
Graph Neural Networks for
Model-Based Reinforcement
Learning
Graph Neural Networks für Model-Based Reinforcement Learning
Bachelor thesis by Marius Zöller
Date of submission: February 25, 2021

1. Review: M.Sc. Michael Lutter
2. Review: Prof. Dr. Jan Peters
Darmstadt

Erklärung zur Abschlussarbeit
gemäß §22 Abs. 7 und §23 Abs. 7 APB der TU Darmstadt

Hiermit versichere ich, Marius Zöller, die vorliegende Bachelorarbeit ohne Hilfe Dritter
und nur mit den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen,
die Quellen entnommen wurden, sind als solche kenntlich gemacht worden. Diese Arbeit
hat in gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Mir ist bekannt, dass im Fall eines Plagiats (§38 Abs. 2 APB) ein Täuschungsversuch
vorliegt, der dazu führt, dass die Arbeit mit 5,0 bewertet und damit ein Prüfungsversuch
verbraucht wird. Abschlussarbeiten dürfen nur einmal wiederholt werden.

Bei der abgegebenen Thesis stimmen die schriftliche und die zur Archivierung eingereichte
elektronische Fassung gemäß §23 Abs. 7 APB überein.

Bei einer Thesis des Fachbereichs Architektur entspricht die eingereichte elektronische
Fassung dem vorgestellten Modell und den vorgelegten Plänen.

Darmstadt, February 25, 2021
Marius Zöller

Abstract

Graph Neural Networks (GNNs) are neural networks with a promising architecture that
enables them to operate on graph structured data. This structure can represent the
decomposition of physical scenes into entities and their relationships. This work examines
the suitability of this architecture to learn physical systems and function as a simulator.
To this end experiments are conducted that examine the generalisation capability and
physical understanding of GNNs. The inner workings of the model are explored via a
system identification approach in a partially supervised scenario. The used GNN models
were able to generalise well to different system sizes and performed on par or outperformed
the chosen baselines.

Zusammenfassung

Graph Neural Networks (GNNs) sind neuronale Netzwerke mit einer vielversprechen-
den Struktur, die es ihnen erlaubt auf Daten mit einer Graphstruktur zu arbeiten. Diese
Struktur kann die Aufteilung physikalischer Szenen in einzelne Einheiten und ihre Verbin-
dungen repräsentieren. Die vorliegende Arbeit untersucht die Eignung dieser Architekur
für das Lernen physikalischer Systeme um als Simulator dieser zu agieren. Dafür werden
Experimente durchgeführt, die die Fähigkeit zur Generalisierung und dem Verstehen von
physikalischen Gegebenheiten von GNNs untersuchen. Die Funktionsweise der Model-
le wird untersucht indem in einem teilüberwachten Szenario das betreffende System
identifiziert und analysiert wird. Die benutzten GNN Modelle haben starke Generalisie-
rungsfähigkeiten in Bezug auf verschiedene Größen von System gezeigt und haben so gut
wie die Vergleichsmodelle oder bessere Ergebnisse bewiesen.

Contents

1. Introduction 2

2. Foundations 4
2.1. Nomenclature . 4
2.2. History . 5
2.3. Variants of aggregation functions . 8
2.4. Alternative interpretations of graph networks 9
2.5. Implementation . 10
2.6. System identification . 12

3. Experiments 13
3.1. Data set generation . 13
3.2. Generalisation to different chain lengths 15
3.3. Generalisation to different systems . 15
3.4. Latent static variables . 16
3.5. Parameter learning . 16

4. Results 17
4.1. Generalisation to different chain lengths results 17
4.2. Generalisation to different systems results 19
4.3. Latent static variables results . 20
4.4. Parameter learning results . 20

5. Discussion 29

6. Outlook 31

A. Details of model architecture 37
A.1. Graph Neural Network . 37

A.2. Symplectic Recurrent Neural Networks . 38
A.3. Multilayer Perceptron baseline . 38

B. Details of the data generation 39
B.1. Details for experiment 3.2 . 39
B.2. Details for experiment 3.3 . 40
B.3. Details for results 4.4 . 40

Figures and Tables

List of Figures

2.1. A graph and its corresponding adjacency matrix. 5

3.1. Visualisation of a 6 link chain system. 13

3.2. Structure of the adjacency matrix of a chain system. 14

4.1. Results of experiment 3.2. 18

4.2. Learning curves of experiment 3.2. 19

4.3. Results of experiment 3.3. 21

4.4. Learning curves of experiment 3.3. 22

4.5. Results of experiment 3.4. 23

4.6. Learning curves of experiment 3.4. 24

4.7. Results of experiment 3.5. 25

4.8. Histogram of learned parameters for GNN. 26

4.9. Histogram of learned parameters for SRNN and MLP. 27

4.10.Comparison of learned and ground truth parameters. 28

Abbreviations, Symbols and Operators

List of Abbreviations

Notation Description

CNN Convolutional Neural Network

GNN Graph Neural Network

GRU Gated Recurrent Unit

MLP Multilayer Perceptron

SRNN Symplectic Recurrent Neural Network

List of Symbols

Notation Description

eij vector of edge attributes of the edge going from vertex i to vertex j.

ei∗ Set of outgoing edges from vertex i

e∗i Set of incoming edges to vertex i

E set of all edges

g vector of global attributes

Ni set of neighbouring vertices of vertex i

θ vector of parameters of a neural network

vi vector of vertex attributes of vertex i

V set of all vertices

List of Operators

Notation Description Operator

|| Vector concatenation (•) || (•)

1

1. Introduction

Autonomous robots are transitioning from being confined to factories to supporting hu-
mans in their everyday life. Simple service robots such as Roombas, autonomous robotic
vacuum cleaners, have been used in households for more than a decade and have been
well accepted [1]. Robots that perform more challenging tasks such as object manipulation
via grasping have so far not arrived in the domestic domain due to the complexity of those
tasks [2]. Search and rescue environments have been another area where there is a lot of
research interest [3].

What all those scenarios have in common is that the robot has to deal with different
environments and must be able to accomplish its task. This requires the robotic system to
learn strategies that it can employ regardless of the environment. Reinforcement Learning
is such a technique that allows the learning of general strategies, so called policies, that
react to different environments. Learning a policy that can perform well in a range of envi-
ronments is a challenging task with a high sample complexity, i.e. a huge amount of data is
needed for the training process [4]. Generating this data from physical robots is often pro-
hibitively expensive time wise, while also risking damage to the robot and its environment.

Virtual physical environments, so called simulators, speed up the training process and
prevent damage to equipment. This allows reinforcement learning algorithms to be fea-
sible. Furthermore simulators can also provide additional sensory information that the
physical system might not yield, as well as gradient information for a more efficient policy
search. Since the reinforcement learning model should still be applied in the real world,
the simulator itself needs to portray the real world as precisely as possible. Errors in the
simulation can be abused by the policy to achieve the goal in a way that is not possible in
the reality and may harm the robot.

