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Abstract—Applying Deep Learning to control has a lot of
potential for enabling the intelligent design of robot control
laws. Unfortunately common deep learning approaches to con-
trol, such as deep reinforcement learning, require an unrealistic
amount of interaction with the real system, do not yield any
performance guarantees, and do not make good use of extensive
insights from control theory. In particular, common black-box
approaches – that abandon all insight from control – are not
suitable for complex robot systems.

We propose a deep control approach as a bridge between
the solid theoretical foundations of energy-based control and
the flexibility of deep learning. To accomplish this goal, we
extend Deep Lagrangian Networks (DeLaN) to not only adhere
to Lagrangian Mechanics but also ensure conservation of energy
and passivity of the learned representation. This novel extension
is embedded within a energy control law to control under-
actuated systems. The resulting DeLaN for energy control
(DeLaN 4EC) is the first model learning approach using
generic function approximation that is capable of learning
energy control because existing approaches cannot learn the
system energies directly. DeLaN 4EC exhibits excellent real-time
control on the physical Furuta pendulum and learns to swing-up
the pendulum while the control law using system identification
does not.

I. Introduction
Control laws are essential to achieve intelligent robots that

enable industrial automation, human-robot interaction and
locomotion. The common approach is to manually derive
the system dynamics, measure the masses, lengths, inertias
of the disassembled mechanical system [1] and finally use
these equations to engineer a control law for this specific
system. Therefore, this engineering approach requires sig-
nificant effort. In stark contrast, many learning to control
approaches, such as Deep Reinforcement Learning [2], [3],
[4], try to learn the control law using black-box methods,
and hence, do not require any engineering for the specific
system. These black-box methods abandon all insights from
control and physics, require millions of samples from the
physical systems, do not yield any performance guarantees
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Fig. 1. The physical Cartpole and Furuta pendulum used to evaluate the
energy-based control of under-actuated systems with learned models. (a)
The Cartpole consists of a horizontally moving cart driven by a rack and
pinion drive. The passive pendulum is attached to the cart and the cart
the pendulum can be swung-up and balanced. The front (b) and top (c)
view of the Furuta pendulum consisting of an actuated rotary pendulum
with a passive vertical pendulum. The vertical pendulum can be swung-up
and balanced by moving the horizontal rotary link. Videos for the swing-up
using the different models are available at https://youtu.be/m3JRYq7Gmgo

and require extensive reward shaping to the desired solution
[5] or random seeds [6].

We propose to bridge this gap by combining the flexi-
bility of deep learning with the theoretical insights from
control theory in order to achieve learning of control that
is independent of the system, applicable for real systems,
cannot yield degenerate solutions and requires little engi-
neering. Therefore, we combine existing control laws for
energy based control with model learning. Such combination
cannot be achieved by standard black-box model learning
techniques [7], [8], [9], [10] because these methods learn
the mapping from joint state {q, Ûq, Üq} to motor torques
τττM , but cannot learn the underlying ODE1 nor the potential
and kinetic energies, because these components are not
observable and hence, cannot be learned supervised. Only
our novel extension of Deep Lagrangian Networks (DeLaN)
[12] is capable of learning the underlying ODE from data
using the joint configurations and motor torques. Compared
to the previous DeLaN, we extend DeLaN to also encode
energy conservation and coherence besides the Lagrangian
Mechanics prior. Therefore, our novel extension of DeLaN
learns the mass-matrix, the centrifugal, Coriolis, gravitational

1One can also not infer the components of the ODE using the Com-
posite Rigid body algorithm [11] in combination with the learned inverse
dynamics mapping, because the black-box function approximation violates
the underlying assumptions.

https://youtu.be/m3JRYq7Gmgo


and frictional forces as well as the potential and kinetic
energy using unsupervised learning. Hence, DeLaN enables
the combination of energy control with learned models
without the knowledge of the system kinematics, which must
be known for standard system identification techniques [13].
In the following we will refer to this combination as DeLaN
for energy control (DeLaN 4EC)

To demonstrate the performance, we apply DeLaN 4EC
under-actuated systems. This control problem is challenging
as the controller must exploit the inherent system dynamics
to solve the task and cannot use high-gain feedback control
to cancel the system dynamics. For example the swing-up
task of the Cartpole and the Furuta pendulum requires the
repeated amplification of the amplitude of the passive pen-
dulum before the pendulum can be swung-up. Furthermore,
these tasks are a standard evaluation task for learning for
control [14]. In contrast to most previous research, we apply
the control laws also to the physical Furuta pendulum (Figure
1) and learn the control without pre-training in simulation.

