
HJB Optimal Feedback Control with Deep
Differential Value Functions and Action Constraints

Michael Lutter1, Boris Belousov1, Kim Listmann2, Debora Clever1,2, Jan Peters1,3
1 Department of Computer Science, Technische Universität Darmstadt, Germany

2 ABB Corporate Research Center at Ladenburg, Germany
3Robot Learning Group, Max Planck Institute for Intelligent Systems,Tübingen, Germany

{lutter, belousov, peters}@ias.informatik.tu-darmstadt.de
{kim.listmann, debora.clever}@de.abb.com

Abstract: Learning optimal feedback control laws capable of executing optimal
trajectories is essential for many robotic applications. Such policies can be learned
using reinforcement learning or planned using optimal control. While reinforcement
learning is sample inefficient, optimal control only plans an optimal trajectory
from a specific starting configuration. In this paper we propose HJB control to
learn an optimal feedback policy rather than a single trajectory using principles
from optimal control. By exploiting the inherent structure of the robot dynamics
and strictly convex action cost, we derive principled cost functions such that the
optimal policy naturally obeys the action limits, is globally optimal and stable on
the training domain given the optimal value function. The corresponding optimal
value function is learned end-to-end by embedding a deep differential network
in the Hamilton-Jacobi-Bellmann differential equation and minimizing the error
of this equality while simultaneously decreasing the discounting from short- to
far-sighted to enable the learning. Our proposed approach enables us to learn
an optimal feedback control law in continuous time, that in contrast to existing
approaches generates an optimal trajectory from any point in state-space without
the need of replanning. The resulting approach is evaluated on non-linear systems
and achieves optimal feedback control, where standard optimal control methods
require frequent replanning.

1 Introduction
Specifying a task through a reward function and letting an agent autonomously discover a corresponding
controller promises to simplify programming of complex robotic behaviors by reducing the required
amount of manual engineering. Previous research demonstrated that such approach can successfully
generate robot controllers capable of performing dexterous manipulation [1, 2, 3] and locomotion
[4, 5]. These controllers were obtained via reinforcement learning or trajectory optimization. While
reinforcement learning optimizes a possibly non-linear policy π under the assumption of unknown
rewards, dynamics and actuation limits, trajectory optimization plans a sequence of n actions and
states using the known model, reward function, initial state and actuator limits. When applied to the
physical system, the planned trajectories must be augmented with a hand-tuned tracking controller to
compensate modeling errors.
To obtain a globally optimal feedback policy that naturally obeys the actuator limits without randomly
sampling actions on the system as in reinforcement learning, we propose to incorporate actuator limits
within the cost function and obtain the optimal feedback controller by embedding a deep differential
network and the known model in the Hamilton-Jacobi-Bellman (HJB) differential equation. The
network weights are learned using a curricular learning scheme that adapts the discounting from
short to far-sighted to ensure learning of the optimal policy despite the multiple spurious solutions of
the HJB. Assuming the inherent structure of most robotic tasks, i.e., control-affine dynamics due to
holonomicity of mechanical systems and perfect approximation of the value function, the learned
policy is globally optimal on the state domain Ω, guaranteed to be stable and does not require any
replanning or hand-tuning of the feedback gains. Incorporating the actuation limits within the cost

3rd Conference on Robot Learning (CoRL 2019), Osaka, Japan.

function, transforms the constrained optimization problem to an unconstrained problem. Thereby
enabling the learning of feasible feedback policies using gradient descent.
Our technical contributions are the following. First, the derivation of strictly convex cost functions
that make common classes of controllers, including torque limited policies, optimal. Second, the
derivation of a curricular learning scheme that can learn the optimal value function and optimal
feedback policy by minimizing the residual of the HJB. Furthermore, we provide intuitive explanations
about the convergence of the proposed curricular learning scheme.
In the following, we introduce the HJB differential equation and simplify the HJB using the inherent
structure of robotic problems (Section 2). Afterwards, we derive the principled cost functions that
enable torque limited policies to be optimal (Section 3). Using these insights, we propose a curriculum
learning scheme to learn the optimal value function and policy in Section 4. Finally, our proposed
algorithm is applied to non-linear systems (Section 5) and the differences to existing literature is
highlighted (Section 6).

2 The Hamilton-Jacobi-Bellman Differential Equation
The optimal policy π∗ solves a task by choosing the optimal actions u∗ given the current state x, such
that the total accumulated cost is minimized. Therefore, the optimal policy π∗ is described by

π∗(x, t) = argmin
π

∫ T

t

e−ρ(τ−t) c(x(τ), u(τ)) dτ s.t. Ûx = f (x,u), x ∈ Ω ⊆ Rnx , |u | ≤ u+ (1)

with the action u = π(x, t), the cost function c(x,u), the dynamics f (x,u), the discounting factor ρ, the
state domain Ω, the positive actuator limit u+ and the time horizon T . Let the optimal value function
V∗(x, t) be defined as the minimum accumulated cost-to-go, i.e.,

V∗(x, t) =min
u

∫ T

t

e−ρ(τ−t) c(x(τ),u(τ)) dτ. (2)

For the infinite time horizon, i.e., T →∞, the optimal value function is independent of time [6].
Using Equation 2, the Hamilton-Jacobi-Bellman differential equation, the continuous counterpart of
the discrete Bellmann equation, can be derived by substituting the value function at time t ′ = t +∆t,
approximating V∗(x(t ′), t ′) with its 1st order Taylor expansion and taking the limit ∆t → 0 [6].
Therefore, the HJB differential equation is described by