2

Instead of using traditional physics based simulators such as Mujuco [5] the usability of
neural network based simulators which learn from data is examined in this work. The
focus is put on how well the simulator learns the physics that govern the system instead
of interpolating between seen data. To bias the learning into that direction specific archi-
tecture choices are made. Physical scenes can often be interpreted as a group of entities
that interact with each other. The entities can arise either naturally as point masses in
simple simulations or as components of robots or as the result of discretisation schemes
where bodies are divided into virtual parts. Those entities and their interactions can be
well translated into a graph and as such processed by a GNN [6].

To provide background information on GNNs chapter 2 provides information about the
history and workings of this archetype. Different interpretations are highlighted and the
implementation that is used in this work is explained. In chapter 3 the experimental
setup is presented that is meant to examine the capabilities of GNNs. The results of those
experiments and the insights gained from them are discussed in chapter 4. In chapter 5
the understanding gained from the examination of GNNs is summed up, as well as some
problems that exist. An outlook on further research topics in this area and possible further
steps is provided in chapter 6.

3

2. Foundations

In this work GNNs will be used as architecture for the models. This describes a class
of machine learning algorithms that take graph structured data as input and compute
arbitrary, task dependent outputs. The architecture leverages the fact that each vertex
should be treated equally which is helpful for generalisation as well as sparseness of
parameters. The following chapter gives an overview over the history of GNNs and the
inner workings of the archetype.

2.1. Nomenclature

First an appropriate nomenclature needs to be established. Graphs in this context consist
of attributed vertices vi and attributed edges eij connecting them. Input in this form will
be referred to as graph structured data. The vertices represent entities and the edges
represent the relationships between those entities. In addition a graph can have a global
state g that is also taken as input. The connectivity structure of the graph, i.e. which
vertices are connected by edges, is given as an adjacency matrix A. In this matrix zeros
indicate the absence and ones indicate the presence of an edge. If the edge eij is present,
the matrix element aij is one. An example can be seen in Fig. 2.1. The example graph
is directed and contains a self-loop in e22. Outgoing edges of vi are written as e∗i and
incoming edges as ei∗. The neighbourhood Ni of a vertex vi is defined here as the vertices
to which vi is directly connected by an edge, i.e. the one-hop neighbourhood. The set of
all vertices is referred to as V and the set of all edges as E. The combination of those sets
characterise complete graph as G = (g, V , E). The dimensionality of the edges, vertices
and the global state vectors is task and architecture dependent and components can be
zero dimensional if there is no data available in the data set.

4

v1

v2 v3

v4

e31

e13

e14 e41

e12

e21

e23
e22

(a) A directed graph with 4 vertices.

A =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 1 1

1 1 1 0

1 0 0 0

1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
(b) The corresponding adjacency matrix A.

Figure 2.1.: Example of a directed graph and its adjacency matrix.

The task-dependent outputs can be divided into the classical machine learning classes of
regression and classification, depending on whether the labels that should be predicted
are real numbers or belong to a fixed set of integers. The tasks can be further classified
based on the level where the predictions are made in the graph. This can be on the vertex,
edge or global level.

2.2. History

The first description of this archetype as a way to do machine learning on graph structured
data was in Scarselli et al., 2009 [7]. It focuses on node-level tasks. This work defines
GNNs as a recurrent scheme. It utilises a transition function vi = f (Ni, ei∗; θ) that is
used until convergence. Then a prediction is made by an output function oi = g (vi).
The transition function f is required to be a contraction map which needs to satisfy the
corresponding condition

|f(vî)− f(vi)| < µ|vî − vi| ∃µ with 0 < µ < 1 ∀vî,vi ,

where vî is the current approximation of the solution and vi the true value. A repeated
application of the transition function causes the result to converge to the solution due to
the steadily decreasing distance to the solution.

5

This model deals with the varying number of neighbours and corresponding incoming
edges by decomposing the transition function

f (Ni, ei∗;θ) =
∑︂

vx∈Ni

h(vx, ex∗;θ)

into a sum of functions on neighbour-edge pairs. This approach is later called an aggrega-
tion function. Training is done as usual for machine learning applications by defining an
objective function, computing gradients w.r.t the weights θ and then performing a variant
of gradient descent.

The restriction of the transition function to a contraction map limits the expressivity
of the network. The transition function needs to be either designed to respect this re-
striction by choosing appropriate activation functions that limit the range of results or
adding a penalty term to the objective function. In addition long range dependencies are
difficult to model since each propagation step only causes an exchange of information
with the immediate neighbourhood of each vertex. After n steps each vertex has received
information from its n-hop neighbourhood. Due to the contraction map property the in-
formation content decays exponentially, which leads to vertices receiving less information
from vertices the further they are away from each other. This problem can be alleviated
by using gated graph neural networks that employ Gated Recurrent Units (GRUs) [8] for
a fixed number of iterations instead of iterating the transition function until it converges
[9]. This approach can also be used to output sequences instead of single predictions by
utilising a readout function after each recurrent step.

A different interpretation of GNNs was introduced in the physics context of dynami-
cal systems [10]. The goal here was the prediction of the evolution of states of particles.
In this context the components of a graph have the natural interpretation of particles as
vertices and pairwise particle interactions, i.e. forces, as edges. This interpretation led
to a more explicit modelling of those interactions as functions of the sender and receiver
vertices as well as the corresponding edge attributes. The interactions are afterwards used
as input for the vertex update function as preprocessed input instead of directly inputting
the edge attributes. The evolution of the states is a temporal development that is achieved
by repeatedly applying the GNN to the output of the previous step. This can be seen as
a reinterpretation of the recurrent transition where the intermediate outputs are states
on the evolution trajectory. This way, in each time step interactions travel only one hop
through the network so the length of the time step and the graph structure need to be
aligned.

6

Building on top of this a general framework was introduced in which most types of GNNs
can be formulated [11]. In this work the different levels of the graph get explicit inter-
mediate representations by adding edge, vertex and global level update functions. The
update functions are called in this order and the result from the previous function is taken
into account. The update functions all take a set of relevant edges, vertices and the global
attribute as input. For the edge function the input is just the edge itself, the corresponding
sender and receiver, and the global attribute. For the vertex function this is the vertex
itself, the set of all incoming edges and the global attribute. For the global function this
is the set of all edges, all vertices and the global attribute. To deal with the operation
on sets aggregation functions are needed that reduce the set to a single vector, so in
addition to the three update functions three aggregation functions are needed. These are
required to be commutative and associative to preserve the permutation invariance that
is inherent to sets. Element-wise sum is the most popular operator but other operators
that fulfil this requirement are also possible, such as the mean, minimum or maximum
operator. Different aggregators capture different properties of the sets which can lead to
improvements depending on the task. Further details are described in section 2.3.

The update functions are not restricted in their form and are usually parametrised by
small neural networks. The group of those six functions makes up what is called a graph
network block. The order of the update function can be changed depending on the level
on which predictions are made. This work also deals with the combination of multiple
graph network blocks. This can be done by chaining multiple blocks, i.e. using the output
of one block as the input for the next block. The interpretation of this depends on whether
the blocks share parameters. If they share parameters this can be viewed akin to recurrent
networks whereas blocks with individual parameters can be seen as multiple layers of a
neural network. The advantages and disadvantages are also similar to those analogous
types. Parameter sharing provides stronger regularisation, whereas individual parameters
increase the capacity of the model more. Individual parameters also allow for more flexi-
bility in the design of the network architecture since the blocks are not limited to have
the same input as output size. This building block can be utilised in an encoder, processor,
decoder architecture [12]. The encoder and decoder steps project the input graph in and
out of latent space, respectively. In the processor step multiple graph network blocks are
used to update the states.

