficiency in RL, facilitating fast
convergence in overactuated environments with a high-dimensional action space. Their ap-
proach integrated differential extrinsic plasticity (DEP) into RL and demonstrated successful
results in various muscle-driven simulations such as humanreacher, ostrich run, and human
run [Sch+23].

To further simulate the functionality of exoskeletons based on a musculoskeletal model,
Rose et al. proposed an approach of deep deterministic policy gradient (DDPG) that is able to
adapt actuator control torques and accounts for post-stroke individuals with different desired
gait patterns. Their reward function incorporated terms such as angle errors and boundary
penalties to assist the learning [RBN22]. Yuan et al. combined RL with dynamic movement
primitives to generate control signals for a walking exoskeleton robot, which effectively inte-
grates rhythmic motion generation with adaptive control [Yua+19]. Addressing exoskeleton
complexity, Luo et al. developed a model featuring degrees of freedom in both the sagittal
and frontal planes. They introduced the center of pressure as part of the control algorithm
to enhance balance maintenance. The control robustness was also improved by exposing
the model to different perturbations during RL training [Luo+21]. Building on this work,
the team decoupled exoskeleton dynamics from human motion and trained three parallel
networks to simulate the behaviors of humans equipped with exoskeletons. Their observa-
tion history was also incorporated, and the multiple action steps are predicted for the future,
further improving control accuracy and robustness [Luo+23].

As inverse reinforcement learning (IRL) eliminates the time-consuming effort of man-
ual reward engineering, researchers employing IRL have also gained traction. For instance,
Bing et al. developed a biomechanical snake-like robot and implemented an RL control al-
gorithm to replicate serpentine motion. Their work further demonstrated the feasibility of
using adversarial inverse reinforcement learning (AIRL) to autonomously learn control poli-
cies [Bin+20]. Similarly, Geiss et al. investigated the influence of various techniques on
policy exploration. Their methods were validated on a musculoskeletal model, confirming
the availability of IRL for training control strategies in muscle driven biomechanical systems
[Gei+24].



Chapter 3

Preliminary

This chapter introduces the concepts and techniques employed in the following chapters.
The concept of the musculoskeletal model is introduced first in section 3.1, including the
muscle-tendon unit and the application of forward kinematics to the entire system. This is
followed by a review of the fundamental principles of reinforcement learning and inverse
reinforcement learning in sections 3.2 and 3.3. Section 3.4 introduces the concept of the
long short-term memory and section 3.5 gives an overview of the dynamic time warping
algorithm.

3.1 Musculoskeletal model

Numerous robotic models have been developed both in simulation and in the real world
[FB21]. Most of these models are actuated by electric motors, meaning that the joints not
only define the movement constraints of the system but also serve as the primary source of
actuation. However, this approach does not accurately represent the true functional mech-
anisms observed in biological organisms. In living creatures, joints provide structural con-
straints, while actuation is performed by muscles rather than by the joints themselves [An02;
PA10].

To more closely replicate human motor function, a specialized model known as the muscu-
loskeletal model has been introduced [WFD23; SLK21; GMA19]. This type of model consists
of two key components: a skeletal system providing the structural framework and a muscle
model that simulates the contractile behavior of biological muscles to generate motion.

3.1.1 Muscle-tendon unit

The muscle–tendon unit (MTU) is a biomechanical component designed to simulate both the
structure and function of muscle tissue [HZG90]. The core of MTU is the contractile element
(CE) representing muscle fibers and a series elastic element (SE) representing tendons. To
replicate the muscle’s protective mechanisms, the model also includes a parallel elastic ele-
ment (PE) and a buffer elastic element (BE). The complete MTU model is illustrated in Figure
3.1. The force produced by the MTU is given by Fm = Fse = Fce+ Fpe− Fbe and it is dependent
on the muscle fiber length lce. The contractile force generated by the CE is computed using
the formula:

Fce = AFmax fl(lce) fv(vce) (3.1)
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with
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(3.2)

and

fv(vce) =











vmax − vce

vmax + Kvce
, if vce < 0

N + (N − 1)
vmax + vce

7.56Kvce − vmax
, if vce ≥ 0

(3.3)

where A is the activation, Fmax is the maximum isometric force, fl(lce) and fv(vce) are func-
tions describing the force–length and force–velocity relationships, lopt is the optimal CE
length for maximum force production, ω is the width of fl(lce) curve, c is the residual force
factor for fl(lce), K is curvature constant and N accounts for eccentric force enhancement.
Fse, Fpe, Fbe correspond to forces from SE, PE and BE respectively.

CE

PE

BE

SE

௢௣௧ ௦௟௔௖௞

஼ா

ெ்௎

Figure 3.1: Structure of MTU. CE is the contractile element (muscle fiber) and SE is series elastic element
(tendon). PE (parallel element) and BE (buffer elastic) only engage when lC E falls outside the normal operating
range to prevent the structure from collapse.

Aligning with CE, PE and BE help stabilize the structure of muscle unit. These elements
only engage when CE is stretched or compressed beyond its normal operating range. PE and
BE forces are calculated based on their respective deformation, using the definitions:

Fbe = Fmax

�

lmin − lce

loptεbe

�2

Fpe = Fmax

�

lce − lopt

loptεpe

�2 (3.4)

where lmin = lopt − ω is the rest length of BE, the reference compression εbe = ω/2 and
εpe =ω are the compression strains. The tendon part SE is modeled by a nonlinear function
between the generated force and the deformation:

Fse(ε) =

(

(
ε

εre f
)2, if ε > 0

0, if ε≤ 0
(3.5)
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where ε= (lse − lslack)/lslack is the tendon strain, lslack is the tendon’s slack length and εre f is
the reference strain such that Fse(εre f ) = 1 [GH10; GSB03].

In addition to these basic components, the MTU model may also have a pennation angle
between the muscle fibers (CE) and the tendon (SE). For muscles with a non-zero pennation
angle, as shown in Figure 3.2, the contractile force is generated at an angle relative to the
tendon. When the pennation angle is significant, all force components must be projected
onto a common axis to ensure proper force transmission along the isometric direction. Aside
from this geometric consideration, the functional behavior of the MTU remains unchanged
[HZG90; Buc+04].

SE
𝜑

Figure 3.2: Structure of MTU with pennation angle. When non-negligible, the contractile force from CE should be
projected onto the principle direction using ϕ.

3.1.2 Forward kinematics

With MTU working as actuators, the musculoskeletal model operates according to the follow-
ing motion logic [Buc+04]. Upon receiving an excitation signal, the MTU undergoes a short
delay corresponding to the muscle’s reaction time, during which the excitation is transformed
into activation. This activation initiates the contraction of the MTU, thereby generating force
along the contractile direction. Given the geometry of the musculoskeletal model defined by
its skeletal structure, the generated muscle forces produce joint torques based on their asso-
ciated moment arms. These torques are then applied to the skeletal system and through the
motion equations, the joint angular accelerations, angular velocities and angular degrees are
computed. These dynamics result in the physical movement of the model. The entire process
is illustrated in Figure 3.3.

There are different relationships between the excitation and activation, most of which
involves a time delay, reflecting the physiological response of muscle tissue. This excitation
contraction coupling can be described using a first-order differential equation:

τ
dAct(t)

dt
= Exc(t)− Act(t) (3.6)

where τ is the time constant representing the muscle’s response delay. In this thesis, τ is set
as 0.01 [GH10; GSB03].

In the simulated environment, the human walking gait is segmented into eight distinct
phases: initial contact, loading response, mid stance, terminal stance, pre-swing, initial
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Input 
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𝐴𝑐t௧
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activation 
dynamics

MTU 
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dynamics

Musculoskeletal 
geometry

Motion 
equation

Forward 
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MTU states, DoF states

Ext௧ 𝐹௧ 𝑀௧ 𝜃̈௧

𝜃̇௧, 𝜃௧

Figure 3.3: Forward kinematics of musculoskeletal model including biomechanical components.

swing, mid swing and terminal swing [PB24], as illustrated in Figure 3.4. The walking cycle
is thus represented as a continuous loop traversing these phases sequentially from initiation
to completion.

Initial 
contact

Loading 
response

Mid stance
Terminal 
stance

Terminal 
swing

Mid swing
Initial 
swing

Pre-swing

Swing

Stance

Figure 3.4: Eight phases of the walking gait cycle. Each stride begins with initial contact and ends with terminal
swing.

3.2 Reinforcement learning

Driven by large volumes of data, machine learning typically focuses on tasks such as classifi-
cation and regression by training neural networks on input datasets. However, reinforcement
learning (RL), as a subfield of machine learning, distinguishes itself by involving interac-
tion with the environment rather than relying solely on static data. Essentially, RL learns a
mapping from the state space to the action space, guided by a reward signal that evaluates
the quality of actions taken in different states. This framework allows an agent to improve
its decision making policy through trial and error over time. The following statements are
primarily based on the foundational concepts introduced in [SB+98].