ρV∗(x, t) =min
u

c(x,u) + f (x,u)T
∂V∗

∂ x
. (3)

In the following, wewill refer to ∂V*/∂ x asV∗x . TheHJB hasmultiple solutions and only incorporating
the boundary condition

f (x̄,u∗)Tηηη(x̄) ≤ 0 for x̄ ∈ ∂Ω (4)

with the outward pointing normal vector ηηη defined on the state domain boundary ∂Ω makes the
solution unique [7]. This boundary condition implies that the optimal action always prevent the
system to leave the state domain. Within the LQR-setting, this boundary condition implies the
positive-definiteness of the quadratic value function. Using the control affine dynamics of mechanical
systems with holonomic constraints, i.e., Ûx = f (x, u) = a(x)+B(x)u, Equation 3 and Equation 4 can
be further simplified to

ρ V* = aT (x)V*
x + min

u

[
c(x,u)+uT BT (x)V*

x
]
,

(
a(x̄)+B(x̄)u∗

)T
ηηη(x̄) ≤ 0. (5)

3 Incorporating Action Constraints within the Cost Function
Assuming a separable cost, i.e., a separate cost function for state and action, we show that the
optimization problem on the right-hand side of Equation 5 can be solved in closed form if the action
cost is strictly convex. Moreover, action constraints can be naturally accommodated if the action
cost has a barrier shape. Thereby, the constrained optimization in Equation 1 is transformed into an
unconstrained problem, with the optimal policy inherently obeying the action limits.

2

Table 1: Selected action costs. The choice of the action cost g(u) determines the range of actions u ∈ dom (g), as
well as the form of the optimal policy ∇g∗(w) and the type of non-linearity in the HJB equation g∗(w). Section 1
of the table contains policies with standard action domains. Section 2 provides formulae for shifting and scaling
actions and scaling costs. Section 3 shows how to use the formulae. Section 4 gives limiting policy shapes.

Policy Name Action Range Action Cost g(u) Policy ∇g∗(w) HJB Nonlinear Term g∗(w)

Linear u ∈ Rnu 1
2 uT Ru R−1 w 1

2 wT R−1 w
Logistic 0 < u < 111 uT logu+(111−u)T log(111−u) 111

111+e−w C σ(w) 111T log (111+ew)

Atan − π2 111 < u < π
2 111 − logcosu tan−1(w) wT tan−1(w)− 1

2 111T log(111+w2)

Action-Scaled u ∈ αdom (g) αg(α−1 u) α∇g∗(w) αg∗(w)
Cost-Scaled u ∈ dom (g) βg(u) ∇g∗(β−1 w) βg∗(β−1 w)
Action-Shifted u ∈ dom (g)−γ111 g(u+γ111)−g(γ111) ∇g∗(w)−γ111 g∗(w)−γ111T w

Tanh −111 < u < 111 glogistic(
u+111

2)−glogistic(
1
2) tanhw = 2σ(2w)−111 111T logcoshw

TanhActScaled −α111 < u < α111 αgtanh(α
−1 u) α tanhw α111T logcoshw

AtanActScaled −α111 < u < α111 − 2α
π logcos(2α

π u) 2α
π tan−1(w) 2α

π g∗atan(w)

Bang-Bang −111 ≤ u ≤ 111 χ[−111,111](u), χ - charact. fun. signw ‖w ‖1
Bang-Lin −111 ≤ u ≤ 111 1

2 uT u χ[−111,111](u) −111+
∑1
δ=−1 relu(111− δw) 111T L111(w), Lδ (a) - Huber loss

3.1 Strictly Convex Action Cost
Let the separable cost be defined as c(x, u) = r(x)+g(u), with the task dependent state cost r(x) and
the strictly convex action cost g(u). The strong convexity of g generalizes the positive definiteness
assumption on the action cost required by LQR. Under these assumptions, the HJB equation becomes

ρ V* =min
u

[
g(u)+uT BT (x)V*

x
]
+ r(x)+aT (x)V*

x . (6)

The optimal action and the optimal policy can be computed in closed form by employing the convex
conjugate function g∗(w) = supu{uT w−g(u)} and exploiting its defining property ∇g∗ = (∇g)−1,

∂

∂u
[
g(u)+uT BT (x)V*

x
]
= ∇g(u)+BT (x)V*

x B 0 ⇒ u∗ = ∇g∗(−BT (x)V*
x). (7)

The strict convexity of g assures that Equation 7 provides a unique global minimum [8]. Importantly,
Equation 7 describes the optimal policy in closed form and therefore no learning of the policy is required.
The value function is also a Lyapunov function and hence, the policy is stable [9]. Substituting the
optimal action u∗ into the HJB and using the Fenchel-Young identity g(∇g∗(w))+g∗(w) =wT ∇g∗(w)
with w = −BT (x)V*

x, we arrive at the final form of the HJB equation

ρ V* = r(x)+aT (x)V*
x−g

∗
(
−BT (x)V*

x

)
. (8)