Contribution
The contribution of this paper is the novel extension of

DeLaN and the combination of DeLaN and energy control
(DeLaN 4EC) for controlling under-actuated systems. First,
we extend DeLaN to incorporate energy conservation and
frictional forces. Therefore, the extended DeLaN not only
adheres to the Lagrangian Mechanics but also ensures energy
conservation, temporal coherence of the energy and the pas-
sivity of the learned representation. Second, we demonstrate
that this combination can achieve energy-control for the
Cartpole and the Furuta pendulum. This is demonstrated
in simulation and on the physical Furuta pendulum in real-
time at 500Hz and without pre-training in simulation. The
performance is compared to the analytic models of the
manufacturer as well as the standard system identification
approach [13].

In the following we provide an overview about related
work (Section II), briefly summarize Deep Lagrangian Net-
works [12] and highlight the proposed extensions to this
approach (Section III). Subsequently, we derive our proposed
control approach, DeLaN for energy control (DeLaN 4EC)
and state the energy-based control law (Section IV). Finally,
the experiments in Section V evaluate the control perfor-
mance for simulated and physical under-actuated systems.

II. Related Work
Controlling under-actuated systems has been addressed

from various perspectives including reinforcement learning
and control theory. For reinforcement learning the swing-up
of passive pendulums is a standard benchmark for continuous
state- and action spaces. These methods learn the control
policy by treating the control task as black-box and improve
the policy using only scalar rewards as feedback. However,
most reinforcement learning algorithms can only be used in
simulation due to the high sample complexity. Only PILCO
[15] learned the Cartpole swing-up on the physical system.
From a control perspective many control laws for specific

under-actuated systems have been proposed [16], [17], [18],
[19]. These papers manually derive the dynamics for each
system using Lagrangian Mechanics and use the specific
equations to derive control laws. For the resulting control
laws the stability can be analyzed and guaranteed given
the true model [18]. Therefore, the control laws achieve
the desired behaviour and cannot exploit ill-posed reward
functions but require engineering of the dynamics and control
law. With DeLaN 4EC we use the control perspective and
embed a control law within a learning architecture to learn
the complete control approach. Rather than using the specific
system dynamics for deriving the control law, we use the
generic Euler-Lagrange ODE, which describes any mechan-
ical system including closed-loop kinematics, and learn the
ODE describing the model from data.

Learning the model from data has been addressed in
the literature by either system identification or supervised
black-box function approximation. For system identification
the knowledge of the kinematic structure is exploited such
that the linkage physics parameters can be inferred using
linear regression [13]. However, the learned parameters must
not necessarily be physically plausible [20], can only be
linear combinations and can only be applied to kinematic
trees [21]. In combination with the composite rigid body
algorithm [11] the parameters of the Euler-Lagrange ODE
including the mass-matrix can be inferred. For the function
approximations standard machine learning techniques such
as Linear Regression [7], [22], Gaussian Mixture Regression
[23], [24], Gaussian Process Regression [25], [9], [26],
Support Vector Regression [8], [27], feedforward- [28], [29],
[30], [10] or recurrent neural networks [31] have been used.
These models learn the forward or inverse mapping from
joint configuration {q, Ûq, Üq} to motor torque τττM . Therefore,
these learned models cannot be used to infer the parameters
of the Euler-Lagrange ODE and do not allow a combination
with classical control besides inverse dynamics or non-linear
feed-forward control [26].

In contrast to these existing methods, DeLaN learns the
Euler-Lagrange ODE directly from data, does not require any
knowledge of the kinematic structure and is not restricted to
kinematic trees. Therefore, DeLaN learns the mass matrix,
the centrifugal-, Coriolis-, gravitational- and frictional forces
as well as the system energy using unsupervised learning and
fits naturally with control theory.