7

2.3. Variants of aggregation functions

The expressive power of GNNs is limited by the equal treatment of each neighbourhood
[13]. The non-utilisation of statistics of the neighbourhoods such as the (element-wise)
minimum, maximum, or the size of the neighbourhood limits the power of the model. In-
troducing scalers based on the size of the neighbourhood and stacking multiple aggregators
preserves more information that can be used in creating more informative representations.
Instead of treating the aggregator choice as a hyper parameter, they can also be learned
[14]. Those aggregators utilise an attention mechanism [15]. For each vertex in the
neighbourhood of the considered vertex vi a pairwise attention coefficient is calculated
by using a Multilayer Perceptron (MLP). Those attention coefficients are normalised in
each neighbourhood by using a softmax function. The normalised coefficients are then
used as weights for a weighted sum aggregation of the neighbourhood.

Sets can also be dealt with in alternative ways. Different weight matrices can be used for
the update function based on the degree of the vertex on top of a sum aggregation function
[16]. This idea allows for more individual treatment of vertices if their degree is a strong
indicator for the type of vertex. The downside to this strategy is, that it does not generalise
to unseen data that contains higher vertex degrees. This strategy can be employed if
domain knowledge about the highest possible vertex degree is available. Janossy pooling
[17] is a way of constructing permutation invariant functions. For this pooling strategy
all possible permutations of the set that is to be processed are built and input into a
permutation variant function. The mean of the outputs is taken as the result. Calculating
the full set of permutations and backpropagating through this step is often prohibitive
due to the superexponential complexity of O(!n) and the size of the neighbourhood sets.
The proposed solution is taking a subset of a fixed size of the neighbourhood set instead
by random sampling or enforcing an order.

8

2.4. Alternative interpretations of graph networks

An interpretation of GNNs that is closer to traditional graph algorithms is GNNs as a form
of message passing networks [18]. This means that each node generates a specific message
for each of its neighbours that it sends to them. Those nodes in turn aggregate those
messages and update their own state. This is akin to the belief propagation algorithm for
probabilistic graphical models [19]. Graphical models represent a probability distribution
of random variables by modelling the variables as vertices and the conditional structure
as the edges. Belief propagation is used for inference in those models, more specifically
calculating the marginals in regards to the variables. This can be seen as a node level
task. Here messages are also generated based on the neighbourhood and send to them.
This process is iterated until convergence. This is similar to the original GNN [7] because
in both cases the message passing is iterated until convergence [9]. The replacement
of the convergence criterion by a fixed number of recurrent steps in the gated graph
neural network can be seen analogue to truncated belief propagation [20] where the
belief propagation is also limited to a fixed number of iterations.

GNNs can also be viewed as a generalisation of Convolutional Neural Networks (CNNs)
[21],[22],[23] to generalised neighbourhoods. CNNs are most often used for processing
2D data such as visual images. Those images have a regular grid structure due to being
made of pixels. In natural images there is a strong correlation between pixels that are
spatially close to each other which decreases the farther away the pixels are. This strong
local coherence is leveraged by using convolutions with a kernel and the fixed, square
neighbourhood of a pixel, e.g. the eight pixels directly surrounding the centre pixel for a
3x3 convolution. This convolution can be seen as a weighted sum of the neighbouring
pixels and the centre pixel. This operation is similar to a GNN that is only using node
level updates, the identity function as update function and an attention mechanism as
aggregation function. The attention mechanism would have to take the position of the
neighbours in relation to the centre pixel into account by either using attributed, directed
edges or position attributes of the pixels. The neighbourhood structure depends on the
size of the convolution kernel. For a 3x3 convolution each vertex needs to be connected to
the eight vertices surrounding it. The constant size of the neighbourhoods as well as the
ordering imposed on the neighbourhood set by the spatial interpretation allows CNNs to
have this simpler update structure.

9

2.5. Implementation

In this work a network based on graph network blocks [12] is utilised. It is shown in
algorithm 1. The graph is input in its component sets V , E and g. Additionally the
adjacency matrix A that represents the connectivity structure of the graph. The fetching
of vertices and edges that belong together is done via this adjacency matrix. Variables
utilising the hat-notation are intermediate representations or approximations to the true
value. From this general formulation different networks can be derived by omitting
components, e.g. not keeping a global state or choosing different implementations for the
encode, decode and integrator functions. For the aggregation function a sum aggregator
is chosen. The exact details can be found in appendix A.1.

Training

The networks are trained in a supervised fashion by giving the network an input state and
letting it predict the next N steps. The loss is calculated by comparing the predictions to
the ground truth via a weighted MSE in the form of

loss =

[︄
N−1∑︂
i=0

|vi − v̂i|22

]︄
(2.1)

v̂i is the vector of all states in time step i. Training is done for 100 epochs unless stated
otherwise. The training is done using mini batches of size 256. The loss is minimised
by backpropagating from there and using the gradient information for optimisation with
Adam [24]. The learning rate is initially set to η = 4× 10−3. A scheduler is employed to
reduce the learning rate dynamically based on the performance on the validation set. If
the validation error stagnates for 15 epochs the learning rate is reduced to η = 0.7η.

10

Algorithm 1 Graph Neural Network (GNN)
1: Input: node information V , edge information E, adjacency matrix A, time step ∆t
2:
3: # Encoding
4: v̂i ← encode_nodes(vi ; θe)
5: êij ← encode_edges(eij ; θv)
6: # Processing
7: for each network layers l do
8: for each edge êij ∈ E do
9: (v̂s , v̂r)← Get corresponding sender and receiver node

10: êij ← update_edge(êij , v̂s , v̂r ; θe,l)
11: end for
12: for each node vi ∈ V do
13: êi∗ ←Aggregate incoming edges of v̂i

14: v̂i ← update_node(ei∗̂ , v̂i ; θv,l)
15: end for
16: ê∗,∗ ← Aggregate all edges
17: v̂∗ ← Aggregate all nodes
18: end for
19:
20: # Decoding
21: for each node v̂i do
22: êi∗ ← Aggregate incoming edges of v̂i

23: ∆vi ← Decode(ei∗̂ , v̂i ; θd)
24: end for
25:
26: # Integration
27: v̂i ← Integrator(v̂i , ∆vi , ∆t)

11

2.6. System identification

The richness of observation data of physical systems is limited by the amount of sensors
and positioning of those sensors. Not all physical quantities can be measured at each
position due to limited spaces or other limiting conditions.
System identification describes the process of estimating latent parameters of a system
based on observations of that system [25]. This can either be done to get a more complete
description of the dynamical system or to use this information for downstream tasks that
utilise the observation data enriched with the estimated parameters. The estimation
additionally helps for generalisation to similar systems. For experiment 3.5 the second
way will be employed since the parameters of the system will be treated as unobserved
as opposed to observed in the other experiments. For this the GNN described in section
2.5 will be extended as described in algorithm 2. A vertex and an edge matrix for each
system are created and filled with parameters that need to be estimated. The information
to which system a vertex or edge belongs is given as input. Before the GNN is called
the given input data is enriched with the estimated data. The training is gradient-based
by backpropagating the supervised loss of the GNN back to the system identification
parameters.