Notably, the HJB equation in the form of Equation 8 is a straightforward equality and does not contain
a nested optimization problem in contrast to the original formulation in Equation 5. Therefore, one
only needs to find the optimal value function and then the optimal feedback controller is directly
given.
3.2 Torque Limited Optimal Policies
Exploiting the closed form solution for the optimal policy given in Equation 7 and the convex
conjugacy, one can define cost functions such that the standard controllers, including torque limited
controllers, become optimal. This approach is favorable compared to the naive quadratic action cost
because such cost can potentially take unbounded actions. Clipping the unbounded actions is only
optimal for linear systems [10] and increasing the action cost to ensure the action limits leads to
over-conservative behavior and underuse of the control range.
The shape of the optimal policy is determined by the monotone function ∇g∗. Therefore, one
can define any desired monotone shape and determine the corresponding strictly convex cost by
inverting ∇g∗ to compute ∇g and integrating ∇g to obtain the strictly convex cost function g(u). For
example, the linear policy is optimal with respect to the quadratic action cost, whereas the logistic
policy is optimal with respect to the binary cross-entropy cost. The full generality of this concept
based on convex conjugacy is shown in Table 1, which shows the corresponding cost functions for
Linear, Logistic, Atan, Tanh and Bang-Bang controllers. Furthermore, using the rules from convex
analysis [8], the effects of scaling the action limits, shifting the action range, or scaling the action cost
can be succinctly described, as shown by Action-Scaled, Action-Shifted, and Cost-Scaled rows in

3

θ = 1−
√

2
2

θ = 1
2 θ = 1+

√
2

2

10−4

10−3

10−2

10−1

100

101

102

103

O
pt

im
iz

at
io

n
C

os
t
J

(a)

Optimization Landscape of LQR

λ =0.0, ρ = 0

λ =0.1, ρ = 0

λ =0.2, ρ = 0

λ =0.3, ρ = 0

λ =0.5, ρ = 0

θ = 1−
√

2
2

θ = 1
2 θ = 1+

√
2

2

−10

−5

0

5

10

G
ra

di
en

t
of

C
os

t
∂
J
/∂
θ

(b)

Gradient w.r.t. Value Function Parameter θ

θ = −6 θ = −3 θ = 1−
√

2
2 θ = 1+

√
2

2

10−3

10−2

10−1

100

101

102

D
is

co
un

ti
ng

F
ac

to
r
ρ

(c)

Optimal θ w.r.t. Discounting Factor ρ

θ = (1/2− 1/4ρ)−
√

1/4 + (1/2− 1/4ρ)2

θ = (1/2− 1/4ρ) +
√

1/4 + (1/2− 1/4ρ)2

Figure 1: (a) The optimization landscape for the linear system Ûx = x+u, the cost c(x, u)= 1/2x2+1/2u2

and value function V(x) = θx2 with different penalty terms λ. For sufficiently large penalties the
negative definite minima disappears. (b) The gradient ∇θ J showing the extrema for different penalty
terms. (c) Optimal value function parameter θ for different discounting factors ρ. For ρ→∞ the
negative definite parameter diverges to −∞, while the positive definite solution converges to 0.

Table 1. This enables quick experimentation by mixing and matching costs. For example, the action
cost corresponding to the Tanh policy is straightforwardly derived using the well-known relationship
between tanh(x) and the logistic sigmoid σ(x) given by tanh(x) = 2σ(2x)−1. Note that a formula
for general invertible affine transformations can be derived, not only for scalar scaling and shifting.
Classical types of hard nonlinearities [11] can be derived as limiting cases of smooth solutions. For
example, taking the Tanh action cost gtanh and scaling it with β→ 0, i.e., putting a very small cost on
actions but nevertheless preserving the action limits, results in the Bang-Bang control shape. Taking
a different limit of the Tanh policy in which scaling is performed simultaneously with respect to the
action and cost, the resulting shape is what we call Bang-Lin and corresponds to a function which is
linear around zero and saturates for larger input values.

4 Learning the Value Function with Differential Networks
To obtain the optimal policy, one must solve the differential equation described in Equation 8 to
obtain the optimal value function. Learning this value function using function approximation is
non-trivial because the equation contains both the value function as well as the Jacobian and has
multiple solutions. The first problem can be addressed, by using a differential network, which previous
research used to learn the parameters of the Euler-Lagrange differential equation [12], while the latter
prevents the naive optimization of the HJB. Therefore, we first introduce the differential network and
the naive optimization loss in Section 4.1 and describe the curricular optimization scheme to learn
the unique solution in Section 4.2.

4.1 Deep Differential Network
Deep networks are fully differentiable and one can compute the partial derivative w.r.t. networks
at machine precision [13]. Therefore, deep networks are well suited for being embedded within
differential equations and learning the solution end-to-end. The deep differential network architecture
initially introduced by [12], computes the functional value and the Jacobian w.r.t. to the network
inputs within a single forward-pass by adding a additional graph within each layer to directly compute
the Jacobian using the chain rule. Therefore, this architecture can be naturally used to model V and Vx
and be learned end-to-end by minimizing the error of the HJB using standard deep learning techniques.
In addition, this architecture enables the fast computation of the Jacobian s.t. this network can be used
for real-time control loops with up to 500Hz [14]. Let V̂(x; ψ) be the deep network with the network
parameters ψ representing the approximated value function and approximated partial derivative. This
deep value function can be trained by minimizing the residual of the HJB equality (3) described by

V̂∗(x; ψ) =min
ψ

1
N

N∑
i

��� ρ V̂(xi)+g∗
(
−BT (xi)V̂xi

)
− r(xi)−aT (xi)V̂xi

��� (9)

where xi is uniformly sampled from the state domain Ω.