III. Deep Lagrangian Networks

First in Section III-A, the concept of Deep Lagrangian Net-
works [12] is summarized and novel extensions are proposed
in the subsequent sections. Section III-B extends the cost
function with the forward model. Section III-C introduces
friction such that the Lagrangian Mechanics prior is not
violated. Finally, section III-D adds energy conservation as
additional constraint to model learning. Thus, the extended
DeLaN not only complies with Lagrangian Mechanics but
also ensures energy conservation and coherence.



Fig. 2. The computational graph of the Deep Lagrangian Network for control (DeLaN 4EC). Shown in blue and green is the neural network with the three
separate heads computing the potential energy V and the mass-matrix H. The orange boxes construct represent the physics transformations constructing
Euler-Lagrange equation. For energy-based control these components are directly interfaced to the control law to determine the motor-torque. For training,
the gradients are backpropagated through all vertices highlighted in orange.

A. Deep Lagrangian Networks
Deep Lagrangian Networks use the knowledge from La-

grangian Mechanics and encode this prior within a deep
learning architecture. Therefore, all learned models guarantee
that these models must comply with Lagrangian Mechanics.
More concretely, let the Lagrangian be defined as L = T −V ,
where T = 1/2 ÛqTH(q) Ûq is the kinetic energy, V the potential
energy and H the positive definite mass matrix. Substituting
L into the Euler-Lagrange differential equation yields the
ODE described by

H(q)Üq+ ÛH(q) Ûq−
1
2

(
∂

∂q

(
ÛqTH(q) Ûq

))T
︸                                 ︷︷                                 ︸

BC(q, Ûq) Ûq

+
∂V
∂q
=

∑
i

τττi (1)

where τττi are the non-conservative generalized forces includ-
ing motor and frictional forces. Approximating H and V
using deep networks, i.e.,

Ĥ = L̂(q; θ) L̂T
(q; θ)+ ε I V̂ = V̂(q; ψ) (2)

where .̂ refers to an approximation, L̂ is a lower triangular
matrix with a non-negative diagonal, θ and ψ are the network
parameters and ε a small positive constant, one can encode
the ODE by exploiting the full differentiability of the neural
networks [12]. Additionally, the mass matrix H is guaranteed
to be positive definite and the eigenvalues are lower-bounded
by ε . The network parameters can be learned online and
end-to-end, by minimizing the error of the ODE using the
samples {q, Ûq, Üq, τττM } recorded on the physical system, i.e.
minimizing the `i norm between the prediction of Equation 1
and the observed motor torque τττM . Therefore, the super-
position of the different forces is learned supervised, while
the decomposition into inertial, Coriolis, centripetal and
gravitational forces is learned unsupervised.

B. Introducing the Forward Model
Unlike many model learning techniques, DeLaN can be

used as forward and inverse dynamics model, by solving
Equation 1 w.r.t. Üq. Therefore, one can incorporate the loss
of the forward model within the learning of the parameters.
This is especially important for many control approaches,

including energy control, as these use the inverse of the
mass matrix. Therefore, incorporating the forward model
within the learning of the parameters should yield better
approximation of the inverse. Solving Equation 1 for Üq yields

H−1(q)

(∑
i

τττi − ÛH(q) Ûq+
1
2

(
∂

∂q

(
ÛqTH(q) Ûq

))T
−
∂V
∂q

)
= Üq.

Thus the loss function can be extended to minimize the error
of the inverse and forward model, i.e.,

(θ∗,ψ∗) = argmin
θ,ψ

`i

(
f̂ (θ, ψ), Üq

)
+

`i

(
f̂ −1(θ, ψ), τττM

)
+λΩ(θ, ψ)

(3)

where Ω is the l2 weight regularization.

C. Introducing Friction to Model Learning
Incorporating friction within model learning in a non

black-box fashion is non-trivial because friction is an ab-
straction to combine various physical effects. For robot arms
in free space the friction of the motors dominates, for
mechanical systems dragging along a surface the friction
at surface dominates while for legged locomotion the fric-
tion between the feet and floor dominates but also varies
with time. Therefore, defining a general case for all types
of friction in compliance with the Lagrangian Mechanics
is challenging. Various approaches to incorporate friction
models can be found in [32], [33]. Furthermore, if the friction
model includes stiction the dynamics are not invertible
because multiple motor-torques can generate the same joint
acceleration [34].