3.2.1 Markov decision process

The RL process can be typically modeled as a markov decision process (MDP). In RL, the key
components include the environment, the agent, states, actions and rewards. The objective
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of RL is to train an optimal policy that enables the agent to perform actions that maximize its
cumulative reward through interaction with the environment. As illustrated in Figure 3.5, at
each time step t, the agent observes the current state st ∈ S and selects an action at ∈ A(st)
to interact with the environment. Upon receiving the action at , the environment transitions
to a new state st+1 ∈ S and provides a scalar reward through function R : S×A×S→ R, which
quantifies the desirability of the agent’s action. The agent then uses this reward feedback to
update its behavior in order to maximize the expected cumulative reward, commonly referred
to as the return.

Agent

Environment

Reward

௧

State

௧

Action

௧

௧ାଵ

௧ାଵ

Figure 3.5: Framework of RL. The agent receives observations from the environment and output actions. The
policy is updated based on reward signals provided by the environment.

The outcome of the RL is a policy πθ parameterized by θ that defines the agent’s decision
making rule based on state observations. The policy could be deterministic, where actions
are given by a function at = µ(st) or stochastic, where actions are sampled from a probability
distribution at ∼ πθ (·|st). Through repeated interaction with the environment, a trajectory
τ = (s0, a0, s1, a1, · · · ) is collected as a sequence of states and actions. The initial state s0 is
drawn from a starting state distribution ρ0(·). In stochastic environments, state transitions
are modeled as st+1 ∼ P(·|st , at) where P denotes the state transition probability distribution.

The whole RL problems can be formally described as follows. Assuming both the environ-
ment transitions and the policy are stochastic, the probability of observing a trajectory τ over
T time steps is given by:

P(τ|π) = ρ0(s0)
T
∏

t=0

P(st+1|st , at)π(at |st) (3.7)

The expected return of the policy J(π) is then depicted as:

J(π) =

∫

τ

P(τ|π)R(τ) = E
τ∼π
[R(τ)]

R(τ) =
∞
∑

t=0

γt rt

(3.8)

where R(τ) is the cumulative reward of the trajectory τ under the policy π and γ ∈ (0, 1)
is the discount that determines the relative importance of future rewards. Therefore, the
central objective in RL is to find the optimal policy π∗ that maximizes the expected return
J(π). The optimal policy is defined as:

π∗ = argmax
π

J(π) (3.9)
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3.2.2 Bellman equation

To identify the optimal policy, a common approach is to assign a value to each state indicating
the expected cumulative reward an agent can obtain. This valuation guides the derivation
of the optimal policy. Two key value functions are used to quantify the quality of states and
actions within a policy framework. Assuming an infinite horizon setting, the V-value Vπ(s)
under policy π represents the expected return starting from state s

Vπ(s) = E
τ∼π
[R(τ)|s0 = s] (3.10)

and the Q-value Qπ(s, a) measures the expected return of taking action a in state s according
to the policy π:

Qπ(s, a) = E
τ∼π
[R(τ)|s0 = s, a0 = a] (3.11)

Correspondingly, both Vπ(s) and Qπ(s, a) achieve their maximum possible values when the
policy is optimal:

V ∗(s) =max
π
E
τ∼π
[R(τ)|s0 = s]

Q∗(s, a) =max
π
E
τ∼π
[R(τ)|s0 = s, a0 = a]

(3.12)

Both V-value and Q-value can be updated iteratively using the Bellman equation to find
the optimal values, thus extracting the optimal policy:

Vπ(s) = E
a∼π, s′∼P

[r(s, a) + γVπ(s′)]

Qπ(s, a) = E
s′∼P
[r(s, a) + γ E

a′∼π
[Qπ(s′, a′)]

(3.13)

where s′ denotes the next state sampled from state transition and a′ stands for the action for
next state s′ drawn from policy π. The optimal functions are therefore derived via:

V ∗(s) =max
a
E

s′∼P
[r(s, a) + γV ∗(s′)]

Q∗(s, a) = E
s′∼P
[r(s, a) + γmax

a′
Q∗(s′, a′)]

(3.14)

3.2.3 REINFORCE

Instead of learning the policy indirectly through value functions, an alternative approach
is to optimize the policy directly. Policy gradient tries to maximize the expected return by
computing gradients of the performance objective with respect to the policy parameters.
Starting from Equation 3.7, the log probability of a trajectory τ and its gradient with respect
to the policy parameters θ are given by:

log P(τ|π) = logρ0(s0) +
T
∑

t=0

(log P(st+1|st , at) + logπ(at |st))

∇θ log P(τ|θ ) =∇θ logρ0(s0) +
T
∑

t=0

(∇θ log P(st+1|st , at) +∇θ logπ(at |st))

=
T
∑

t=0

∇θ logπ(at |st)

(3.15)

Combining with the trick from log derivative:

∇θ P(τ|θ ) = P(τ|θ )∇θ log P(τ|θ ) (3.16)



3.2 Reinforcement learning 11

The final update rules for policy parameters θ are:

∇θ J(πθ ) =∇θ E
τ∼πθ

[R(τ)]

=∇θ

∫

τ

P(τ|θ )R(τ)

=

∫

τ

∇θ P(τ|θ )R(τ)

=

∫

τ

P(τ|θ )∇θ log P(τ|θ )R(τ)

= E
τ∼πθ

[∇θ log P(τ|θ )R(τ)]

= E
τ∼πθ

[
T
∑

t=0

∇θ logπ(at |st)R(τ)]

(3.17)

This forms the foundation of the REINFORCE algorithm, which is one of the earliest
policy gradient methods. It enables direct optimization of the policy without requiring value
function estimation. Due to its efficiency and simplicity, policy gradient methods are widely
used in modern RL.

3.2.4 Policy gradient methods

To prevent the policy from converging to a suboptimal solution, Peters et al. proposed bound-
ing the information loss during policy updates using a relative entropy term, while still en-
abling the policy to discover the optimal solution. This approach is known as relative entropy
policy search (REPS) [PMA10]. The relative entropy boundary constraint is defined as

D(pπ∥q) =
∑

s,a

ρπ(s)π(a|s) log
ρπ(s)π(a|s)

q(s, a)
≤ ε (3.18)

where ρπ is the state distribution of states following policy π, ρπ(s)π(a|s) is the new data
distribution induced by the new policy π, q(s, a) is the current observed data distribution and
ε is a hyperparameter.

Inspired by REPS, trust region policy optimization (TRPO) is a widely adopted algorithm
for solving RL problems. The fundamental idea behind TRPO is to maximize the performance
improvement of the policy during each update, while ensuring that the updated policy does
not deviate too far from the current policy. This constraint helps prevent instability or per-
formance collapse due to overly aggressive updates. Let πθ denote the policy parameterized
by θ . The goal is to find the optimal parameter θ that maximizes a surrogate objective, often
referred to as

L(θk,θ ) = E
s,a∼πθk

[
πθ (s, a)
πθk
(s, a)

Aπθk (s, a)] (3.19)

where A represents the advantage function under the old policy πθk
. This formulation forms

the basis of the TRPO update mechanism, which seeks to improve the policy while staying
within a trusted region of parameter space.

The TRPO policy update step is defined in Equation 3.20 where DK L(θk,θ ) denotes the
average KL-divergence between the current policy and the previous policy over the states
sampled from the previous policy and δ is the upper boundary. In TRPO, the term of condi-
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tional distribution πθk
(a|s) is replaced with joint distribution q(s, a)

θk+1 = argmin
θ

L(θk,θ )

s.t.D(θk,θ ) = E
s∼πθk

[KL(πθ (a|s)∥πθk
(a|s))]≤ δ

(3.20)

However, there are two main limitations of TRPO. First, the new policy may deviate too
much from the old one when the probability ratio is either too large or too small, thus
destablizing the training. Furthermore, due to the reliance on second-order optimization,
the algorithm is computationally expensive and complex to implement. To address these is-
sues, proximal policy optimization (PPO) is introduced. Derived from TRPO, both TRPO and
PPO use the actor critic framework, in which a policy network and a value function are up-
dated simultaneously. Although the two methods are conceptually similar, they differ in how
the optimization problem is solved. PPO reformulates the problem using simpler, first-order
optimization techniques and it introduces a clipping mechanism that approximates the trust
region constraint without explicitly computing the KL-divergence. The goal is to maximize
this objective with respect to the policy parameters θ , ensuring that the probability ratio be-
tween the new and old policies does not deviate too far from 1. This maintains the relative
entropy in a stable range while also reduces computational overhead during policy updates.
The clipped surrogate objective is defined in Equation 3.21

L(s, a,θk,θ ) =min [
πθ (s, a)
πθk
(s, a)

Aπθk (s, a), g(θ ,θk,ε, Aπθk (s, a))] (3.21)

with

g(θ ,θk,ε, A) = C LI P(
πθ (s, a)
πθk
(s, a)

, 1− ε, 1+ ε)A (3.22)

This formulation ensures that policy updates are conservatively constrained, preventing
excessively large policy changes that could degrade performance. The final update is per-
formed by maximizing the expected clipped objective:

θk+1 = arg max
θ

E
s,a∼πθ

[L(s, a,θk,θ )] (3.23)

Unlike the traditional advantage function, which is typically computed as the difference
between the Q-value and the value estimated by the critic, the advantage function used
in PPO in this thesis is based on generalized advantage estimation (GAE) [Sch+16]. GAE
provides a more robust and flexible way to estimate advantages by using multiple steps of
temporal difference (TD) errors along a trajectory. Specifically, it computes a weighted aver-
age of these TD errors, using an exponentially decaying factor to balance bias and variance.
This method helps reduce the variance associated with advantage estimation. It proves useful
when the value function is imperfect or noisy, as it enables more stable and efficient policy
updates. The detailed procedure for computing GAE is presented in Algorithm 1 and the
complete PPO training process is summarized in Algorithm 2.