4.2 Constrained Optimization of the Value Function
The naive optimization of the loss of Equation 9 using gradient descent is not sufficient because the
HJB has multiple solutions. Even for the one dimensional linear system with quadratic rewards and
quadratic value function, i.e., Ûx = Ax + Bu, r(x,u) = Qx2 + Ru2 with Q,R > 0 and V(x) = θx2, the

4

HJB equation has two solutions described by

V(x) =
1
2

B−2
(
(2A− ρ)R±

√
(2A− ρ)2 R2+4RQB2

)
x2.

The problem of multiple solutions can be addressed from two perspectives. First one can enforce
the boundary constraint to make the solution unique. Second, one can use the a curricular learning
scheme to change the discounting factor during the learning from short to far sighted. In addition, one
can exploit the knowledge of terminal states and can locally clamp the value function at the terminal
states to the cost function. Similar approaches have been suggested in [15, 16].
4.2.1 Boundary Constraint
The solution of the HJB for the 1d linear system is unique, when the boundary condition of Equation 4
is included, i.e.,

η (x̄+)
(
x̄+−

1
2

R−1Vx(x̄+)
)
= 1−

1
2

R−1B−2
(
(2A− ρ)R±

√
(2A− ρ)2R2+4RQB2

)
x̄2
+ ≤ 0

with x̄+ > 0. Therefore, incorporating this constraint within the learning objective should enforce the
desired optimal solution. The boundary constraint can be incorporated as additional penalty term, i.e.,
` = `1+λ`b with

`b =max
(
0,

(
a(x̄)+B(x̄)u∗

)T
ηηη(x̄)

)2
(10)

and optimizing this objective yields the desired optimal solution. For the integrator dynamics, the
optimization landscape is smoothed and only one minima remains given a sufficiently large penalty
term λ (Fig. 1 a). Despite the well posed optimization surface, such constraint is hard to draft even
for slightly more complex systems as the double integrator. Defining the state domain, which covers
both position and velocity is non-trivial because the boundary constraint implies that the system must
be controllable on the given domain boundary. Therefore, one must manually engineer the maximum
region of attraction, which is dependent on the cost function c(x,u) and their relative magnitudes.
E.g., the relation of action cost to velocity cost determines the magnitude of deceleration for a moving
object and hence, the slope of the boundary constraining positions and velocities. These different
slopes cause the domain boundary to be specific to the cost function. Furthermore, one must account
for states in which the system is not controllable. If wrong boundary conditions are incorporated,
the optimization objectives contradict and one converges pre-maturely. Furthermore, this boundary
constraint is only enforced locally and hence, the deep network may be attracted to other solutions
inside the domain. Both drawbacks, the necessary engineering and locality, render the boundary
constraint not useful for the learning of the HJB.
4.2.2 Changing the discounting from short to far-sighted
Besides adding the boundary constraint, one can continuously decrease the discounting ρ such that the
value function changes from short to far-sighted solutions. This can be achieved by first initializing
ρ� 1 and slowly decreasing ρ once the value function is sufficiently learned. Thereby, the value
function is initially attracted to a single solution and follows this solution closely through the parameter
space when the discounting factor is decreased. This initial solution is unique, because taking the
limit ρ→ +∞ for Equation 3 shows that only one unique finite value function, i.e., V(x) = 0, ∀ x ∈ Ω,
exists. Therefore, the deep network is initially attracted to the desired optimal value functions and
follows this solution closely when decreasing ρ. Applying this limit to the 1d linear system example,

lim
ρ→∞

1
2

(
(2A− ρ)R±

√
(2A− ρ)2 R2+4RQB2

)
x2 = 0 /−∞,

shows that the undesired solution diverges to −∞, while the desired optimal solution approaches
θ→ 0. This divergence is also shown in Figure 1 c. Therefore, the value function is attracted to
the desired optimal solution and follows this solution to the undiscounted infinite horizon value
function. This learning scheme of changing the parameter ρ during optimization can be interpreted
as continuation method [17] and curricular learning [18]. Both approaches gradually increase the
task complexity to achieve faster convergence (as curriculum learning) or the avoidance of bad
local optima (continuation methods). Especially, continual learning solves an initially simplified
non-linear optimization problem and tracks this solutions through parameter space when the task
complexity increases. Therefore, gradually decreasing ρ and tracking the short-sighted V(x) = 0
solution through weight space to the potentially discontinuous undiscounted infinite horizon value
function is comparable to continuation methods. We only use a heuristic of decreasing ρ when an
error or epoch threshold is reached and aim to apply the principled methods of continuation methods
for adapting ρ in future work.

5

(a)

10−3

10−1

101

Value Function V (x)

−4 −2 0 2 4

System State x

10−3

10−1

101

10−3

10−1

101

0 1 2 3 4

Time [s]

0

1

2

3

4

5

x
[m

]

(b)

Position Trajectory

0 1 2 3 4

Time [s]

−10

−8

−6

−4

−2

0

u
[m

/s
]

(c)

Action Trajectory

(d)

10−3

10−1

101

Value Function V (x)

−4 −2 0 2 4

System State x

10−3

10−1

101

10−3

10−1

101

0 2 4 6

Time [s]

0

1

2

3

4

5

x
[m

]

(e)

Position Trajectory

0 2 4 6

Time [s]

−6

−5

−4

−3

−2

−1

0

u
[m

/s
]

(f)

Action Trajectory

HJB Control

Single-Shooting

LQR

Control Cost

Figure 2: (a) The learned value function for the linear integrator with quadratic cost. The crosses
correspond to the closed-loop control cost. The achieved cost for LQR, single shooting and HJB
control align with the learned value function. (b-c) State and action trajectory of the integrator with
quadratic cost. LQR, single shooting and HJB control achieve optimal performance (c) The learned
value function for the linear integrator with log-cosine cost incorporating the action limit. Single
shooting and HJB control achieve the optimal cost, which matches the expected cost of the value
function. (e-f) State and action trajectory of the integrator with log-cosine cost. Single shooting and
HJB control achieve optimal control, while clipped LQR is not optimal.