Algorithm 2 Graph Neural Network (GNN) with system identification
1: Input: node information V , time step ∆t
2:
3: # Retrieval
4: for each node vi ∈ V do
5: v̂i,param ← Retrieved learned parameters for this vertex
6: vi ← vi||v̂i,param

7: Add vi to V
8: end for
9: for each edge êij ∈ E do

10: êij,param ← Retrieved learned parameters for this edge
11: eij ← eij ||êij,param
12: Add eij to E
13: end for
14:
15: # Call GNN algorithm with estimated input
16: v̂i ← Graph Neural Network (GNN)(V , E , A , ∆t)

12

3. Experiments

To examine the ability of GNNs to reason about physical systems and understand basic
concepts of them, the following experiments are proposed. Each experiment highlights
different aspects of GNNs properties.

3.1. Data set generation

The data set is generated by an analytic simulator of a spring-chain system that is clamped
on both ends. Each part of the chain is linked to its two neighbours via a spring. The
two links at the edges are connected with a spring to the clamped ground. Due to this
connection at the boundaries a chain of n links has n+ 1 springs between them in total.
An example of a system can be seen in Fig.3.1. The deflection is one dimensional and in
the vertical direction. This means that the chains are only affected by the spring forces and
there is no gravitational force. Dissipative forces such as friction are ignored so that the
system conserves its energy. This system can be likened to a discretised guitar string that
is vibrating. The individual links have a one dimensional position q and momentum p as

q

0

Figure 3.1.: Visualisation of a 6 link chain system. The 6 links are represented by the blue
circles and connected by springs. They are regularly spaced horizontally and
only have one degree of freedom in the vertical direction.

13

k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k1 k2 0 0 0 0

k2 0 k3 0 0 0

0 k3 0 k4 0 0

0 0 k4 0 k5 0

0 0 0 k5 0 k6

0 0 0 0 k6 k7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Figure 3.2.: The given connectivity structure with the spring constants of a 6 link chain

system. The matrix is mainly populated on the first off-diagonals due to the
connection of each vertex to its two neighbours. This connection is sym-
metric. The two elements on the main diagonal represent the connection of
the first and last link to the ground.

dynamical states and a mass m as static state. The connecting springs are characterised by
their spring constant k that describes the stiffness of the spring. The springs are assumed
to be massless. The connectivity structure of each link having two neighbours is also
given as input to the model. An example matrix showing off the symmetric connectivity
structure can be seen in Fig. 3.2. The data set by Zhengdao Chen is taken from github1 and
was used in the corresponding paper [26]. Their Symplectic Recurrent Neural Network
(SRNN) model uses a MLP to predict the Hamiltonian of the system, computes the partial
derivatives and uses those with a numerical integrator to generate the outputs. This model
is used as a baseline where appropriate. Further details can be found in appendix A.2.

Multiple scenarios are evaluated where the number of links, the initialisation of the
masses and spring constants, as well as the fraction of supervised states are varied. For
each scenario 130 different systems are examined. The systems display different initial
states in regards to position and momentum. They are sampled from a normal distribution
with a mean of µ = −0.5 and a variance of σ2 = 5. For those systems rollouts of 10000
time steps of dt = 0.001 s are generated with the simulator for a total time length of 10
seconds per rollout. They will be referred to as trajectories. The trajectories are coarsened
with a factor 10, i.e. every tenth time step is kept, so that the length of the trajectories
is reduced to 1000. The time length stays at 10 seconds since the effective time step is

1https://github.com/zhengdao-chen/SRNN.git

14

https://github.com/zhengdao-chen/SRNN.git

now dt = 0.01 s. 100 of those trajectories are used as training data whereas the other 30
trajectories are used for evaluating the generalisation ability of the model to unseen data.
For training the trajectories are further split into overlapping sequences of 10 time steps
so that (1000− 10 + 1) · 100 = 99100 sequences of 10 time steps are utilised for training.
The long trajectories are generated to evaluate generalisation to longer rollout lengths.

3.2. Generalisation to different chain lengths

For this scenario the generalisation capability of the GNN is examined. The setup of the
data is the same as in the SRNN paper [26] to guarantee a fair comparison. Two chain
systems are examined. The first system consists of a chain of 20 links with different masses
and 21 springs. The second system consists of a chain of 6 links with different masses
and 7 springs. For both systems 130 trajectories with varying initial states are generated,
100 trajectories for training and 30 for testing. The masses m and spring constants k are
sampled independently from two different normal distributions. Details for reproducibility
can be found in the appendix B.1. The masses and spring constants are treated as observed
variables and given as input to the models. The performance of the SRNN and a GNN is
compared. In addition a simple MLP is compared as baseline. One of each model is trained
on each data set belonging to a system. Both, the GNN trained on the 6 link system and
the GNN trained on the 20 link system, are evaluated on the 6 link system data and the
20 link system data.

3.3. Generalisation to different systems

For this scenario the generalisation capability to different systems of the examined models
is evaluated. To this end 130 different systems of 6 link chain systems and 130 systems
of 20 link chain systems are examined. The systems have varying masses m and varying
spring constants k. The static parameters are sampled from a Gaussian mixture model
with two components as described in the appendix B.2.
The static parameters are provided as input to the models.

15

3.4. Latent static variables

In this scenario the capability of the models to infer latent variables is examined. One
chain system with 20 links is regarded. The static parameters m and k are the same as in
experiment 3.2. The static parameters are not observed in this case and instead treated as
latent variables.

3.5. Parameter learning

In this scenario the ability of the examined models to explicitly learn the latent variables
is examined. The setup from experiment 3.3 is used with 100 different systems of 20 link
chains that each generate one trajectory. The static parameters m and k are not observed
and treated as the latent variables. The adjacency matrix is also not learned and instead
needs to be inferred from the data. For learning the parameters the system identification
approach from section 2.6 is applied by adding trainable parameters to the models. Since
the parameters of those specific 100 systems are learned the test data set features those
100 systems as well. For each system a new trajectory is generated with new initial states.
The performance of the models with the additional identifier is evaluated. In addition the
distributions of the learned parameters is compared to the true parameters.

16

4. Results

In this chapter the results from the experiments that were proposed in chapter 3 are
individually presented and discussed. For all experiments the performance of the models
as detailed in appendix A on a 1000 step trajectory is visualised and loss curves are shown.
In addition the distributions of the learned parameters are shown for experiment 3.5.