3.3 Inverse reinforcement learning

Although RL employs neural networks to train agents through interaction with their environ-
ments, one of the most challenging aspects of RL is the design of the reward function. The
reward function directly influences the agent’s learned behavior and ultimately determines
the success of the resulting policy. Since reward functions are typically task specific, effort is



3.3 Inverse reinforcement learning 13

Algorithm 1 GAE

1: Input: V-values for current states V, V-values for next states Vnex t , Rewards R, Done flags
IDone, TD error factor γ and GAE factor λ

2: Calculate TD errors δ = R+ (1− IDone)γVnex t − V
3: Initialize GAE with the same shape as R
4: GAE−1 = δ−1
5: for k = . . . , 2, 1, 0 do
6: GAEk = δk + γλ(1− IDone)k+1GAEk+1
7: end for
8: Return: Normalized GAE

Algorithm 2 PPO

1: Input: initial policy parameters θ0, initial value parameters φ0
2: for k = 0,1, 2, . . . do
3: Collect set of trajectories Dk = {τi} by applying policy πk = π(θk, state)
4: Collect corresponding rewards R̂t
5: Compute GAE Aπθk based on current value function Vφk

6: Update θ by maximizing the PPO objective

θk+1 = arg max
θ

1
|Dk|T

∑

τ∈Dk

T
∑

t=0

min [
πθ (s, a)
πθk
(s, a)

Aπθk (s, a), g(θ ,θk,ε, Aπθk (s, a))] (3.24)

7: Update φ by minimizing the mean square error

φk+1 = argmin
φ

1
|Dk|T

∑

τ∈Dk

T
∑

t=0

(Vφk
(st)− R̂t)

2 (3.25)

8: end for
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often required to craft a well shaped reward for each new environment or application. This
process is not only time consuming but also prone to suboptimal or biased design.

To address this limitation and promote greater generalization, inverse reinforcement
learning (IRL) has been proposed. Instead of manually defining a reward function for ev-
ery new scenario, IRL infers the reward function autonomously from expert demonstrations.
Once the reward function is learned, it can be used within a standard RL framework to train
the agent’s policy. One of the approaches within IRL is the maximum entropy IRL algorithm.
The core idea of this method is to find a reward function within a predefined function class
that maximizes the difference in expected cost between expert and non-expert trajectories.
In other words, the algorithm aims to assign lower costs to expert behaviors while penalizing
other behaviors, thereby maximizing the margin between them. The optimization objective
of maximum entropy IRL is formulated as:

max
R
(min
π
−H(π) +Eπ[R(s, a)])−EπE

[R(s, a)] (3.26)

where H(π) = Eπ[− logπ(a|s)] is the entropy of policy π. The goal policy to be found is:

RL(R) = argmin
π

−H(π) +Eπ[R(s, a)] (3.27)

which leads to the policy having high entropy while being able to minimize the cumulative
reward [Zie+08].

3.3.1 Generative adversarial imitation learning

Generative adversarial imitation learning (GAIL) is a method used for IRL or imitation learn-
ing [HE16]. In GAIL, which is inspired by generative adversarial networks (GAN) [Goo+20],
the generator or policy attempts to produce actions that mimic the expert’s state-action pairs,
while the discriminator distinguishes between the observation through generated actions and
those of the expert. The reward is given by the discriminator and actions that appear more
expert-like receive higher rewards, guiding the policy toward expert behavior. The overall
structure of this approach is illustrated in Figure 3.6. A suitable policy is learned once the
discriminator can no longer differentiate between the agent and the expert. The discrimina-
tor’s loss is computed as

Loss(D,τ) =min
D
E
τ∼π
[− log(D(s, a))] + E

τE
[− log(1− D(s, a))] (3.28)

where τ ∼ π refers to the trajectory generated by the agent’s policy, τE represents the expert’s
trajectory, and D(s, a) denotes the discriminator’s score. In this thesis, PPO is deployed for the
policy update step within the GAIL framework and the procedure is summarized in Algorithm
3.

3.3.2 Variational adversarial imitation learning

A notable variant of GAIL is variational adversarial imitation learning (VAIL), which incor-
porates a variational discriminator bottleneck (VDB) for improved IRL based control. The
following explanation is based on the methodology presented in [Pen+19].

To enhance the generalization capability of the learned policy, VAIL introduces an encoder
E(z|x), which maps the input observation features x into a latent distribution Z . This encoder
is integrated into the discriminator and forms a bottleneck structure that encourages the
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Figure 3.6: Framework of GAIL. The structure is similar to that of RL, but the reward signals are from a discrimi-
nator rather than from the environment.

Algorithm 3 GAIL

1: Input: initial policy parameters θ0, initial value parameters φ0, initial discriminator pa-
rameters ω0

2: for k = 0,1, 2, . . . do
3: Collect set of trajectories Dk = {τi} by applying policy πk = π(θk, state)
4: for i = 0,1, 2, . . . do
5: Update discriminator via

ωi+1 = argmin
ω
E
τ∈Dk

[− log(1− Dω(s, a))] + E
τE
[− log(Dω(s, a))] (3.29)

6: end for
7: Compute the reward logits via discriminator

R̂ = log
�

Dωk
(s, a)
�

(3.30)

8: Compute GAE Aπθk based on current value function Vφk

9: Update θ by maximizing the PPO objective

θk+1 = arg max
θ

1
|Dk|T

∑

τ∈Dk

T
∑

t=0

min [
πθ (s, a)
πθk
(s, a)

Aπθk (s, a), g(θ ,θk,ε, Aπθk (s, a))] (3.31)

10: Update φ by minimizing the mean square error

φk+1 = argmin
φ

1
|Dk|T

∑

τ∈Dk

T
∑

t=0

(Vφk
(st)− R̂t)

2 (3.32)

11: end for
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network to focus on task relevant latent representations. Its goal is to first extract meaningful
latent features via the encoder and then allow the discriminator to operate in the latent space
to distinguish between the expert and the agent. This encourages smoother and more robust
policy learning. The overall structure of this approach is illustrated in Figure 3.7.

To prevent the encoder from being influenced by irrelevant or noisy features, Alemi et
al. [Ale+17] introduced an information bottleneck regularizer that constrains the mutual
information I(x , z). The purpose of this regularization is to encourage the encoder to retain
only the discriminative features necessary for the task. Such mutual information I(x , z) could
be estimated by the KL-divergence [Pen+19; Csi75]. The objective becomes a constrained
optimization problem, in which both the discriminator and the encoder are jointly optimized
to minimize a loss composed of the standard GAIL objective with an added VDB constraint:

Loss(D, E) =min
D,E

E
s,a∼π∗(s)

[ E
z∼E(z|s)

[− log(D(z, a))]] + E
s,a∼π(s)

[ E
z∼E(z|s)

[− log(1− D(z, a))]]

s.t. E
s∼eπ(s)

[KL[E(z|x)∥r(z)]]≤ Ic
(3.33)

where eπ= 1
2π
∗+ 1

2π represents an even mixture of the agent data and expert data while Ic is
the upper bound of the mutual information defined manually.

For the implementation of VDB, the constraint is integrated into the loss function to for-
mulate a Lagrangian function with the Lagrange multiplier β

Loss(D, E,β) =min
D,E

max
β≥0

E
s,a∼π∗(s)

[ E
z∼E(z|s)

[− log(D(z, a))]] + E
s,a∼π(s)

[ E
z∼E(z|s)

[− log(1− D(z, a))]]

+ β( E
s∼eπ(s)

[KL[E(z|x)∥r(z)]]− Ic)

(3.34)
For each updating step, the encoder is updated together with the discriminator and the mul-
tiplier β is updated adaptively based on the current mutual information constraint:

D, E = arg min
D,E

Loss(D, E,β)

β =max(0,β +αβ( E
s∼eπ(s)

[KL[E(z|x)∥r(z)]]− Ic))
(3.35)

where αβ is the step size for dual variable [Pen+19; BV04]. The reward signal for the
agent is then derived from the discriminator using the latent representation of the state
rt = − log(1− D(µE(s))) where µ is the mean of encoder’s output distribution E(z|x).