4.3 Terminal States
One can exploit the knowledge of the terminal states to direct the learning of the value function. For
every terminal state xT , the value function must be equal to the cost function, i.e. V*(xT) = r(xT).
This known point of the value function can be incorporated by extending the original loss with an
additional penalty term. In addition, this penalty term can also be added for any known regularities,
e.g., constraining the the multiples of 2π k of a continuous revolute joint to be identical.

5 Experiments
The proposed approach for learning optimal feedback control is evaluated on the stabilization of a
one-dimensional linear system, the swing-up of a torque-limited pendulum and the balancing of a
flexible Cartpole1. For the quadratic action cost, the actions are not limited, while the log-cosine action
cost implicitly limits the actions. In the following, we will refer to our proposed approach of learning
the optimal value function and applying the closed-form policy as HJB control. The performance is
compared to LQR and shooting methods2 augmented with hand-tuned tracking controllers.
5.1 Linear System
The learned value function of the linear system and the corresponding control performance is shown
in Figure 2. For the quadratic cost function, HJB control, LQR and single shooting obtain identical
state and action trajectories (Fig. 2 b-c). For randomly sampled starting configurations, the learned
value function and the accumulated cost of the HJB controller match the cost of LQR and single
shooting (Fig. 2 a). For the log-cosine cost, only HJB control and single shooting achieve optimal
performance on the complete state domain while LQR only achieves comparable cost for limited
starting configurations, when the action limits are not active. This can be seen in Figure 2 d, where
the expected control cost of the learned value function and the accumulated cost of the HJB controller
match the cost of single shooting. In contrast, LQR achieves comparable cost for x0 ≤ 2.5 but
significantly larger cost for x0 > 2.5.
5.2 Torque Limited Pendulum
The learned value function of the non-linear torque limited pendulum and the corresponding control
performance of the HJB controller for both the quadratic and log-cosine cost is shown in Figure 3.
For the quadratic action cost, the value function is continuous and only locally quadratic within the
surrounding of the balancing point. The trajectories of HJB control, multiple shooting and LQR from
300 randomly sampled starting configurations x0 are shown in Figure 3 a-c. The trajectories from HJB
control match the trajectories of multiple shooting and hence are optimal for the non-linear system. In
contrast, the LQR controller applies unnecessarily large actions because the system linearization at
θ = 0 over-estimates the system dynamics. Furthermore, the corresponding cost distribution for the
starting configurations is very similar for the HJB controller and multiple shooting, while the LQR
cost distributions shows that LQR requires larger cost for some starting configurations (Fig. 3 d). For

1The exact system descriptions including the system parameters is explained in the appendix.
2Single and multiple shooting is implemented using CasADi [19]

6

−π −π/2 0 +π/2 +π

θ [rad]

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

θ̇
[r

ad
/s

]

(a)

HJB Control Trajectories

0

12

24

36

48

60

72

84

96

108

−π −π/2 0 +π/2 +π

θ [rad]

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

θ̇
[r

ad
/s

]

(b)

Multiple Shooting Trajectories

0

12

24

36

48

60

72

84

96

108

−π −π/2 0 +π/2 +π

θ [rad]

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

θ̇
[r

ad
/s

]

(c)

LQR Optimal Trajectories

0

12

24

36

48

60

72

84

96

108

(d)

0

2

p
(c

)

×10−2 Cost Distribution

HJB Control

0

2

p
(c

)

×10−2

Multiple Shooting

0 20 40 60 80 100 120

Cost

0

2

p
(c

)

×10−2

LQR

−π −π/2 0 +π/2 +π

θ [rad]

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

θ̇
[r

ad
/s

]

(e)

HJB Control Trajectories

0.0

13.5

27.0

40.5

54.0

67.5

81.0

94.5

108.0

121.5

−π −π/2 0 +π/2 +π

θ [rad]

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

θ̇
[r

ad
/s

]

(f)

Multiple Shooting Trajectories

0.0

13.5

27.0

40.5

54.0

67.5

81.0

94.5

108.0

121.5

−π −π/2 0 +π/2 +π

θ [rad]

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

θ̇
[r

ad
/s

]

(g)

LQR Trajectories

0.0

13.5

27.0

40.5

54.0

67.5

81.0

94.5

108.0

121.5

(h)

0

2

4

p
(c

)

×10−2 Cost Distribution

HJB Control

0

2

4

p
(c

)

×10−2

Multiple Shooting

0 20 40 60 80 100 120

Cost

0

2

4

p
(c

)