This paper focuses on friction caused by the actuators.
For actuator friction different models have been proposed
[35], [1], [36], [37]. These models assume that the motor
friction only depends on the joint velocity Ûqi of the ith-joint
and is independent of the other joints [35], [1], [36], [37].
Depending on model complexity a combination of static,
viscous or Stribeck friction is assumed as model prior and
the superposition is described by

τττ fi = −
(
τCv + τCs exp

(
−Ûq2

i /ν
))

sign ( Ûqi)− d Ûqi (4)



where τCv is the coefficient of static friction, d the coefficient
of viscous friction, and τCs and ν are the coefficients of
Stribeck friction. In the following the friction coefficients are
abbreviated as φ = {τCv , τCs , ν, d}. Since the frictional force
τττ f is a function of the generalized coordinates, the frictional
force is a non-conservative and generalized force and can
simply be added to the Lagrange Euler ODE (Equation 1).
For other types of friction this is not true and one needs
to explicitly ensure that one can express the frictional force
as generalized force. Given the model prior of Equation 4
the friction coefficients φ can be learned by treating the
coefficients as network weights.

D. Introducing Energy to Model Learning
Besides the Lagrangian Mechanics objective, incorporat-

ing energy conservation and energy coherence, i.e., ensuring
that Ei(t) ∀t ≥ 0 is at least of Class C2, is natural because the
Lagrangian L contains the system energy. In order to ensure
the conservation of energy, the total energy of the system
must be equal to the summation of the initial system energy
E0, the work done by the actuators Wm and the energy losses
due to friction Eth , i.e.,

E(t) = T(t)+V(t) = E0+WM (t)+Eth(t) ∀t ≥ 0. (5)

The actuator work or the losses to friction can be computed
by numerical integration described by

Wj(t) =
∫ q(t)

q(0)
τττTj (q) dq =

∫ t

0
τττTj (q(u)) Ûq(u) du (6)

where τττ j is either the frictional torque τττF or actuator torque
τττM and Wj(0)B 0. This can also be expressed in using the
change in energy, i.e.,

ÛE = ÛqT (τττM + τττF ) = ÛT + ÛV

= ÛqT H Üq+
1
2
ÛqT ÛH Ûq+ ÛqT ∂V

∂q
.

(7)

Following [21] and recognizing that τττM +τττF is the total force
acting on the mechanical system, Equation 7 not only ensures
energy conservation but also the passivity of the learned
system, because this equality ensures the lower bound on the
total energy, i.e., E(T) − E(0) ≥ −E(0) ∀ T > 0. Therefore,
the learned model representation is guaranteed to be passive
on the training domain given sufficiently low training error.
This property of DeLaN implies that the uncontrolled system
described by the learned dynamics is stable. For black-box
function approximation methods this must not be necessarily
be true because these methods can learn an active system
that is optimal w.r.t. the given cost function. Besides the
conservation of energy, the energy coherence can be used
as additional constraint ensuring that both the kinetic and
potential energy is continuous and differentiable w.r.t. time,
i.e., T,V ∈ C1. Using a first order Taylor approximation this
constraint can be expressed as

T̃(qt+δt ; θ) = T̂(qt ; ψ)+ ÛqT
t H Üqtδt +

1
2
ÛqT
t
ÛH ÛqT

t δt (8)

Ṽ(qt+δt ; ψ) = V̂(qt ; ψ)+ ÛqT
t

∂V̂
∂q

δt . (9)

The resulting equations cannot be directly used as a loss
because the true kinetic- and potential energy of the con-
figuration qt+δt is unknown. Therefore, we bootstrap the
current approximation of Ṽ and T̃ as target value and do not
propagate the gradients through these estimates. In addition,
the energy for a specific joint configuration q∗ is clamped to
a pre-specified value as in [38], i.e. E(q∗, Ûq∗) B 0. Adding
energy conservation (Equation 7) and energy coherence
(Equation 8 & Equation 9) to the optimization problem of
Equation 3 yields the loss for DeLaN 4EC.