3.4 Long short-term memory

Long short-term memory (LSTM) consists of several recurrent units to process sequential
data like text and speech, etc [Elm90]. As most vanilla RNNs suffer from vanishing gradient
or cannot store the history information for too long [BSF94], the LSTM is designed to solve
such a problem [HS97]. As depicted in Figure 3.8, the main idea of LSTM is to use a cell state
and three different gates, each of which is a MLP followed by a sigmoid activation, to process
the information. The LSTM maintains a cell state to function as a memory mechanism. The
input gate determines how much of the current input should be stored in the cell state, the
forget gate regulates the extent to which past information is discarded and the output gate
controls what information is passed to the next time step.
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Figure 3.7: Scheme of VAIL. The basic structure is similar to that of GAIL, the discriminator is trained by the latent
variables of encoder. The loss metric is minimized by discriminator D(s, a) and encoder E(z|s) jointly.
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3.5 Dynamic time warping

Dynamic time warping (DTW) is a technique used widely in the area of speech recognition.
It is an algorithm used for comparing the difference between two different time series with
different lengths. The goal of DTW is to find the best matching pairs for the joints on two time
series so that the overall distance metric of these two time series is minimized. Suppose there
are two time sequences τx = {x0, x1, · · · , xM} and τy = {y0, y1, · · · , yN}, a warping function is
defined via:

ϕ(t) = (ϕx(t),ϕy(t)), t = 1,2, · · · , T,

ϕx(t) ∈ {0, 1, · · · , M},
ϕy(t) ∈ {0, 1, · · · , N},

(3.36)

where ϕx(t) and ϕy(t) represent the time steps of each time series respectively. The warping
curve then aligns the time steps of points on trajectories along time series and the final
matching result from DTW is to minimize the metric via:

Loss(τx ,τy) =min
ϕ

∑T
t=1 d(xϕx (t), yϕy (t))w(t)
∑T

t=1 w(t)
(3.37)

where d(x , y) is the objective distance of two single data points on each time series (for
example, the squared cost or Manhattan distance). The weight w(t) in the formula is a coef-
ficient that assigns different weights to alignments. There are mainly two kinds of weighting
strategies supported in DTW. The symmetric form assumes both trajectories are mapped onto
a new time axis alone, and the integration of the loss term is made along the new axis. The
asymmetric form, on the other hand, integrates the loss term only on one of the given tra-
jectories. Figure 3.9 displays a simple instance of how the weighting coefficient is defined
in both symmetric and asymmetric cases. Suppose the weights are independent from the
trajectories. Then in the symmetric case, the w(t) and the denominator in Equation 3.37 is
defined by:

w(t) = ϕx(t)−ϕx(t − 1) +ϕy(t)−ϕy(t − 1),
T
∑

t=1

w(t) = length of ϕx + length of ϕy
(3.38)

while the asymmetric form defines the same term as:

w(t) = ϕx(t)−ϕx(t − 1) or ϕy(t)−ϕy(t − 1),
T
∑

t=1

w(t) = length of ϕx or length of ϕy
(3.39)

To ensure that the alignment process between two sequences remains meaningful and
consistent with the temporal structure of the data, two fundamental constraints are imposed
on the warping path. The monotonicity ensures that the alignment does not move backward
in time

ϕx(t − 1)≤ ϕx(t),

ϕy(t − 1)≤ ϕy(t)
(3.40)

and the continuity imposes the restriction that the alignment advances at most one time step
in either sequence at each step

ϕx(t)−ϕx(t − 1)≤ 1,

ϕy(t)−ϕy(t − 1)≤ 1
(3.41)

In addition, the constraints on the boundary are introduced so as to make sure the starting
points and the end points are always matched.
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Figure 3.9: Two DTW weighting styles. The left one is symmetric style, with which equal weighting is applied to
transitions from both trajectories. The right one is the asymmetric style, with which transitions are considered from
only one trajectory.





Chapter 4

Methodology

In this section, the mechanism of the controllers is introduced first in section 4.1, followed by
the experiments design for single environment in section 4.2 and for multiple environments
in section 4.3.

4.1 Overview of model control strategy

The model is controlled by a combinatorial control strategy. The control strategy consists of
two primary components: a low-level reflex controller for the muscles and a high-level joint
motor controller.

The low-level controller operates as a finite state machine that can detect different phases
of the gait cycle and applies phase-specific control parameters. To simplify the gait phases
described in section 3.1, this thesis adopts a simplified version consisting of five phases: early
stance, late stance, lift off, swing and landing. Transitions between phases are determined by
the relative sagittal foot position and the normalized load on the leg. A phase transition is
triggered when both variables reach predefined thresholds, details of which can be found in
[Gei19].

For each phase of the gait, the low-level controller incorporates both a muscle reflex
controller and a degrees of freedom (DoF) reflex controller, as proposed by Geyer and Herr
[GH10]. The control law for the muscle reflex controller is defined as

U = C0 + KF [(F − F0)]+ + KL[(L − L0)]+ + KV [(V − V0)]+ (4.1)

where KF , F0 represent the force feedback gain and offset; KL, L0 are the length feedback
gain and offset; and KV , V0 correspond to the velocity feedback gain and offset. Here, F ,
L and V represent the real-time muscle force, muscle length and muscle contractile velocity
respectively. The []+ operator ensures non-negative entries and the output U represents the
excitation.

The control law for the DoF reflex controller is defined as

U = C0 + KP(P − P0) + KV (V − V0) (4.2)

where KP , P0 represent position feedback gain and target position, and KV , V0 represent
velocity feedback gain and target velocity. The muscle is activated by the combined output of
these reflex controllers, generating force to drive the model forward. Further details can be
found in [GSB03; Buc+04].

While the low-level controller simulates the physiological behavior of muscles in response
to muscle and joint states, the high-level controller governs motor actions based on a policy
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trained using IRL algorithm GAIL. Extending IRL to an observation-only setting is straightfor-
ward by defining the reward function solely based on observations [Al-+23]. This approach
is advantageous because intrinsic states, such as muscle activations or forces, may not be di-
rectly measurable [ABH05]. Even when these variables can be measured, differences in em-
bodiment across cases typically require extensive task-specific parameter tuning [Ham+17;
Qiu+20; GDG21]. Also, the process is simplified and consistent when using kinematic mod-
els to align the desired movement patterns. Therefore, IRL is a preferred method to match
the feature space provided by the expert.

4.2 Single environment

To evaluate the IRL method in correcting pathological gait, the policy is first trained on each
individual environment and later on all environments combined to obtain a unified policy.
This thesis considers three distinct environments, each representing a different medical con-
dition. During training, several techniques are employed to improve the performance gait
correction. Section 4.2.1 describes the data normalization process used prior to generating
outputs through the policy. Sections 4.2.2 and 4.2.3 present methods designed to mitigate
instability during discriminator training.

4.2.1 Normalization

Although the policy takes observations from the model as input, results indicate that these
observation values should be normalized before being passed to the policy. In this thesis, nor-
malization is performed online i.e. observations are normalized at each time step during data
collection. The normalization process is based on Welford’s online algorithm, as described in
Algorithm 4.

Algorithm 4 Welford online normalization
1: Input: x̄old , σold , x̄cur rent , σcur rent , countold , countcur rent
2: countupdate = countold + countcur rent
3: δ = x̄old − x̄cur rent

4: x̄new = x̄cur rent +δ ∗
countcur rent

countupdate
5: Ma = σcur rent ∗ countcur rent
6: Mb = σold ∗ countold

7: M2 = Ma +Mb +
p
δ ∗

countcur rent ∗ countold

countupdate

8: σnew =
M2

countupdate
9: Return: x̄new, σnew, countupdate

4.2.2 Gradient penalty

Given the close relationship between GAIL and GAN frameworks, techniques developed for
GANs can also be adapted to GAIL. One of the challenges in training GANs is instability and
gradient penalty has been proposed as an effective solution to this problem [Gul+17].



4.2 Single environment 23

In the study of robustness of machine learning, Lipschitz continuity is a property used to
describe the robustness of neural networks. Consider a classifier f : Rd → Y and a dataset
with (x i , yi) ∼ Pdata, then a point ex ∈ P(x) is adversarial example for f at (x , y) if f (x) = y
but f (ex) ̸= y. This illustrates how a small perturbation in the input space can lead to a
significant change in the output. Lipschitz continuity formally constrains such behavior: A
function f : X → Y is Lipschitz continuous if DY( f (x1), f (x2)) ≤ k · DX (x1, x2), where k
is correspondingly the Lipschitz constant of f and f is k-Lipschitz. This condition ensures
that the output of the function does not change faster than a linear function of the input
change. Importantly, it has been shown that enforcing Lipschitz continuity is equivalent to
constraining the gradient norm of the function to be less than or equal to k almost everywhere
[Gou+21; HCC18]. This guarantees the worst-case change of the logits given a bounded
perturbation of the input.

To enforce the Lipshitz constraint during GAIL training, one approach is to directly add a
gradient penalty term into the discriminator’s loss function, as expressed in Equation 4.3

Loss(D,τ) =min
D
E
τ∼π
[− log(D(s, a))] + E

τE
[− log(1− D(s, a))] +λE

τ̂
[(∥∇s,aD(s, a)∥ − k)2] (4.3)

where τ̂ is a random mix of the expert trajectory τE and agent trajectory τ [Gul+17], k is
the Lipschitz constant and λ is the coefficient for the gradient penalty.

4.2.3 Spectral normalization

Apart from the gradient penalty introduced in section 4.2.2, another effective approach to
constrain the discriminator and improve both stability and performance is to impose con-
straints directly on the network architecture. To stabilize the training process and control
the output, Miyato et al. [Miy+18] proposed applying spectral normalization to each layer
of the discriminator. This technique controls the Lipschitz constant of the discriminator by
constraining the spectral norm of each layer g : hin 7→ hout . Formally, the Lipschitz norm is
defined as ∥g∥Lip = suphσ(∇g(h)), where σ(A) denotes the spectral norm of matrix A, as
detailed in Equation 4.4.