×10−2

LQR

Figure 3: (a-c) Learned value function for the pendulum with quadratic cost and the trajectories for
HJB control (a), multiple shooting (b) and LQR (c) from 300 randomly sampled starting configurations.
(d) Cost distributions p(c) for the sampled starting configurations. The distributions for HJB control
and multiple shooting are similar while the distribution of LQR requires higher cost for some starting
configurations. (e-g) Learned discontinuous value function for the pendulum with log-cosine cost and
the trajectories for HJB control (e), multiple shooting (f) and LQR (g). HJB control and multiple
shooting can swing-up the pendulum from every sampled starting configuration, while LQR can
only balance the starting configurations for which the action constraint is not active. (h) The cost
distributions p(c) for HJB control and multiple shooting match closely while LQR only achieves low
reward for very few starting configurations.

the log-cosine cost, which implicitly limits the feasible actions, the value function is discontinuous
and contains two ridges leading to the balancing point, because the balancing point cannot be reached
directly from every point within the state domain. The learned value function and the trajectories of
HJB control, multiple shooting and LQR are shown in Figure3 e-g. Multiple shooting and HJB control
achieve the swing-up from every starting configuration while LQR cannot swing-up the pendulum
and only achieves balancing of starting configurations close to the upright position. Furthermore,
the cost distributions for HJB control and multiple shooting match closely (Fig. 3 h). This close
similarity between cost distribution shows that our proposed approach learned the optimal value
function, and the corresponding feedback policy achieves optimal feedback control.
5.3 Flexible Cartpole
The flexible Cartpole is a Cartpole with an additional spring within the linear actuator. Therefore, the
cart with the pendulum is not directly actuated and the force must be transmitted through the spring to
balance the pendulum. Figure 4 shows the optimal actions computed using HJB control, LQR and
multiple shooting as well as the corresponding six dimensional state trajectories consisting of cart
position xc , spring displacement xs and pendulum angle θ. The action and state trajectories (Fig.
4 a-d) as well as the cost distribution from 300 different starting configurations (Fig. 4 e) overlap
closely for HJB control and LQR, which is optimal for this linearized system and quadratic cost.
Only the multiple shooting baseline does a slightly larger compensatory movement of the cart due to
the hand-tuned feedback gains. These hand-tuned gains also cause the larger cost for the multiple
shooting baseline visible in Figure 4 e. This similarity of LQR and HJB control shows that HJB
control has learned the optimal value function and demonstrates that HJB control is also applicable to
six dimensional problems.

6 Related Work
Non-linear control problems are normally solved by trajectory optimization with explicit inequality
constraints on the actions [20]. These approaches yield a single optimal trajectory, that needs to
be replanned for every initial configuration and augmented with a non-optimal tracking controller.
Locally-optimal tracking controller can be obtained when using iterative linear quadratic programming
(iLQR) with action constraints [21] or guided policy search (GPS) [22]. In contrast to these approaches,

7

(a) (b) (c)

0 1 2 3 4 5

Time [s]

−8

−6

−4

−2

0

2

4

6

8

u
[N

]

(d)

Action Trajectory

HJB Control

Multiple Shooting

LQR

(e)

−2

0

2

x
c

[m
]

×10−1 Cart Position

0 1 2 3 4 5

Time [s]

−5

0

5

ẋ
c

[m
/s

]

×10−1

−1

0

1

x
s

[m
]

×10−2 Spring Displacement

0 1 2 3 4 5

Time [s]

−2

0

2

ẋ
s

[m
/s

]

×10−1

−2

0

2

θ
[r

ad
]

×10−1 Pendulum Angle

0 1 2 3 4 5

Time [s]

−1

0

1

θ̇
[r

ad
/s

]

0

2

4

p
(c

)

×10−1 Cost Distribution

HJB Control

0

2

4

p
(c

)

×10−1

Multiple Shooting

0 5 10 15

Cost

0

2

4

p
(c

)

×10−1

LQR

Figure 4: (a-d) State and action trajectories of the flexible Cartpole from two different starting
configurations using the control laws derived by HJB control, multiple shooting and LQR. (d) Cost
distributions p(c) from 300 uniformly sampled starting configurations. The achieved cost for HJB
control and LQR is similar while the achieved cost for multiple shooting is slightly higher due to the
hand-tuned feedback gains.

our proposed method transforms the constrained problem to an unconstrained problem by using
principled cost function and provides the globally optimal feedback controller on the domain Ω.
The transformation of the inequality constraints to the principled cost function has been explored by a
number of authors. Historically the first mention of generalized convex action costs goes back to [23].
Thereafter, the tanh non-linearity derived from the corresponding action cost has been commonly
used in the adaptive dynamic programming literature [24, 25, 26]. Furthermore, [6] and [16] present
similar derivation to ours, with a generic convex action cost. However, these papers do not arrive at
the general convex conjugate theory as these papers only treat the tanh case and do not derive the
HJB in the form of Equation 8 using the convex conjugate g∗.
Global optimal feedback controllers were previously learned by using the least squares solution of the
HJB differential equation [6, 16, 25, 27]. Early on, [6] used radial-basis-function networks to learn
the HJB. Similarly, [25, 27] learned polynomial value function using gradient descent. Most similar
to our approach, [16] used neural networks of the Pineda architecture to learn the average cost solution
of the HJB. To achieve convergence the authors added domain constraints, adapted the discounting
horizon and added stochasticity to the dynamics to smoothen the value function. In contrast to the
previous works, our proposed approach learns the value function using a generic deep differential
network capable of representing discontinuous value functions and only requires the adaptation of the
discounting factor to achieve robust convergence. Furthermore, we provide intuitive insights that
show how changing the discounting factor enables the learning of the optimal value function.