4.1. Generalisation to different chain lengths results

In Fig. 4.1 the results of the experiment can be seen and in Fig. 4.2 the corresponding
loss curves. The GNN models and the SRNN model show strong performances with near
perfect predictions of the system, whereas the MLP makes worse predictions. While the
GNN that was trained on a data set performs better on that data set, the GNNs are also
able to make solid predictions on systems with a different number of links, especially
in regards to the conservation of energy which is mostly stable in all cases. The GNN
trained on the 6 link system shows signs of a slow divergence on the 20 link system. This
generalisation is not possible for the baselines models since the inflexibility of MLPs in
regards to input size does not allow making predictions for systems of different sizes.

17

2
0
2

q x

Link 1

6
0
6

p x

0
15
30

E k
in

0
10
20

E p
ot

0 2 4 6 8 10
Time [s]

0
15
30

E t
ot

Ground truth
GNN6

GNN20
SRNN

MLP

Link 3

0 2 4 6 8 10
Time [s]

Link 5

0 2 4 6 8 10
Time [s]

Link 6

0 2 4 6 8 10
Time [s]

0

5
Sum

5
0
5

20
40

25
50

0 2 4 6 8 10
Time [s]

40

60

(a) Results on a chain system with 6 links.

4
0
4

q x

Link 1

8
0
8

p x

0
30
60

E k
in

0
25
50

E p
ot

0 2 4 6 8 10
Time [s]

0
30
60

E t
ot

Ground truth
GNN6

GNN20
SRNN

MLP

Link 7

0 2 4 6 8 10
Time [s]

Link 14

0 2 4 6 8 10
Time [s]

Link 20

0 2 4 6 8 10
Time [s]

0

50
Sum

25
0
25

100
200
300

200

400

0 2 4 6 8 10
Time [s]

250

500

(b) Results on a chain system with 20 links.

Figure 4.1.: Comparison of model performance on two chain systems for experiment
3.2. For a subset of the links the position, momentum, as well as the kinetic,
potential and total energy is shown. GNN6 refers to the GNN trained on the
6 link system and GNN20 refers to the one trained on the 20 link system.

18

20 40 60 80 100
Epochs

10 7

10 6

10 5

10 4

10 3

10 2

Tr
ai

n/
va

lid
at

io
n

lo
ss

Train
GNN SRNN MLP

10 5

10 4

10 3

10 2

10 1

100

101

Fu
ll

va
lid

at
io

n
lo

ss
Validation

GNN SRNN MLP

(a) Training on a chain system with 6 links.

20 40 60 80 100
Epochs

10 5

10 4

10 3

10 2

10 1

Tr
ai

n/
va

lid
at

io
n

lo
ss

Train
GNN SRNN MLP

10 3

10 2

10 1

100

101

Fu
ll

va
lid

at
io

n
lo

ss

Validation
GNN SRNN MLP

(b) Training on a chain system with 20 links.

Figure 4.2.: Learning curves for the models from Fig. 4.1 belonging to experiment 3.2.

4.2. Generalisation to different systems results

In Fig. 4.3 the results of the experiment can be seen and in Fig. 4.4 the corresponding
loss curves. The GNNs perform very well and achieve near perfect predictions in terms
of energy conservation and deviation from the ground truth positions. When comparing
the losses of the GNNs on this task to the losses from the previous experiment shown in
4.2 it can be seen that the models did adapt to the harder data set very well with only
small increases in the validation loss. This indicates strong generalisation capabilities to
different systems. The SRNN model fell behind and does not manage to adapt to the
varying system parameters as good.

19

4.3. Latent static variables results

In Fig. 4.5 the results of the experiment can be seen and in Fig. 4.6 the corresponding
loss curves. The MLP results are omitted here for a better overview since they not are
competitive and distort the axis of the graph. The results in Fig. 4.5 differ strongly from
those with a similar setup in section 4.1. The performance of the GNN has diminished
whereas the SRNN is still achieving near perfect predictions. This result highlights the
drawback of the basic bias GNNs have. Due to the unobserved nature of the link attributes
the vertices have no unique identifier so there is no way for GNNs to distinguish between
them. Thus no behaviour dependent on the individual link can be learned and instead
a general model that tries to fit the dynamics of every vertex must be learned. The MLP
based networks retain an order of the links so that it is possible to treat them individually
and learn the dynamics based on this information. The results also indicate that the SRNN
has no understanding of the meaning of the static attributes of the system since it does
not benefit much from observing them. The model in Fig. 4.5 only slightly worse than the
one in Fig. 4.1 although it is based on the same system and in this case more input data is
given.

4.4. Parameter learning results

In Fig. 4.7 the results of the experiment can be seen. The combination of learnable param-
eters for identification of the system parameters with the models allows the GNN model
to outperform the SRNN again. The GNN shows strong predictions on the predictions of
the links. The predicted energy of the GNN is deviating from the true energy although it
after 1000 frames still diverged less than the variance of the energy prediction of the SRNN.

In Fig. 4.8 the distribution of the learned parameters of the GNN is shown. The right
column shows the complete matrix of the spring constants. The matrix is sparse due to the
connectivity structure of the spring system where each link is only connected to two other
links. The middle column shows the matrix after a filter mask was applied that removes
the parameters, that are not in the adjacency matrix of the system. Due to the interaction
between weights of the neural network and the parameters the scale of the parameters is
arbitrary. Because of this only the distribution of the parameter values is examined.

20

3
0
3

q x

Link 1

8
0
8

p x

0
20
40

E k
in

0
8

16

E p
ot

0 2 4 6 8 10
Time [s]

0
20
40

E t
ot

Ground truth
GNN6

GNN20
SRNN

MLP

Link 3

0 2 4 6 8 10
Time [s]

Link 5

0 2 4 6 8 10
Time [s]

Link 6

0 2 4 6 8 10
Time [s]

5
0
5

Sum

5
0
5

0

50

0

50

0 2 4 6 8 10
Time [s]

50
75

(a) A chain system with 6 links.

4
0
4

q x

Link 1

8
0
8

p x

0
30
60

E k
in

0
30
60

E p
ot

0 2 4 6 8 10
Time [s]

0
40
80

E t
ot

Ground truth
GNN6

GNN20
SRNN

MLP

Link 7

0 2 4 6 8 10
Time [s]

Link 14

0 2 4 6 8 10
Time [s]

Link 20

0 2 4 6 8 10
Time [s]

25
0
25

Sum

0

25

0

250

250

500

0 2 4 6 8 10
Time [s]

250
500

(b) A chain system with 20 links.

Figure 4.3.: Comparison of model performance on two systems for experiment 3.3. For
a subset of the links the position, momentum, as well as the kinetic, poten-
tial and total energy is shown.GNN6 refers to the GNN trained on the 6 link
system and GNN20 refers to the one trained on the 20 link system.

21

20 40 60 80 100
Epochs

10 5

10 4

10 3

10 2

Tr
ai

n/
va

lid
at

io
n

lo
ss

Train
GNN SRNN MLP

10 3

10 2

10 1

100

101

Fu
ll

va
lid

at
io

n
lo

ss
Validation

GNN SRNN MLP

(a) Training on a chain system with 6 links.