IV. Deep Lagrangian Networks for Energy Control
In the previous section, we showed that DeLaN can learn

the mass matrix, the centripetal, gravitational and frictional
forces as well as the kinetic and potential energies using
only the joint measurements (q, Ûq, Üq) and the actuator torques
τττM . Using these properties, energy control can be achieved
by embedding the learned energies within a energy-based
control law. Therefore, DeLaN 4EC enables the control of a
large-class of under-actuated systems, because these systems
are mainly controlled using energy-based control laws and
other black-box identification techniques cannot learn the
system energy and hence, cannot be applied . For energy
control, the control law proposed by Spong et. al. [17], which
is applicable to the Furuta pendulum, the Cartpole and the
Acrobot is used. This control law regulates the energy of
the pendulum Ep to obtain the desired energy E∗ and adds
an additional P-controller on the active joints to avoid the
joint limits. For systems with high friction an additional term
to compensate the friction of the actuator can be added.
Expressing this control law using the mass-matrix and the
potential energy is described by

uE = kE
(
Ep −E∗

)
sign

(
Ûqp cos(qp

)
+Kp

(
q∗a −qa

)
(10)

with the pendulum energy Ep = 1/8 ÛqT
p H22 Ûqp +V(q) and

the desired energy E∗(q∗, Ûq∗) at the desired joint configura-
tion q∗.

V. Experiments
We apply DeLaN 4EC to control two under-actuated

systems: the Cartpole (Figure 1a) and the Furuta pendulum
(Figure 1b). The Cartpole is a horizontally moving cart with
an attached passive pendulum. Moving the cart horizontally
indirectly controls the pendulum and using this indirect con-
trol the pendulum can be swung-up and balanced. Similarly,
the Furuta pendulum (also referred to as whirling pendulum)
consists of an actuated rotary pendulum with a vertical
passive pendulum. Using the rotary pendulum the vertical
link can be swung-up and balanced. These experiments are
standard experiments for learning to control. However, most
previous research only used simulations while we apply these
methods to the physical Cartpole and Furuta pendulum.

A. Experimental Setup
To learn the control task, a smooth exploration policy, i.e.,

the energy controller using the analytic model, interacts for
T seconds with the system and generates data containing
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Fig. 3. The motor-, centrifugal-, Coriolis-, gravitational- and frictional forces, the joint acceleration as well as the kinetic and potential energy for the
swing-up of the simulated and physical Cartpole. Using only the super-imposed motor torques and joint accelerations as supervising feedback, DeLaN
learns to disambiguate between the individual force components and system energies.

Fig. 4. The normalized mean squared error of the forward and inverse
models for the simulated and physical platforms on the test set.

{q, Ûq, Üq, τττM }1...N . For the Furuta pendulum the interaction
time is 120s while the interaction time for the Cartpole is
240s. Using these highly correlated samples the control is
learned offline. After learning the controller, the performance
is evaluated using the normalized mean square error (nMSE)
on the test data (Section V-B) as well as the online control
performance on the swing-up tasks (Section V-C). The online
control evaluation is the more relevant performance measure
as the nMSE can be deceiving and a low nMSE does not
necessarily imply a good control performance. For the swing-

up task the systems are first stabilized to the desired energy
E∗ of the balancing point using energy control and then
balanced at the unstable equilibrium using a PD-controller.
Both, controller operate at 500Hz and the gains are tuned
for each system using the analytic model provided by the
manufacturer and fixed afterwards for each experiment.

The simulated experiments are performed using Bullet
[39] with joint torque as control input. The physical experi-
ments are performed using the Cartpole (Fig. 1a) and Furuta
pendulum (Fig. 1b) manufactured by Quanser. These physical
systems are directly controlled using the DC motor voltage.
For the experiments the voltage to motor-torque conversion
is performed using the parameters of the manufacturer.
Furthermore, both physical systems have unique properties
that make the model learning and the control challenging.
The linear actuation of the Cartpole is a pinion & rack drive
causing significant stiction and this stiction renders the model
learning challenging. In contrast, the links of the Furuta
pendulum are very light weight and even small errors of
motor voltages push the active joints to its joint limit and
stop the episode.