σ(A) = max
h:h ̸=0

∥Ah∥2

∥h∥2
= max
∥h∥2≤1

∥Ah∥2 (4.4)

Consider a discriminator has the following form in Equation 4.5

D(x) = W L+1aL(W
L(aL−1(W

L−1(· · · a1(W
1 x + b1) · · · ) + bL−1)) + bL) + bL+1 (4.5)

where W l , bl and al stand for weights, bias of transfer layers and the activation layers re-
spectively. Then, the Lipschitz norm of a discriminator can be calculated by using

∥D(x)∥Lip ≤ ∥W L+1∥Lip · ∥aL∥Lip · ∥W L∥Lip · · · ∥W1∥Lip · ∥a0∥Lip · ∥W0∥Lip

=
L
∏

0

kl
W kl

aσ(W)σ(a)
(4.6)

With the spectral norm layer, the weights in the discriminator are rescaled with the spec-
tral norm σ of the weight matrix approximated using power iteration method. During each
training iteration, the parameters are updated according to the following formulas

WSN =
W
σ(W)

,σ(W) = max
h:h ̸=0

∥Wh∥2

∥h∥2
(4.7)
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4.3 Multiple environments

After having trained the policy successfully on each single environment, a unified policy is fur-
ther trained across all three environments. However, directly applying the same framework
used for single environment training fails to reconstruct the intended gait rehabilitation ef-
fects, as the discriminator is able to easily distinguish the agent’s behavior from that of the
expert. To address this limitation, additional techniques are introduced to assist the PPO net-
work in learning a generalizable policy. Section 4.3.1 presents the technique used to stabilize
model motion, while section 4.3.2 and section 4.3.3 introduce the methods for policy training
to generalize its availability across diverse environments.

4.3.1 Action chunking

When the control strategy is deployed at a high frequency, the model may suffer from insta-
bility or inefficient execution due to excessive sensitivity to small fluctuations in the input.
Although relatively simple, action chunking has proven to be a solution to mitigate this issue
[Zha+23]. As depicted in Figure 4.1, the key of action chunking is to group a sequence of
actions across multiple time steps into a single unit, treating them as one action for the cur-
rent time step [LHG25]. With action chunking integrated into the policy network, the policy
π(at:t+k|st) generates actions once for k steps in the future based on the current state st ,
rather than the standard formulation π(at |st), which outputs only one action per time step.
The agent then executes the entire chunk of k actions sequentially and transitions directly
to the state at time step t + k. To further smooth the actions and reduce abrupt changes in
motion, temporal ensembling is introduced as a filtering mechanism. This method produces
a weighted action at each time step by aggregating previous actions generated across time.
The weights are assigned exponentially by wi = ex p(−m ∗ i), where w0 corresponds to the
weight of the eldest action and the decrease coefficient m controls how rapidly the influence
of elder actions diminishes [Zha+23].

𝑎଴_ଵ 𝑎଴_ଶ 𝑎଴_ଷ 𝑎଴_ସ

𝑎ଵ_ଵ 𝑎ଵ_ଶ 𝑎ଵ_ଷ 𝑎ଵ_ସ

𝑎ଶ_ଵ 𝑎ଶ_ଶ 𝑎ଶ_ଷ 𝑎ଶ_ସ

𝑎ଷ_ଵ 𝑎ଷ_ଶ 𝑎ଷ_ଷ 𝑎ଷ_ସ

Time

𝑡

𝑡 + 1

𝑡 + 2
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Figure 4.1: Scheme of action chunking. At each time step, the agent predicts the actions for the next k steps and
the actions executed in environment are grouped as ensemble.
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4.3.2 Combining with VDB

Several methods have shown their success, for example, by augmenting the observation space
with additional contextual information [LSE17] or by designing special neural network archi-
tectures that make the learned policy adaptable [Boh+24]. We adopt the VDB in an attempt
to improve the performance of our policy. Since the gradient penalty plays an important role
in stabilizing training, it is used alongside the VDB framework. Similar to the variational
autoencoder, we can apply the reparameterization trick to optimize the parameters of the
encoder and decoder (or discriminator in our case). Reparameterization reformulates the
sampling process by expressing the random variable as a deterministic function of fixed noise
and learnable parameters, thereby enabling gradient flow through stochastic layers. With the
reparameterization trick applied, the loss function for the discriminator becomes

Loss(D, E) =min
D,E
E

s∼π∗(s)
[ E

z∼E(z|s)
[− log(D(z))]] + E

s∼π(s)
[ E

z∼E(z|s)
[− log(1− D(z))]]

+wgp E
s∼π∗(s)
ε∼N (0,I)

[(∥∇sD(µE(s) +ΣE(s)ε)∥ − κ)2]

s.t. E
s∼eπ(s)

[KL[E(z|s)∥r(z)]]≤ Ic

(4.8)

where wgp is the coefficient for gradient penalty and eπ(s) is a balanced mix of expert data and
agent data. To summarize, the whole procedure of training one unified policy on different
environments with VDB integrated is as follow in Algorithm 5.

4.3.3 Combining with LSTM

Another approach to training a unified policy for all environments is involving an LSTM
network [HS97], which first serves as an encoder. The latent representations produced by the
LSTM are then used to train the discriminator, actor and critic. Theoretically, since LSTM is
able to capture temporal dependencies by maintaining a memory of history observations, it is
also possible to use LSTM to generalize the feasibility of the policy on different environments.
The overall training process with LSTM follows the same structure as outlined in Algorithm
6, with the important distinction that the gradient penalty is applied to the latent variables
generated by the LSTM, rather than directly to the raw observational data from the agent
and expert trajectories.
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Algorithm 5 VAIL with gradient penalty

1: Input: initial policy parameters θ0, initial value parameters φ0, initial discriminator pa-
rameters ω0, initial encoder parameters η0, mutual information Ic, dual step size αβ

2: for k = 0, 1,2, . . . do
3: Collect set of trajectories Dk = {τi} by applying policy πk = π(θk, state)
4: for i = 0,1, 2, . . . do
5: Sample z ∼ Eηi

(z|s) using reparameterization trick
6: Update encoder and discriminator with defined wgp and κ

ωi+1,ηi+1 = arg min
ω,η

E
τ∈Dk

[− log(1− Dω(z))] + E
τE
[− log(Dω(z))]

+wgp E
s∼π∗(s)
ε∼N (0,I)

[(∥∇sD(µEη(s) +ΣEη(s)ε)∥ − κ)
2]

+ β E
τ∪τE
[KL(Eηi

(z|s)∥N(0, I)− Ic]

(4.9)

7: Adaptively update Lagrange multiplier β

β =max(0,β +αβ( E
s∼eπ(s)

[KL[E(z|s)∥N(0, I)]]− Ic)) (4.10)

8: end for
9: Compute the reward logits via discriminator with z ∼ Eηk

(z|s)

R̂ = log
�

Dωk
(z)
�

(4.11)

10: Compute GAE At based on current value function Vφk

11: Update θ by maximizing the PPO objective

θk+1 = argmax
θ

1
|Dk|T

∑

τ∈Dk

T
∑

t=0

min [
πθ (s, a)
πθk
(s, a)

Aπθk (s), g(θ ,θk,ε, Aπθk (s))] (4.12)

12: Update φ by minimizing the mean square error

φk+1 = argmin
φ

1
|Dk|T

∑

τ∈Dk

T
∑

t=0

(Vφk
(st)− R̂t)

2 (4.13)

13: end for
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Algorithm 6 GAIL with LSTM and gradient penalty

1: Input: initial policy parameters θ0, initial value parameters φ0, initial discriminator pa-
rameters ω0, initial LSTM parameters η

2: for k = 0,1, 2, . . . do
3: Collect set of trajectories Dk = {τi} by applying policy πk = π(θk, state)
4: Get latent variables z = Lηk

(s) from LSTM network
5: for i = 0,1, 2, . . . do
6: Update discriminator with defined wgp and κ

ωi+1 = argmin
ω
E
τ∈Dk

[− log(1− Dω(z))] + E
τE
[− log(Dω(z))]

+wgp E
τ̂
[(∥∇z D(z)∥ − κ)2]

(4.14)

7: end for
8: Compute the reward logits via discriminator

R̂ = log
�

Dωk
(z)
�

(4.15)

9: Compute GAE At based on current value function Vφk

10: Update θ and η by maximizing the PPO objective

θk+1,ηk+1 = arg max
θ ,η

1
|Dk|T

∑

τ∈Dk

T
∑

t=0

min [
πθ (z, a)
πθk
(z, a)

Aπθk (z), g(θ ,θk,ε, Aπθk (z))] (4.16)

11: Update φ by minimizing the mean square error

φk+1 = arg min
φ

1
|Dk|T

∑

τ∈Dk

T
∑

t=0

(Vφk
(zt)− R̂t)

2 (4.17)

12: end for





Chapter 5

Experiments

Building upon the methods described in chapter 4, this chapter presents the results of the
experiments. Section 5.1 first introduces closely the metric used in the evaluations, followed
by section 5.2 which discusses the experimental results in detail.