20 40 60 80 100
Epochs

10 5

10 4

10 3

10 2

10 1

Tr
ai

n/
va

lid
at

io
n

lo
ss

Train
GNN SRNN MLP

10 3

10 2

10 1

100

101

Fu
ll

va
lid

at
io

n
lo

ss

Validation
GNN SRNN MLP

(b) Training on a chain system with 20 links.

Figure 4.4.: Learning curves for the models from Fig. 4.3 belonging to experiment 3.3.

The mass parameters show a similar distribution as the ground truth parameters. The
distribution is characterised by the two modes which are separated by a gap where there
is very little probability mass. In contrast the learned mass parameters of the SRNN and
MLP models shown in Fig. 4.9 do not resemble the true distribution and are closer to a
unimodal normal distribution.

A similar distribution can be seen for the spring constants. Two strong, separated modes
can be distinguished in the middle column. Two additional, smaller peaks can be seen in
the positive region. Values from those peaks are found in the places of the matrix where
springs connect to the ground, i.e. the first and last element of the matrix. In the right
column one can see that the learned matrix is also sparse and is mainly populated by
values that are three orders of magnitude smaller than the other values. The symmetry of
the matrix is also a property that is approximately preserved through the learning process
as can be seen in Fig. 4.10. The values on the two first off-diagonals mirror each other
with a mean deviation of less than 1% over all systems as shown in appendix B.3. The
non-zero values on the main diagonal show learned self-loops. Adding an additional edge
seems to be helpful for learning the self-dynamics.The fact that the distribution of the
learned parameter values of the GNN is similar to the true distribution indicates that the
model uses those extra parameters for identifying the parameters of the systems.

22

0
4

q x

Link 1

8
0
8

p x

0
30
60

E k
in

0
20
40

E p
ot

0 2 4 6 8 10
Time [s]

0
40
80

E t
ot

Ground truth GNN SRNN

Link 7

0 2 4 6 8 10
Time [s]

Link 14

0 2 4 6 8 10
Time [s]

Link 20

0 2 4 6 8 10
Time [s]

0

25
Sum

10
0
10

0

200

0

200

0 2 4 6 8 10
Time [s]

175
200
225

Figure 4.5.: Comparison of model performance on a 20 link system for experiment 3.4.
For a subset of the links the position, momentum, as well as the kinetic,
potential and total energy is shown.

23

20 40 60 80 100
Epochs

10 5

10 4

10 3

10 2

10 1

Tr
ai

n/
va

lid
at

io
n

lo
ss

Train
GNN SRNN MLP

10 2

10 1

100

101

Fu
ll

va
lid

at
io

n
lo

ss

Validation
GNN SRNN MLP

Figure 4.6.: Learning curves for the models from Fig. 4.5 belonging to experiment 3.4.

24

3

0

3

q x

Link 1

20
0

20

p x

0
50

100

E k
in

0
40
80

E p
ot

0 2 4 6 8 10
Time [s]

0
50

100

E t
ot

Ground truth GNN SRNN

Link 3

0 2 4 6 8 10
Time [s]

Link 5

0 2 4 6 8 10
Time [s]

Link 6

0 2 4 6 8 10
Time [s]

2.5
0.0
2.5

Sum

20
0
20

0

100

0

200

0 2 4 6 8 10
Time [s]

150

200

Figure 4.7.: Comparison of model performance on a 6 link system for experiment 3.5.
For a subset of the links the position, momentum, as well as the kinetic, po-
tential and total energy is shown.

25

0.05 0.00
0

50

100

150

200

Co
un

t

Learned Masses

0.05 0.00 0.05
0

100

200

Learned Springs

0.05 0.00 0.05
0

500

1000

1500

2000
Learned full Springs

2 4
0

50

100

Co
un

t

True Masses

10 20
0

50

100

150

200

True Springs

0 10 20
0

1000

2000

True full Springs

Figure 4.8.: Histogram and estimated probability density of the distribution of the
learned static parameters for all systems in comparison to the ground truth
of the systems.

26

0.4 0.2 0.0 0.2 0.4 0.6
0

20

40

60

80

Co
un

t

Learned Masses

1.5 2.0 2.5 3.0 3.5 4.0 4.5
0

50

100

Co
un

t

True Masses

(a) Histogram of the learned masses for
SRNN.

0.4 0.2 0.0 0.2 0.4
0

20

40

60

80

Co
un

t

Learned Masses

1.5 2.0 2.5 3.0 3.5 4.0 4.5
0

50

100

Co
un

t

True Masses

(b) Histogram of the learned masses for
MLP.

Figure 4.9.: Histogram and estimated probability density of the distribution of the
learned mass parameters for all systems in comparison to the ground truth
of the systems.

27

k =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

19.93 9.94 0 0 0 0

9.94 0 19.80 0 0 0

0 19.80 0 20.40 0 0

0 0 20.40 0 11.19 0

0 0 0 11.19 0 9.73

0 0 0 0 9.73 20.12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

k̂ · 102 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.38 −2.27 0 0 0 0.01

−2.29 −0.04 −4.5 −0.01 0.01 −0.01

−0.03 −4.53 2.36 −4.67 0 −0.01

0 0.02 −4.71 0.43 −2.57 0

−0.01 −0.03 0.04 −2.56 −2.04 −2.22

0.02 0.02 −0.02 0.03 −2.20 1.38

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Figure 4.10.: Comparison of the learned spring parameters k̂ for the GNN for the system
shown in Fig. 4.7 to the ground truth parameters k. Note the scaling factor
for the learned parameters.

28

5. Discussion

During the research process the search for an appropriate data set was a major hurdle. The
data set needed to be accessible for deep learning approaches and scalable in ways that
allowed show casing the generalisation capabilities of GNNs. In addition the generating
system for this system needed to be simple enough for analytic descriptions to be able to
compute the energy terms for the system to evaluate the physical correctness of the models.
Earlier experiments were conducted on data sets such as a dynamical billiards system that
involved collisions between the billiards and a gravitational n-body problem system. The
instantaneous nature of the collisions of the billiards system hindered the learning process
and lead to subpar results. A similar phenomenon occurred in the n-body problem system
due to the rapid acceleration of bodies that are close to each other that is triggered by the
hyperbolic nature of the gravitational potential that governs the system. The usual solution
of clipping the gravitational effect was not an option since the physical correctness of the
data set needed to be guaranteed. Models that integrated Hamiltonian or Lagrangian
formulations as bias performed worse than GNN models without this bias. This effect
could not be explained satisfactory. Due to those problems this string of research was
discontinued and results from this phase are omitted in this work.

Nevertheless this work has been able to show that GNNs are a valuable class of neu-
ral networks with strong generalisation capabilities in regards to the size of the input
graph and different system parametrisations. The inductive bias of operating on graph
structured data allows the incorporation of prior knowledge in the domain via the con-
nectivity structure of the entities. GNNs are well suited for areas where there is strongly
structured data available such as physical systems. Sparse interactions between the enti-
ties are common such as in kinematic chains which is beneficial for GNNs since it saves
computational cost. In this domain the interpretation of data sets as entities, be it particles
or components, that interact seems natural. The same treatment of each entity covers
a fundamental concept of the physical world that each entity is governed by the same
physical laws and the effect is dependent on the attributes of the entity.