The performance of DeLaN 4EC is compared to the
dynamics parameters of the manufacturer and the white-box
system identification introduced by [13] with the extension
of viscous friction as in [20]. For system identification the
mass matrix is computed using the Composite Rigid Body
algorithm [11] and the potential energy is computed using
the analytic expression V(q) = mgl (cos(q)+ 1), where only
the mass m is inferred from data while the gravitational
constant g and pendulum length l are pre-defined con-

https://www.quanser.com/products/linear-servo-base-unit-inverted-pendulum/
https://www.quanser.com/products/qube-servo-2/
https://www.quanser.com/products/qube-servo-2/
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(b) Physical Cartpole
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Fig. 5. The position θ and velocity Ûθ orbits recorded using energy control to swing-up the passive pendulums. The rows show the different models,
i.e., the analytic model, the system identification model and the DeLaN model while the columns show the different simulated and physical systems. The
dahsed orbit highlights the desired energy E∗. While the learned and the analytic model can swing-up the simulated system and physical Cartpole only
the analytic model and DeLaN 4EC can swing-up the physical Furuta pendulum, while the energy controller using the System Identification model cannot.

stants. These requirements are in stark contrast to DeLaN
4EC, because the white-box system identification approach
requires the kinematic structure defining the link length,
connection between links and gravitational constant, while
DeLaN 4EC must learn the kinematic and dynamic structure
from data. Furthermore, the assumption of knowing the
kinematic structure simplifies the learning of the potential
energy to merely fitting the amplitude of the potential energy
while DeLaN 4EC must not only learn the amplitude but
also learn the shape. We do not compare to other black-
box learning techniques such as neural networks or Gaussian
process regression because these techniques cannot learn
energy and hence, cannot be applied to energy control.

B. Offline Evaluation

Figure 3 shows the learned dynamics model and energies
of the simulated and physical Cartpole executing a swing-up
using the control law described by uE . The dynamics learned
by DeLaN closely resemble the data as well as the frictional-
, inertial-, centrifugal-, Coriolis- and gravitational forces
predicted by the analytic model. Furthermore, the kinetic
and potential energies are learned. Only the learned potential
and kinetic energy for the physical system are slightly scaled
similar to the system identification model. Although the
energies are scaled, both the kinetic and potential energy are

scaled coherently such that the energy conservation holds
as enforced by Equation 9. Furthermore, DeLaN learns the
high stiction τττF of the pinion and rack drive and predicts the
close to zero accelerations Üq and non-zero motor torques τττM
during balancing of the physical Cartpole, given a sufficiently
good initialization of the friction model. The analytic model
and system identification cannot represent the stiction and
predict either zero torques and non-zero accelerations or zero
torques and zero acceleration. Both predictions oppose the
measured data. However, DeLaN suffers from high frequency
noise on the passive pendulum or close to zero components,
whereas the white box models do not because the white
box models consist of global parameters, which are not
susceptible to noise and these models can exploit the known
kinematic structure to infer zero Coriolis or gravitational
forces.

Figure 4 shows the quantitative comparison using the
nMSE defined as

nMSE =
∑N

i=0 ‖xi − x̂i ‖22∑N
i=0 ‖xi + δ‖

2
2

(11)

whereas δ is a small constant for numerical stability. The
nMSE is evaluated on test data performing a swing-up, which
in the case of the Cartpole is identical to the data shown in
Figure 3. For the simulations the analytic model is the true



model, which has a non-zero nMSE because noise is added
to the torques during simulation and the accelerations are
computed using finite differences and are low-pass filtered
because this signal-processing is required for the physical
system. The comparison shows that DeLaN obtains a similar
nMSE as system identification and the analytic model for
the forward model of the simulated systems. For the inverse
model of the simulated systems, DeLaN obtains comparable
nMSE for the actuated joint but slightly increased nMSE
for the passive joints because DeLaN is susceptible to noise
and the nMSE is very sensitive to the noise of the passive
joint as τττp B 0. For the physical systems, DeLaN and system
identification obtain a lower nMSE than the analytic model
for the forward model. For the inverse model, both learned
models achieve better performance than the analytic model
on the active joint and only for the passive joint DeLaN
performs slightly worse due to the noise. This noise is
negligible during optimization and control because the MSE
is dominated by the actuated joint and only the nMSE per
joint amplifies the impact of the noise. Overall, the qualitative
and quantitative evaluation showed that the performance of
the learned models in comparison to the analytic model
achieve comparable performance for the simulated systems
and a slightly better performance for the physical systems.

TABLE I
Percentage of successful swing-ups of simulated and physical

Cartpole and Furuta pendulum for the different models.