5.1 Metric

As it has been observed after training that the corrected gaits may exhibit different frequen-
cies compared to those of the expert. The DTW loss metric is employed to better quantify
the training performance and mitigate biases caused by frequency mismatches and temporal
shifts. The distance d(x , y) is computed using the square error over all combined features
jointly. During the alignment process, since the current state can be derived from the previ-
ous state, the optimization problem can be solved using dynamic programming (DP) via the
formulation

g(ϕ(t)) = min
ϕ(t−1)

g(ϕ(t − 1)) + d(xϕx (t), yϕy (t))w(t)

Loss(τx ,τy) =
g(T )
∑T

t=1 w(t)

(5.1)

with the initial states as
g(ϕ(1)) = d(xϕx (1), yϕy (1))w(1) (5.2)

This thesis adopts a symmetric weighting scheme, in which matching between data points
at the same time step is neither explicitly encouraged nor discouraged. Under this approach,
the transition cost is uniformly applied, ensuring temporal neutrality in the alignment. The
transition formula is defined as follows and applies to all states, including the initial states

g(i, j) =min







g(i, j − 1) + d(i, j)

g(i − 1, j − 1) + d(i, j)

g(i − 1, j) + d(i, j)
(5.3)

To better process the data alignment, the DTW algorithm is adapted to an open end
setting. In this configuration, the constraint requiring alignment of the endpoints of both
the query and reference trajectories is relaxed. The final algorithm used for evaluation is
presented in Algorithm 7.
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Algorithm 7 DTW with open end setting

1: Input: Two sequences A= (a1, a2, . . . , an) and B = (b1, b2, . . . , bm)
2: Initialize cost matrix D ∈ R(n+1)×(m+1) with D(0,0) = 0 and D(i, 0) = D(0, j) = ∞ for

i = 1..n, j = 1..m
3: for i = 1,2, · · · , n do
4: for j = 1,2, · · · , m do
5: cost ← d(ai , b j)
6: D(i, j)← cost +min{D(i − 1, j), D(i, j − 1), D(i − 1, j − 1)}
7: end for
8: end for
9: return D(−1, argmin

k
D(−1, k))

5.2 Results

To evaluate the possibility of using GAIL and its variants to train policies for correcting patho-
logical gaits, experiments are conducted in both single environment and multiple environ-
ments. Section 5.2.1 presents the results obtained in a single environment, while section
5.2.2 further explores performance across multiple environments, including zero-shot gener-
alization scenarios.

5.2.1 Single environment

This section presents the evaluation results for each individual environment. The aim is to
demonstrate the necessity of integrating additional techniques like gradient penalty or spec-
tral normalization into the discriminator. To assess the feasibility of the IRL control method,
we simulate scenarios where an exoskeleton is deployed on a patient model exhibiting patho-
logical gait caused by three distinct impairments: short hamstring, hamstring weakness and
iliopsoas weakness. Each condition represents a medically recognized musculoskeletal disor-
der [Aal+25; Att+19; Bel+24; Aka+16; The+05]. The specific model parameters used to
simulate each impairment are detailed in Table 5.1.

Environment Model setting
Short hamstring 80% original optimal CE length of hamstring MTU

Hamstring weakness 20% original max. isometric force of hamstring MTU
Iliopsoas weakness 50% original max. isometric force of iliopsoas MTU

Table 5.1: Impairments in environments used for training.

All three environments share the same fundamental configuration. The model used in
this thesis is a bipedal musculoskeletal humanoid model, implemented in SCONE. SCONE
is a free and open source software used specifically for predictive simulation in the area of
human and animal motion [Gei19]. To leverage the accuracy of OpenSim [Del+07] and
the computational efficiency of Mujoco [TET12], Hyfydy is developed as a plugin for the
SCONE [Gei21]. All the experiments conducted in this thesis are run with the Hyfydy license
under SCONE. The musculoskeletal model is based on the H0914 model provided in SCONE.
In addition to the MTUs, four joint actuators are applied directly to the hips and knees in
the sagittal plane, simulating functionality of the lower limb exoskeleton. The simulated



5.2 Results 31

exoskeleton assists movement by the manipulation on hips and knees. All the four motors are
assumed to share the same rotational axis as their corresponding joints. The torque output
of each motor ranges from –50 to 50 N•m and is bounded using Tanh function to ensure
smooth saturation. The objective of the simulation is to correct pathological gait patterns
and assist the patient in walking with a gait resembling that of a healthy individual. The
biomechanical model includes 9 DoF and 14 MTUs, which function as muscle actuators. A
reference dataset is obtained from a healthy model walking forward at an average speed of
1.2 m/s, controlled solely by reflex-based controller with no external torque applied at the
joints. As an instance, we focus on the environment simulating a short hamstring condition.
To simulate this pathological gait, the optimal length of the hamstring MTU in the patient
model is reduced by 20%, mimicking a common medical condition. An illustration comparing
the healthy and pathological gait patterns is shown in Figure 5.1.

Figure 5.1: Expert gait (left) and pathological gait (right) with short hamstring whose MTU has 20% shorter optimal
length. Both models are controlled solely by the low-level controller

Based on the patient model which is controlled exclusively by the low-level reflex con-
troller, the policy of the exoskeleton is trained through IRL. Both the actor and critic net-
works are comprised of two hidden layers, with 512 units each. The actor network receives
an 18-dimensional observation vector, which includes joint angles and joint velocities. The
outputs is a 4-dimensional action corresponding to the external torques applied to the joints.
The discriminator network is composed of two hidden layers, with 64 units each. For the
experiments with gradient penalty, the coefficient is selected as wgp = 1 and κ= 0.

The agent is trained for 1.8 × 107 steps (approximately 5 hours). Figure 5.3 presents a
comparison of joint trajectories from the expert, the impaired gait and the corrected gait. It
can be seen that the corrected gait resembles the healthy expert gait more closely in terms
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of both alignment and magnitude. In addition, a series of screenshots from video comparing
the gaits are shown in Figure 5.2. In these visuals, both the original pathological gait and the
corrected gait are overlaid on the expert gait. The animation video has been processed using
the DTW algorithm, so the alignments are plotted based on the matched pairs identified by
DTW. These time sequenced screenshots demonstrate that the corrected gait achieves a better
alignment with the expert gait compared to the original pathological gait.

t = 0.0 s t = 1.5 s t = 3.0 s t = 4.5 s

t = 6.0 s t = 7.5 s t = 9.0 s t = 10.5 s

t = 12.0 s t = 13.5 s t = 15.0 s t = 16.5 s

Figure 5.2: Overlaid stick figures comparing gaits at different time steps along the trajectory: healthy gait (blue),
pathological gait (purple) and corrected gait (yellow). The left panel compares pathological vs. healthy, the right
panel compares corrected vs. healthy. The gait has the impairment with shortened hamstring. Both are aligned
using DTW.

To provide a detailed presentation of the DTW matching results, Figure 5.4 demonstrates
an example of the alignment between the observation trajectories of the expert and those of
the patient after being corrected by the policy. Table 5.2 compares the differences between
pathological vs. healthy and corrected vs. healthy gait with all kinds of policy learning
networks. The losses are all computed by summing all feature terms, averaged over 10
rollouts and all timesteps. Joint trajectories consist of values of each joint in [rad]. These
quantitative results confirm that the corrected gait more closely approximates the expert
trajectories compared to the pathological gait. The comparative loss curves of using different
techniques are shown in Figure 5.5. The results indicate that the policy trained with gradient
penalty achieves the steepest decrease in loss and exhibits greater stability and DTW loss is a
better metric for the training evaluation.

Similarly, the same evaluations are conducted on medical cases where the model has
weaker hamstring or iliopsoas muscles. The corresponding trajectory plots, loss curves and
loss tables are presented in the Appendix.

5.2.2 Multiple environments

After section 5.2.1 having proved the feasibility of using IRL method to train the policy, this
section first presents the evaluation results of the trained unified policy on the same envi-
ronments used during training. To further assess the generalization capability of the policy,
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Algorithm Gait MSE MAE DTW

Vanilla
Pathological 0.967 ± 0.301 1.975 ± 0.339 0.530 ± 0.015
Corrected 0.902 ± 0.171 1.708 ± 0.233 0.190 ± 0.037

With spectral norm
Pathological 0.950 ± 0.287 1.953 ± 0.328 0.529 ± 0.019
Corrected 1.105 ± 0.048 1.961 ± 0.049 0.413 ± 0.054

With gradient penalty
Pathological 0.909 ± 0.300 1.904 ± 0.344 0.530 ± 0.015
Corrected 0.995 ± 0.137 1.890 ± 0.163 0.173 ± 0.130

With spectral norm and
gradient penalty

Pathological 0.912 ± 0.291 1.907 ± 0.335 0.529 ± 0.019
Corrected 0.941 ± 0.040 1.793 ± 0.050 0.139 ± 0.014

Table 5.2: Quantified comparisons of different training techniques on the corrected gait at training step 1.8×107.
The gait has the impairment with shortened hamstring.

zero-shot experiments are conducted to evaluate its performance in unseen environments. As
there is little difference between the method of using purely gradient penalty and using both
the gradient penalty and spectral norm, following framework only uses the gradient penalty
technique for the ease of computation.