29

GNNs show this behaviour by being able to learn governing laws on smaller systems
and apply those laws to systems of different sizes as was shown in experiment 4.1. In
addition they develop an understanding for the importance of the attributes of the en-
tities as shown by the learned parameters that resemble the true parameters as seen in
experiment 4.4. If the entities do not provide enough attributes to distinguish between
them effectively, GNNs fail as could be seen in experiment 4.3.

30

6. Outlook

In this work the system identification approach was restricted to learning parameters
for a limited amount of systems. Instead of learning parameters, identifiers for those
parameters could be learned that generalise to other similar systems. An additional GNN
that identifies a system based on a sequence of frames can be employed for this after which
longer trajectories can be generated [27]. Due to the low number of attributes of the data
set, a system identification based on partial observations was not possible but might be
feasible in richer data sets. Either more complex simulations can be chosen such as the
ones from the DeepMind Control Suite [28] or real world data may be explored. Working
with visual data may be also explored which requires computer vision preprocessing
since in this case graph structured data is not directly available. Combining a CNN for
the encoding of the visual scene with a GNN for the dynamics prediction and another
CNN for the decoding has been done [29] [30]. The intermediate representation that is
generated by the encoding network has not been studied in those works and might give
interesting insights into the physical scene understanding capabilities of GNNs similar
to the structural insights gained from experiment results 4.4. To further research the
capabilities of GNNs to simulate physical processes the analogy from edge attributes
and forces can be examined [31]. Symbolic regression [32] allows the approximation of
complicated, learned MLP based update mechanisms with simpler symbolic equations.
With this technique the symbolic approximation to the GNN can be compared to the true
generating equations and the relationship between the acting forces in the system and
the edge attributes. In addition to the relational bias inherent to GNNs due to the focus
on graph structured data, more physics inspired biases may be introduced to improve
adherence to physical laws. This can either be done by encouraging the model to learn
solutions that fulfil certain criteria via penalty terms in the cost function or by making
architecture choices that directly incorporate those biases. If conserved quantities of
systems are known, such as total energy and momentum in the case of the used spring
chain system, deviations can be penalised.

31

Classical mechanical systems are governed by differential equations that allow solving
in both temporal directions [33]. Due to this property training sequences that are given
in the classic forward fashion should be able to be reversed and predicted from the last
frame to the first when using a negative time step. Calculating the supervised loss in
both directions can help to be more sample efficient as well as depicting the physics more
accurately. This approach can be taken one step further by replacing the data based state
in the reverse direction by the predicted trajectory. This will lead to problems due to
floating point errors and errors of the integration scheme accumulating. Errors of the
integration scheme can be reduced by either using higher order integrators from the
Runge-Kutta family or using symplectic integrators [34].

The combination of those further research topics, raw visual data as input and adherence
to physical laws, is a very important area for smart robotics. If GNNs continue to show
promise in those areas, they may become an important building block for making the
vision of household robots come true one day.

32

Bibliography

[1] J. Forlizzi and C. DiSalvo, “Service robots in the domestic environment: a study of
the roomba vacuum in the home,” in Proceedings of the 1st ACM SIGCHI/SIGART
conference on Human-robot interaction, pp. 258–265, 2006.

[2] C. Wang, K. V. Hindriks, and R. Babuska, “Active learning of affordances for robot
use of household objects,” in 2014 IEEE-RAS International Conference on Humanoid
Robots, pp. 566–572, 2014.

[3] F. Niroui, K. Zhang, Z. Kashino, and G. Nejat, “Deep reinforcement learning robot for
search and rescue applications: Exploration in unknown cluttered environments,”
IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 610–617, 2019.

[4] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “A brief survey
of deep reinforcement learning,” arXiv preprint arXiv:1708.05866, 2017.

[5] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-based
control,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 5026–5033, IEEE, 2012.

[6] B. M. Chang, T. Ullman, A. Torralba, and B. J. Tenenbaum, “A compositional object-
based approach to learning physical dynamics,” ICLR, 2017.

[7] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph neu-
ral network model,” IEEE Transactions on Neural Networks, vol. 20, no. 1, pp. 61–80,
2008.

[8] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning phrase representations using RNN encoder–decoder for
statistical machine translation,” in Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), (Doha, Qatar), pp. 1724–1734,
Association for Computational Linguistics, Oct. 2014.

33

[9] Y. Li, R. Zemel, M. Brockschmidt, and D. Tarlow, “Gated graph sequence neural
networks,” in Proceedings of ICLR’16, April 2016.

[10] P. Battaglia, R. Pascanu, M. Lai, D. J. Rezende, and K. kavukcuoglu, “Interaction
networks for learning about objects, relations and physics,” in Proceedings of the 30th
International Conference on Neural Information Processing Systems, pp. 4509–4517,
2016.

[11] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M. Mali-
nowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, et al., “Relational inductive
biases, deep learning, and graph networks,” arXiv preprint arXiv:1806.01261, 2018.

[12] A. Sanchez-Gonzalez, J. Godwin, T. Pfaff, R. Ying, J. Leskovec, and P. Battaglia,
“Learning to simulate complex physics with graph networks,” in International Con-
ference on Machine Learning, pp. 8459–8468, PMLR, 2020.

[13] G. Corso, L. Cavalleri, D. Beaini, P. Liò, and P. Veličković, “Principal neighbourhood
aggregation for graph nets,” Advances in Neural Information Processing Systems,
vol. 33, 2020.

[14] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph
attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[15] D. Bahdanau, K. H. Cho, and Y. Bengio, “Neural machine translation by jointly
learning to align and translate,” in 3rd International Conference on Learning Repre-
sentations, ICLR 2015, 2015.

[16] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-
Guzik, and R. P. Adams, “Convolutional networks on graphs for learning molecu-
lar fingerprints,” in Advances in Neural Information Processing Systems (C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, eds.), vol. 28, Curran Associates,
Inc., 2015.

[17] R. Murphy, B. Srinivasan, V. Rao, and B. Riberio, “Janossy pooling: Learning deep
permutation-invariant functions for variable-size inputs,” in International Conference
on Learning Representations (ICLR 2019), 2019.

[18] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural message
passing for quantum chemistry,” in Proceedings of the 34th International Conference
on Machine Learning (D. Precup and Y. W. Teh, eds.), vol. 70 of Proceedings of
Machine Learning Research, (International Convention Centre, Sydney, Australia),
pp. 1263–1272, PMLR, 06–11 Aug 2017.

34

[19] J. Pearl, Reverend Bayes on inference engines: A distributed hierarchical approach.
Cognitive Systems Laboratory, School of Engineering and Applied Science . . . , 1982.

[20] J. Domke, “Parameter learning with truncated message-passing,” in CVPR 2011,
pp. 2937–2943, IEEE, 2011.

[21] K. Fukushima and S. Miyake, “Neocognitron: A self-organizing neural network model
for a mechanism of visual pattern recognition,” in Competition and cooperation in
neural nets, pp. 267–285, Springer, 1982.