Cartpole Furuta
Model Sim Real Sim Real
Analytic Model 1.00 1.00 1.00 1.00
System Identification 1.00 1.00 0.93 0.00
DeLaN 1.00 1.00 1.00 0.90

C. Online Control Evaluation

For the online control experiments the energy-based con-
trol law described in Equation 10 is applied with a con-
trol frequency of 500Hz to 30 different initial joint con-
figurations. Therefore, all models must achieve real-time
computation of at least 500Hz on the physical system to
be able to solve the task. For the simulated experiments,
the starting configuration is randomly sampled while the
physical experiments are performed sequentially and hence,
the starting configuration naturally changes. For the physical
Cartpole we augment the energy controller with an negative
derivative gain to compensate the large viscous friction of the
pinion and rack drive. The percentage of successful swing-
ups is summarized in Table I and the corresponding position
θ and velocity Ûθ orbits for two starting configurations of
the passive pendulum are shown in Figure 5. Videos of
the swing-up of the physical Cartpole and physical Furuta
pendulum can be found at https://youtu.be/m3JRYq7Gmgo.

For the simulated systems the analytic and the learned
models achieve the successful completion of the swing-
up. Only the system identification model fails on 2 trials.
These unsuccessful completions are caused by the balancing

controller because the system identification model swings-
up the pendulum with slightly too much or too low energy
such that the PD-controller fails to stabilize the pendulum.
Furthermore, the resulting trajectories for the learned models
are indistinguishable. For the physical Cartpole all models
achieve smooth real-time control and swing-up the pendulum
for 30 consecutive times from varying starting configurations.
For the physical Furuta pendulum only the analytic model
and DeLaN 4EC achieve the successful swing-up, while the
system identification model can only stabilize the pendulum
to a low amplitude cycle, which does not reach the balancing
point. For 30 trials, DeLaN 4EC achieves the successful
completion for 27 trials. The three unsuccessful trials are
caused by the PD-Controller not being able to stabilize the
pendulum because DeLaN 4EC swings up the pendulum with
slightly less energy than the analytic model and the balancing
PD-Controller is very sensitive to these changes in velocity
at the switching point. Tuning the PD-controller gains w.r.t.
to DeLaN 4EC results in the successful completion of all 30
trials but decreases the performance of the analytic model.
For fair comparison the gains were fixed between the ex-
periments and optimized for the analytic model. The system
identification model fails to swing-up the pendulum because
this approach learns a too low mass for the pendulum and
hence, can only stabilize the pendulum to a low amplitude
oscillation. The learning fails because the regressor of the
system identification has too low rank and can only infer a
linear combination of the dynamics parameters [40].

DeLaN 4EC is capable of solving the swing-up for the
simulated and physical Cartpole and Furuta pendulum using
a 500Hz real-time control loop. The performance of DeLaN
4EC is comparable to the analytic model and DeLaN 4EC
achieves the swing-up of the physical Furuta pendulum,
where system identification does not, despite having a lower
nMSE compared to the analytic model. This shows that a low
nMSE does not necessarily imply good control performance.

VI. Conclusion
In this paper, we introduced the concept of Deep La-

grangian Networks for energy control (DeLaN 4EC), a
learning to control approach that combines the flexibility of
deep learning with the insights from control theory. This
combination is enabled only because DeLaN 4EC imposes
Lagrangian Mechanics, conservation of energy and energy
coherence on a generic deep network and hence, learns a
physically plausible model. We showed that DeLaN is able
to learn the inertial-, centripetal-, Coriolis-, gravitational-
and frictional forces and the potential and kinetic energy
from sensor data containing only joint configuration and
motor torque. Therefore, learning these forces and energies is
unsupervised and does not require any knowledge about the
kinematic structure. Other model learning algorithms either
require the kinematic structure to learn these components
such as system identification or cannot learn the force
components or system energies such as neural networks or
Gaussian process regression. The qualitative and quantitative
offline evaluation showed that the normalized MSE of DeLaN

https://youtu.be/m3JRYq7Gmgo


in comparison to the analytic model is comparable for the
simulated systems and better for the physical systems. For the
online control task, DeLaN 4EC accomplishes the swing-up
of the physical Cartpole and Furuta pendulum from different
starting configurations by computing the system energies
within a 500Hz real-time control loop. In contrast, the system
identification model only achieves the successful swing-up of
the physical Cartpole but not the physical Furuta pendulum,
despite having comparable nMSE to DeLaN 4EC.
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