VDB

The first approach used to train a unified policy is to integrate the VDB technique. The idea
of VDB is training the discriminator on latent variables obtained from an encoder and using
the resulting reward to guide policy learning. Using the same models and three environ-
ments described in Table 5.1, the mutual information constraint is set to Ic = 0.1 and the
KL-divergence term is symmetrically computed from both agent and expert data. The latent
space of the encoder is 8-dimensional. The input and output dimensions of the policy remain
consistent with those used in the single environment experiments. As demonstrated in sec-
tion 5.2.1 that the inclusion of a gradient penalty is critical during training, it is incorporated
into the discriminator’s loss function with a weighting factor wgp = 1 and κ= 0. Additionally,
to address redundant walking behavior observed when applying the original action output
at each time step, action chunking and ensemble techniques are introduced. Specifically, the
policy outputs actions for the next four time steps at each time step, serving as a filter to
improve motion smoothness.

Similar to Section 5.2.1, Figure 5.6 shows the trajectories of the corrected gait in an envi-
ronment with shorter hamstring as an example, while Figure 5.7 presents the corresponding
DTW alignment plot between the agent’s and expert’s trajectories. To provide an overview,
Figure 5.8 shows the DTW loss curves across of all the three environments and Table 5.3
quantifies these losses. The results demonstrate the success of employing VDB techniques to
train a unified policy in multiple environments. All the other materials are provided in the
Appendix.

LSTM

The second method employed to train a unified policy is to integrate a LSTM module before
feeding the observation data into the networks. The LSTM used in the experiments has a
latent space of 128 dimensions. Unlike the VDB approach, where latent variables are used
exclusively for training the discriminator, all observations are first filtered through the LSTM
before being passed to both the discriminator and the policy network. Accordingly, the gra-
dient penalty term is computed on the LSTM filtered variables rather than on the original
observations. The gradient penalty coefficient is set to wgp = 1 and κ = 0 as well. Action
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Environment Gait MSE MAE DTW

Short hamstring
Pathological 0.935 ± 0.295 1.934 ± 0.338 0.530 ± 0.015
Corrected 0.983 ± 0.031 2.046 ± 0.032 0.503 ± 0.016

Hamstring weakness
Pathological 0.889 ± 0.281 1.706 ± 0.321 0.358 ± 0.075
Corrected 1.014 ± 0.063 1.856 ± 0.063 0.267 ± 0.025

Iliopsoas weakness
Pathological 0.897 ± 0.203 1.718 ± 0.224 0.352 ± 0.021
Corrected 0.997 ± 0.053 1.840 ± 0.061 0.171 ± 0.048

Table 5.3: Comparisons of losses across different environments for the agent trained by VAIL. The results are
collected after 2.0× 107 training steps. The VAIL framework includes a gradient penalty.

chunking and ensemble techniques are also introduced. Figure 5.9 shows the trajectories of
the corrected gait in an environment with shorter hamstring as an example. In summary,
Figure 5.10 presents the DTW loss curves across all three environments and Table 5.4 pro-
vides a quantitative comparison of the losses. The results suggest that incorporating LSTM
in the training procedure does not improve the performance of the unified policy across the
different environments.

Environment Gait MSE MAE DTW

Short hamstring
Pathological 0.957 ± 0.284 1.958 ± 0.327 0.530 ± 0.016
Corrected 0.580 ± 0.284 1.485 ± 0.297 0.533 ± 0.057

Hamstring weakness
Pathological 0.867 ± 0.290 1.674 ± 0.339 0.359 ± 0.082
Corrected 0.925 ± 0.436 1.776 ± 0.403 0.516 ± 0.060

Iliopsoas weakness
Pathological 0.897 ± 0.203 1.718 ± 0.224 0.352 ± 0.021
Corrected 1.080 ± 0.271 1.956 ± 0.242 0.629 ± 0.103

Table 5.4: Comparisons of losses across different environments for the agent trained by GAIL combined with
LSTM. The results are collected after 2.0× 107 training steps. The framework includes a gradient penalty.

Zero-shot

In addition to evaluations conducted on the training environments, assessments are also
performed on previously unseen environments, categorized as zero-shot experiments. Four
new impairments, each corresponding to a distinct environment, are introduced and detailed
in Table 5.5.

Environment Model setting
Short hamstring 0.9 90% original optimal CE length of hamstring MTU

Hamstring weakness 0.4 40% original max. isometric force of hamstring MTU
Hamstring weakness 0.8 and 80% original max. isometric force of hamstring MTU and

Short hamstring 0.9 90% original optimal CE length of hamstring MTU
Short Iliopsoas 0.7 70% original optimal CE length of hamstring MTU

Table 5.5: Impairments in zero-shot environments used for training.

The four environments are categorized into three types. Both shortham0.9 and hamwk0.4
represent the same impairments as those used during training but with different severity lev-
els. The environment hamwk0.8&shortham0.9 combines impairments of shorter hamstring
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and weaker hamstring though with a less severe condition than those in training. While
this combined impairment may be less representative from a biomechanical perspective, it
remains valuable from an engineering standpoint, as it combines features of both original
impairments. The iliowk0.7 environment introduces a completely novel and unseen im-
pairment. Figure 5.11 presents the DTW loss curves for all four environments, none of which
is included in the training set, and demonstrates that the policy trained with the help of VDB
maintains a good performance on these unseen cases. These findings are further supported
by the data summarized in Table 5.6. The initial low value is due to the model consistently
falling within the first few time steps when the policy has not been sufficiently trained, which
undermines the reliability of the DTW metric. Additionally, the results for the environment
hamwk0.8&shortham0.9 are not representative, as the policy fails to support the model in
walking forward for a sustained duration.

Environment Gait MSE MAE DTW

Short hamstring 0.9
Pathological 0.967 ± 0.104 1.917 ± 0.139 0.258 ± 0.004
Corrected 1.004 ± 0.056 1.887 ± 0.054 0.239 ± 0.037

Hamstring weakness 0.4
Pathological 1.083 ± 0.045 1.942 ± 0.054 0.334 ± 0.005
Corrected 0.971 ± 0.186 1.841 ± 0.237 0.324 ± 0.047

Hamstring weakness 0.8 and
Short hamstring 0.9

Pathological 0.230 ± 0.126 0.854 ± 0.315 0.273 ± 0.082
Corrected 0.490 ± 0.193 1.321 ± 0.265 0.503 ± 0.114

Short iliopsoas 0.7
Pathological 0.981 ± 0.044 1.860 ± 0.065 0.252 ± 0.002
Corrected 0.914 ± 0.070 1.808 ± 0.085 0.241 ± 0.024

Table 5.6: Comparisons of losses across zero-shot environments for the agent trained by VAIL. The results are
collected after 2.0× 107 training steps. The VAIL framework includes a gradient penalty.
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Figure 5.3: Trajectories of various DoF at training step 1.8× 107: healthy gait (blue), pathological gait (orange)
and corrected gait (green). The model has the impairment with shortened hamstring.
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Figure 5.4: DTW matching results at training step 1.8 × 107: healthy gait (blue), corrected gait (black) and
matching pairs (grey). The model has a shortened hamstring impairment. Healthy gait trajectories are shifted by
two units for clarity.
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Figure 5.5: Training loss curves of the model with shortened hamstring impairment.
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Figure 5.6: Trajectories of various DoF at training step 2.0× 107: healthy gait (blue), pathological gait (orange)
and corrected gait (green). The model has the impairment with shortened hamstring and is trained by VAIL with
gradient penalty.
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Figure 5.7: DTW matching results at training step 2.0 × 107: healthy gait (blue), corrected gait (black) and
matching pairs (grey). The model has a shortened hamstring impairment and is trained by VAIL with gradient
penalty. Healthy gait trajectories are shifted by two units for clarity.
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Figure 5.8: Training loss curves of the model with different impairments. The model is trained by VAIL with gradient
penalty.
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Figure 5.9: Trajectories of various DoF at training step 2.0×107: healthy gait (blue), pathological gait (orange) and
corrected gait (green). The model has the impairment with shortened hamstring and is trained by GAIL combined
with LSTM and gradient penalty.
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Figure 5.10: Training loss curves of the model with different impairments. The model is trained by GAIL combined
with LSTM and gradient penalty.
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Figure 5.11: Training loss curves of the model with zero-shot impairments. The model is trained by VAIL. Note:
The low values at the beginning of training are due to the randomly initialized policy failing quickly.





Chapter 6

Conclusion

This thesis demonstrates the feasibility of using IRL to train a high-level control policy for
a lower limb exoskeleton. The goal of this approach is to assist patients with various lower
limb impairments in walking as closely as possible to healthy individuals. To make the simu-
lation more realistic, a musculoskeletal humanoid model is first constructed. Unlike models
that rely on joint mounted motors, this model is actuated by multiple MTUs, which mimic
human muscle function. The overall control architecture consists of two levels: The low-level
controller simulates reflex driven muscle activation, representing the spinal level control of
movement. Building upon this reflex controlled model, the high-level controller is developed
to govern the exoskeleton at four key joints. This layered control structure enables coordi-
nated and adaptive assistance during locomotion.