7 Conclusion
In this paper, we showed that constrained optimization problems for finding action-limited optimal
policies can be transformed into an unconstrained problem by designing principled strictly convex
cost-functions, which guarantee optimal policies that naturally obey the actuator limits. Exploiting
this transformation as well as the affine control dynamics of mechanical systems with holonomic
constraints, we showed that the optimal policy can be described in closed form given the differentiable
value function. The differentiable value function can be learned by embedding a deep differential
network within the HJB and using a curricular learning approach. This curriculum changes the
discounting from short- to far-sighted to achieve robust convergence to the desired value function and
avoids the undesired solutions of the HJB, which violate the boundary conditions. The experiments
demonstrated that our approach can learn the optimal feedback controller for non-linear and torque
limited systems. Furthermore, HJB control achieves similar performance as shooting methods but
does not require the replanning for different starting configurations and the hand-tuning of the gains.
In future work, we plan to extend this work to model-based reinforcement learning by combining
the HJB optimal feedback control with model learning in the form of Deep Lagrangian Networks
[12], which ensures learning control-affine dynamics. Iterating between optimal control and model
learning, the optimal policy and model are simultaneously learned. Besides the model learning aspect,
we plan to develop an iterative sampling scheme to construct a domain limited to the surroundings of
the current policy. This reduced domain should enable the scaling of our proposed approach to high
dimensional problems where obtaining the global solution is not feasible.

8

Acknowledgement

This project has received funding from the European Union’s Horizon 2020 research and innovation
program under grant agreement No #640554 (SKILLS4ROBOTS). Furthermore, this research was
also supported by grants from ABB AG, NVIDIA and the NVIDIA DGX Station.

References
[1] I. Mordatch, Z. Popović, and E. Todorov. Contact-invariant optimization for hand manipulation.

In Proceedings of the ACM SIGGRAPH/Eurographics symposium on computer animation, pages
137–144. Eurographics Association, 2012.

[2] M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki, A. Petron,
M. Plappert, G. Powell, A. Ray, et al. Learning dexterous in-hand manipulation. arXiv preprint
arXiv:1808.00177, 2018.

[3] M. Toussaint, K. Allen, K. A. Smith, and J. B. Tenenbaum. Differentiable physics and stable
modes for tool-use and manipulation planning. In Robotics: Science and Systems, 2018.

[4] I. Mordatch, E. Todorov, and Z. Popović. Discovery of complex behaviors through contact-
invariant optimization. ACM Transactions on Graphics, 31(4):43, 2012.

[5] N. Heess, S. Sriram, J. Lemmon, J. Merel, G. Wayne, Y. Tassa, T. Erez, Z. Wang, S. Eslami,
M. Riedmiller, et al. Emergence of locomotion behaviours in rich environments. arXiv preprint
arXiv:1707.02286, 2017.

[6] K. Doya. Reinforcement learning in continuous time and space. Neural computation, 12(1):
219–245, 2000.

[7] W. H. Fleming and H.M. Soner. Controlled Markov processes and viscosity solutions, volume 25.
Springer Science & Business Media, 2006.

[8] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press, 2004.
[9] D. Liberzon. Calculus of variations and optimal control theory: a concise introduction.

Princeton University Press, 2011.
[10] J. A. De Doná and G. C. Goodwin. Elucidation of the state-space regions wherein model

predictive control and anti-windup strategies achieve identical control policies. In Proceedings
of the 2000 American Control Conference, volume 3, pages 1924–1928. IEEE, 2000.

[11] S. Ching, Y. Eun, C. Gokcek, P. T. Kabamba, and S. M. Meerkov. Quasilinear Control:
Performance Analysis and Design of Feedback Systems with Nonlinear Sensors and Actuators.
Cambridge University Press, 2010.

[12] M. Lutter, C. Ritter, and J. Peters. Deep lagrangian networks: Using physics as model prior for
deep learning. In International Conference on Learning Representations, 2019.

[13] M. Raissi and G. E. Karniadakis. Hidden physics models: Machine learning of nonlinear partial
differential equations. Journal of Computational Physics, 357:125–141, 2018.

[14] M. Lutter and J. Peters. Deep lagrangian networks for end-to-end learning of energy-based
control for under-actuated systems. In International Conference on Intelligent Robots and
Systems (IROS), 2019.

[15] M. Riedmiller. Neural fitted q iteration–first experiences with a data efficient neural reinforcement
learning method. In European Conference on Machine Learning, pages 317–328. Springer,
2005.

[16] Y. Tassa and T. Erez. Least squares solutions of the hjb equation with neural network value-
function approximators. IEEE transactions on neural networks, 18(4):1031–1041, 2007.

[17] E. L. Allgower and K. Georg. Numerical continuation methods: an introduction, volume 13.
Springer Science & Business Media, 2012.

[18] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In Proceedings of
the 26th annual international conference on machine learning, pages 41–48. ACM, 2009.

[19] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl. CasADi – A software
framework for nonlinear optimization and optimal control. Mathematical Programming
Computation, In Press, 2018.

[20] A. E. Bryson and Y.-C. Ho. Applied optimal control, revised printing. Hemisphere, New York,
1975.

[21] Y. Tassa, N. Mansard, and E. Todorov. Control-limited differential dynamic programming. In
2014 IEEE International Conference on Robotics and Automation (ICRA), pages 1168–1175.
IEEE, 2014.

9

[22] S. Levine and V. Koltun. Guided policy search. In International Conference on Machine
Learning, pages 1–9, 2013.