[22] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L. D. Jackel, “Backpropagation applied to handwritten zip code recognition,” Neural
computation, vol. 1, no. 4, pp. 541–551, 1989.

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” Advances in neural information processing systems,
vol. 25, pp. 1097–1105, 2012.

[24] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings (Y. Bengio and Y. LeCun, eds.), 2015.

[25] K. J. Åström and P. Eykhoff, “System identification—a survey,” Automatica, vol. 7,
no. 2, pp. 123–162, 1971.

[26] Z. Chen, J. Zhang, M. Arjovsky, and L. Bottou, “Symplectic recurrent neural networks,”
in International Conference on Learning Representations, 2019.

[27] A. Sanchez-Gonzalez, N. Heess, J. T. Springenberg, J. Merel, M. Riedmiller, R. Hadsell,
and P. Battaglia, “Graph networks as learnable physics engines for inference and
control,” in International Conference on Machine Learning, pp. 4470–4479, PMLR,
2018.

[28] Y. Tassa, Y. Doron, A. Muldal, T. Erez, Y. Li, D. de Las Casas, D. Budden, A. Ab-
dolmaleki, J. Merel, A. Lefrancq, et al., “Deepmind control suite,” arXiv preprint
arXiv:1801.00690, 2018.

[29] A. Santoro, D. Raposo, D. G. Barrett, M. Malinowski, R. Pascanu, P. Battaglia, and
T. Lillicrap, “A simple neural network module for relational reasoning,” in NIPS,
2017.

35

[30] J. Kossen, K. Stelzner, M. Hussing, C. Voelcker, and K. Kersting, “Structured object-
aware physics prediction for video modeling and planning,” in International Confer-
ence on Learning Representations, 2019.

[31] M. Cranmer, A. Sanchez Gonzalez, P. Battaglia, R. Xu, K. Cranmer, D. Spergel, and
S. Ho, “Discovering symbolic models from deep learning with inductive biases,”
Advances in Neural Information Processing Systems, vol. 33, 2020.

[32] P. Orzechowski, W. La Cava, and J. H. Moore, “Where are we now? a large benchmark
study of recent symbolic regression methods,” in Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 1183–1190, 2018.

[33] W. G. Hoover, Time reversibility, computer simulation, and chaos, vol. 13. World
Scientific, 1999.

[34] H. Kamberaj, R. Low, and M. Neal, “Time reversible and symplectic integrators for
molecular dynamics simulations of rigid molecules,” The Journal of chemical physics,
vol. 122, no. 22, p. 224114, 2005.

36

A. Details of model architecture

A.1. Graph Neural Network

For a size of the vertex attribute vectors of nv and a size of the edge attribute vectors of
ne, the size of the networks can be found in table A.1. As activation function for every
layer except the last layer the softplus-function

s(x) = log (1 + ex) (A.1)

is used. The used integrator is explicit euler. With nv = 3 and ne = 5 for the chain data
set this leads to a total of 39074 parameters independent of the number of links in the
system.

Function Layer sizes

encode_nodes
[︂
nv 64 64

]︂
encode_edges

[︂
ne 64 16

]︂
update_edge

[︂
144 64 16

]︂
update_node

[︂
80 128 64

]︂
decode_node

[︂
64 64 2

]︂
Table A.1.: Layer sizes of the used GNN model.

37

A.2. Symplectic Recurrent Neural Networks

The SRNN architecture uses a Hamiltonian formulation that assumes separability of the
kinetic and potential energy of the system. Both components are modelled by a MLP that
take either the positions q or the momenta p of all entities as input. Via the Hamilton
equations

H = T (p) + V (q)

q̇ =
∂H
∂p

ṗ = −∂H
∂q

the time derivatives of the state variables are calculated using the autograd mechanism.
Those derivatives are used for the integrator to calculate the next state. The used integrator
is a rk4 integrator.
The two MLPs have layer sizes

[︂
N(nv − 1) 2048 1

]︂
where N is the number of links in

the system. Then tanh-function is used as activation function. For nv = 3 and N = 6 this
leads to a total of 57346 parameters and for N = 20 to 172034 parameters.

A.3. Multilayer Perceptron baseline

This model directly uses a simple MLP to make predictions for the new state. The layer
sizes used are

[︂
N · nv 2048 N(nv − 1)

]︂
. As activation function the softplus-function as

in eq. (A.1) is used. For nv = 3 and N = 6 this leads to a total of 63500 parameters and
for N = 20 to 206888 parameters.

38

B. Details of the data generation

B.1. Details for experiment 3.2

For the experiment 3.2 the normal distribution of the masses has a mean µ = 1 and a
variance σ2 = 0.25. The normal distribution for the spring constants has a mean of µ = 5
and a variance σ2 = 1.25.
The exact values drawn for the masses of the system with 20 links are

m =

⎡⎣0.84 1.02 0.89 1.13 0.77 1.25 0.68 1.01 1.28 1.25

1.40 0.93 1.03 1.04 1.04 0.66 0.67 0.90 1.22 0.93

⎤⎦
and for the spring constants

k =

⎡⎢⎢⎢⎣
4.64 5.25 4.15 3.12 4.95 4.80 3.72 4.83 5.13 5.81

4.12 4.45 5.50 4.60 6.06 3.15 5.16 7.94 4.93 5.56

5.90

⎤⎥⎥⎥⎦ .

For the system with 6 links the masses are

m =
[︂
1.17 1.28 1.44 0.87 0.95 0.93

]︂
and the spring constants

k =
[︂
5.13 6.13 4.74 3.89 4.36 3.71 8.42

]︂
.

39

B.2. Details for experiment 3.3

For the experiment 3.3 Gaussian mixture models with two components are employed from
which the static parameters are drawn. The probability for both components is the same.
Both components share the same variance of σ2 = 0.25 for the masses and σ2 = 1.25
for the spring constants. The mean of the first component is µ1 = 2 for the masses and
µ1 = 10 for the spring constants. The mean of the second component is µ1 = 4 for the
masses and µ1 = 20 for the spring constants.
The distance between the two modes that show in the distribution is four standard
deviations so that there is little overlap between the components.

B.3. Details for results 4.4

The mean deviation of the values of the first two off-diagonals is calculated as
(︂
k̂
T − k̂

)︂
/k̂

where / is elementwise division. The values are averaged over all systems. For the lower
first off-diagonal the values are

k̄off−diagonal =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.87

0.85

0.98

0.97

0.94

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
%

and as such all below 1 %.

40

	Introduction
	Foundations
	Nomenclature
	History
	Variants of aggregation functions
	Alternative interpretations of graph networks
	Implementation
	System identification

	Experiments
	Data set generation
	Generalisation to different chain lengths
	Generalisation to different systems
	Latent static variables
	Parameter learning

	Results
	Generalisation to different chain lengths results
	Generalisation to different systems results
	Latent static variables results
	Parameter learning results

	Discussion
	Outlook
	Details of model architecture
	Graph Neural Network
	Symplectic Recurrent Neural Networks
	Multilayer Perceptron baseline

	Details of the data generation
	Details for experiment 3.2
	Details for experiment 3.3
	Details for results 4.4