The high-level control strategy is based on IRL, which eliminates the effort for manual
reward engineering that typically required in RL. Unlike conventional IRL methods that try
to recover the underlying reward function analytically, GAIL seeks to directly learn the expert
policy from demonstration data. In this framework, a discriminator is trained to distinguish
between the observations from the agent and those from the expert. This setup shares con-
ceptual similarities with GAN and the output of the discriminator is used as a reward signal
for training the policy network.

The experimental evaluation consists of two parts. First, the proposed method is tested
independently across three different environments. Subsequently, a unified policy is trained
and evaluated across all environments to assess its generalizability. To validate the scalability
and robustness of the unified policy, it is tested on four more previously unseen environ-
ments. The evaluation metric is based on a modified DTW loss, accounting for variations in
trajectory frequency and phase. This adjustment ensures a more reliable comparison between
generated and reference trajectories. The consistent decrease in DTW loss across nearly all
test cases supports the motivation for using IRL to train high-level control strategies for ex-
oskeletons.

The results in this thesis confirm the feasibility of this method in addressing a range of
gait impairments. However, the experimental setup involving multiple environments could
benefit from further analysis. In the current implementation, hyperparameters for both VAIL
and the LSTM modules were selected somewhat heuristically. The experiments in Chapter
5 demonstrate feasibility using these fixed hyperparameters, but do not explore how perfor-
mance may vary with different configurations.

Future work may explore the use of more sample-efficient IRL algorithms, such as Least-
Squares Inverse Q-Learning [Al-+23], to improve learning efficiency. To better simulate
real-world applications, future studies could investigate scenarios involving kinematic mis-
alignments between exoskeleton actuators and human joints. Moreover, learning the gain
and offset parameters of reflex controllers through alternative methods such as RL could
offer a more realistic representation of practical deployment, where control strategies may
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need to be individually adapted for different users.
Additionally, to better simulate real-world human motion, it would be valuable to study

the current model in a 3-dimensional setup. This includes incorporating additional degrees
of freedom, such as hip adduction and abduction, as well as rotational movements at the
hips, knees and ankles in the frontal plane. Expanding the model in this way would enable
a more comprehensive representation of human biomechanics and allow the control strategy
to address a wider range of motion patterns and gait abnormalities.



Appendix A

Appendix 1

A.1 Single environment: Weaker hamstring

Algorithm Gait MSE MAE DTW

Vanilla
Pathological 0.861 ± 0.301 1.669 ± 0.348 0.362 ± 0.082
Corrected 0.885 ± 0.049 1.763 ± 0.042 0.288 ± 0.051

With spectral norm
Pathological 0.898 ± 0.271 1.707 ± 0.320 0.360 ± 0.087
Corrected 0.857 ± 0.189 1.704 ± 0.205 0.300 ± 0.096

With gradient penalty
Pathological 0.874 ± 0.294 1.685 ± 0.345 0.348 ± 0.072
Corrected 0.862 ± 0.052 1.714 ± 0.049 0.213 ± 0.092

With spectral norm and
gradient penalty

Pathological 0.853 ± 0.300 1.660 ± 0.349 0.357 ± 0.079
Corrected 0.851 ± 0.055 1.702 ± 0.065 0.215 ± 0.083

Table A.1: Quantified comparisons of different training techniques on the corrected gait at training step 1.8×107.
The gait has the impairment with weakened hamstring.
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t = 0.0 s t = 1.5 s t = 3.0 s t = 4.5 s

t = 6.0 s t = 7.5 s t = 9.0 s t = 10.5 s

t = 12.0 s t = 13.5 s t = 15.0 s t = 16.5 s

Figure A.1: Overlaid stick figures comparing gaits at different time steps along the trajectory: healthy gait (blue),
pathological gait (purple) and corrected gait (yellow). The left panel compares pathological vs. healthy, the right
panel compares corrected vs. healthy. The gait has the impairment with weakened hamstring. Both are aligned
using DTW.
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Figure A.2: Trajectories of various DoF at training step 1.8× 107: healthy gait (blue), pathological gait (orange)
and corrected gait (green). The model has the impairment with weakened hamstring.
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Figure A.3: DTW matching results at training step 1.8 × 107: healthy gait (blue), corrected gait (black) and
matching pairs (grey). The model has a weakened hamstring impairment. Healthy gait trajectories are shifted by
two units for clarity.
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Figure A.4: Training loss curves of the model with weakened hamstring impairment.
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A.2 Single environment: Weaker iliopsoas

Algorithm Gait MSE MAE DTW

Vanilla
Pathological 0.897 ± 0.203 1.718 ± 0.224 0.352 ± 0.021
Corrected 1.019 ± 0.116 1.915 ± 0.154 0.248 ± 0.126

With spectral norm
Pathological 0.897 ± 0.203 1.718 ± 0.224 0.352 ± 0.021
Corrected 0.891 ± 0.047 1.776 ± 0.057 0.297 ± 0.062

With gradient penalty
Pathological 0.897 ± 0.203 1.718 ± 0.224 0.352 ± 0.021
Corrected 0.840 ± 0.348 1.661 ± 0.316 0.356 ± 0.253

With spectral norm and
gradient penalty

Pathological 0.897 ± 0.203 1.718 ± 0.224 0.352 ± 0.021
Corrected 0.844 ± 0.146 1.710 ± 0.142 0.434 ± 0.246

Table A.2: Quantified comparisons of different training techniques on the corrected gait at training step 1.8×107.
The gait has the impairment with weakened iliopsoas.

t = 0.0 s t = 1.5 s t = 3.0 s t = 4.5 s

t = 6.0 s t = 7.5 s t = 9.0 s t = 10.5 s

t = 12.0 s t = 13.5 s t = 15.0 s t = 16.5 s

Figure A.5: Overlaid stick figures comparing gaits at different time steps along the trajectory: healthy gait (blue),
pathological gait (purple) and corrected gait (yellow). The left panel compares pathological vs. healthy, the right
panel compares corrected vs. healthy. The gait has the impairment with weakened iliopsoas. Both are aligned
using DTW.
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Figure A.6: Trajectories of various DoF at training step 1.8× 107: healthy gait (blue), pathological gait (orange)
and corrected gait (green). The model has the impairment with weakened iliopsoas.
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Figure A.7: DTW matching results at training step 1.8 × 107: healthy gait (blue), corrected gait (black) and
matching pairs (grey). The model has a weakened iliopsoas impairment. Healthy gait trajectories are shifted by
two units for clarity.
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Figure A.8: Training loss curves of the model with weakened iliopsoas impairment.
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Figure A.9: Trajectories of various DoF at training step 2.0× 107: healthy gait (blue), pathological gait (orange)
and corrected gait (green). The model has the impairment with weakened hamstring and is trained by VAIL with
gradient penalty.



58 A Appendix 1

0 250 500 750 1000 1250 1500 1750 2000

0.0

0.5

1.0

1.5

Pe
lv

is 
Ti

lt 
(ra

d)

0 250 500 750 1000 1250 1500 1750 2000

1.0

1.5

2.0

2.5

3.0

Pe
lv

is 
He

ig
ht

 (m
)

0 250 500 750 1000 1250 1500 1750 2000

0

1

2

Ri
gh

t H
ip

 (r
ad

)

0 250 500 750 1000 1250 1500 1750 2000
1

0

1

2

Ri
gh

t K
ne

e 
(ra

d)

0 250 500 750 1000 1250 1500 1750 2000

0

1

2

Ri
gh

t A
nk

le
 (r

ad
)

0 250 500 750 1000 1250 1500 1750 2000

0

1

2

Le
ft 

Hi
p 

(ra
d)

0 250 500 750 1000 1250 1500 1750 2000

1

0

1

2

Le
ft 

Kn
ee

 (r
ad

)

0 250 500 750 1000 1250 1500 1750 2000
Time Step (environment)

0

1

2

Le
ft 

An
kl

e 
(ra

d)

2.0

1.5

1.0

0.5

1.0

0.5

0.0

0.5

1.0

2

1

0

3

2

1

0

2

1

0

2

1

0

3

2

1

0

2

1

0

policy healthy

Figure A.10: DTW matching results at training step 2.0 × 107: healthy gait (blue), corrected gait (black) and
matching pairs (grey). The model has a weakened hamstring impairment and is trained by VAIL with gradient
penalty. Healthy gait trajectories are shifted by two units for clarity.
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A.4 Multiple environments with VDB: Weaker iliopsoas
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Figure A.11: Trajectories of various DoF at training step 2.0× 107: healthy gait (blue), pathological gait (orange)
and corrected gait (green). The model has the impairment with weakened iliopsoas and is trained by VAIL with
gradient penalty.
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Figure A.12: DTW matching results at training step 2.0 × 107: healthy gait (blue), corrected gait (black) and
matching pairs (grey). The model has a weakened iliopsoas impairment and is trained by VAIL with gradient
penalty. Healthy gait trajectories are shifted by two units for clarity.
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Figure A.13: Trajectories of various DoF at training step 2.0× 107: healthy gait (blue), pathological gait (orange)
and corrected gait (green). The model has the impairment with weakened hamstring and is trained by GAIL
combined with LSTM and gradient penalty.
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Figure A.14: Trajectories of various DoF at training step 2.0× 107: healthy gait (blue), pathological gait (orange)
and corrected gait (green). The model has the impairment with weakened iliopsoas and is trained by GAIL com-
bined with LSTM and gradient penalty.
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