[23] S. E. Lyshevski. Optimal control of nonlinear continuous-time systems: design of bounded
controllers via generalized nonquadratic functionals. In Proceedings of the 1998 American
Control Conference, volume 1, pages 205–209. IEEE, 1998.

[24] M. Abu-Khalaf and F. L. Lewis. Nearly optimal control laws for nonlinear systems with
saturating actuators using a neural network hjb approach. Automatica, 41(5):779–791, 2005.

[25] X. Yang, D. Liu, and D. Wang. Reinforcement learning for adaptive optimal control of unknown
continuous-time nonlinear systems with input constraints. International Journal of Control, 87
(3):553–566, 2014.

[26] H. Modares, F. L. Lewis, and M.-B. N. Sistani. Online solution of nonquadratic two-player
zero-sum games arising in the h∞ control of constrained input systems. International Journal
of Adaptive Control and Signal Processing, 28(3-5):232–254, 2014.

[27] D. Liu, D. Wang, F.-Y. Wang, H. Li, and X. Yang. Neural-network-based online hjb solution for
optimal robust guaranteed cost control of continuous-time uncertain nonlinear systems. IEEE
transactions on cybernetics, 44(12):2834–2847, 2014.

Appendix

Analytic Derivation of the 1d LQR System
Let the system dynamics, cost function and value function be defined as Ûx = Ax + Bu, c(x, u) =
Qx2+Ru2, V* = θx2 and V*

x = 2θx. Then Equation 8 is described by

ρ V*+g∗
(
−B(x)V*

x

)
− r(x)− a(x)V*

x = 0 ∀x ∈ X ⊆ R

ρ V*+
1
4

R−1
(
B V*

x

)2
−Qx2− AV*

x x = 0

ρθx2+
1
4

R−1 (2Bθx)2−Qx2−2Aθx2 = 0(
R−1B2θ2+ (ρ−2A)θ −Q

)
x2 = 0.

Solving the quadratic equation yields the optimal parameter of the value function described by

θ =
1
2

B−2
(
(2A− ρ)R±

√
(2A− ρ)2 R2+4RQB2

)
.

System Description
This section describes the exact system specification used for simulation. All simulations were
conducted with 500Hz.

1d-Linear System: The dynamics of the linear system are described by Ûx = Ax+Bu and the state
cost is quadratic r(x) = xT Qx. For the experiments, a simple one-dimensional integrator with the
parameters A = B = 1, Q = 1/2 and the domain −5 ≤ x ≤ +5 is used. For the quadratic cost function
the actions are unconstrained, while for the log-cosine cost the actions are constrained to u+ = 5.5.

Torque Limited Pendulum: The torque limited pendulum is a one-degree-of-freedom non-linear
system with the joint position θ, velocity Ûθ and torque u. For the experiments the canonical system
representation with the state x =

[
θ, Ûθ

]
with θ = 0 being the upward pointing pendulum is used. The

corresponding equations of motions are described by

Üθ =
3

ml2

[
u−

mgl
2

sin(θ)
]
, a =

[
Ûθ, ±

3g
2l

sin(θ)
]
, B =

[
0,

3
ml2

]
, (11)

with the pendulum mass m = 1kg, the length l = 1m and the gravitational constant g = −9.81m/s2. The
state cost is given by r(x) = q0π

2 sin(θ/2)+ q1 Ûθ
2. For the log-cosine cost, the torque is constrained to

u+ = 2.5N/m.

Flexible Cartpole: The flexible Cartpole has in addition to the normal Cartpole a spring within
the linear actuator. This flexible actuator is modelled by two separate carts connected by a spring,

10

whereas only one cart is actuated. Therefore, the controller must excite/compensate the spring to
balance the pendulum. The six dimensional system state is described by x =

[
xc, xs, θ, Ûxc, Ûxs, Ûθ

]
,

with the actuated cart position xc , the spring displacement xs and the pendulum angle θ. For the
balancing experiments, the system is approximated using a linear system described by Ûx = Ax+Bu.
The system matrices are described by

A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 Ks

ma
0 −

Ba

ma
0 0

0 −
Ks

ma
−

Ks

ma

mθg
mp

Ba

ma
−

Bp

mp
−

Bp

mp
−

Bp

mp lθ

0 −
Ks

mp lθ

g(mp+mθ)

mp lθ
−

Bp

mp lθ
−

Bp

mp lθ
−

Bθ (mp+mθ)

mpmθ l
2
θ


BT =

[
0 0 0 1

mc
− 1

mc
0

]
,

with the masses ma = 0.57kg, mp = 0.375kg, mθ = 0.127kg, the spring constant Ks = 200N/m, pendu-
lum length lθ = 0.1778m, the viscous friction coefficients Ba = Bp = 0.5Ns/m, Bθ = 0.0024Nms/rad
and the gravitational constant g = 9.81m/s2.

11

	Introduction
	The Hamilton-Jacobi-Bellman Differential Equation
	Incorporating Action Constraints within the Cost Function
	Strictly Convex Action Cost
	Torque Limited Optimal Policies

	Learning the Value Function with Differential Networks
	Deep Differential Network
	Constrained Optimization of the Value Function
	Boundary Constraint
	Changing the discounting from short to far-sighted

	Terminal States

	Experiments
	Linear System
	Torque Limited Pendulum
	Flexible Cartpole

	Related Work
	Conclusion

