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Abstract
Learning optimal policies describing a feedback control law capable of executing optimal trajectories is essential for many robotic
applications. Such policies can either be learned using reinforcement learning or planned using optimal control. While reinforcement
learning is sample inefficient, optimal control can only plan a single optimal trajectory from a specific starting configuration. To
overcome these shortcomings, the planned trajectories are frequently augmented with a tracking controller, that has no optimality
guarantee, and are constantly replanned to adapt the optimal trajectory to tracking errors

In this paper we propose a new algorithm that is based on optimal control principles but learns an optimal policy rather than a single
trajectory. Using the special case of the Pontryagin’s principle stating optimality as the Euler-Lagrange equation, we can learn an
optimal policy by embedding a policy network inside the Euler-Lagrange equation and minimizing the error of this equality. This
approach is inspired by our previous work on Deep Lagrangian Networks that showed that minimizing the error of the Euler-Lagrange
equation can be used to learn the system dynamics unsupervised. Our proposed approach enables us to learn an optimal policy
describing a feedback control law in continuous time given a differentiable cost function. In contrast to existing optimal control
approaches, the policy can generate an optimal trajectory from any point in state-space without the need of replanning. The resulting
approach is currently evaluated on a robotic planning task requiring significant adaption to dynamic changes.
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1 Extended Abstract

1.1 Introduction

Reinforcement Learning (RL) provides an methodology to learn a policy, i.e., a mapping from system state to action, maximizing a
scalar reward by solely interacting with a black-box environment through specified actions and the system state. Using this approach
many control tasks such as the robot locomotion [1, 2], robot manipulation [3, 4], control of under-actuated system [5, 6, 7] and
games [8, 9] have been successfully addressed. However, these methods usually require millions of sample rendering the learning
on the physical systems unrealistic [4], require reward shaping to achieve fast learning [10] and the achieved performance is not only
dependent on hyperparameters but also the random seed [11]. In contrast to reinforcement learning, optimal control (OC) plans a
trajectory of the system states or actions to maximize a scalar reward function given the true environment model. The resulting solution
is an open-loop control sequence and must be augmented with a tracking controller and re-planning to be applied to a noisy physical
systems. While the tracking controller tracks the currently known control sequence, the re-planning updates the optimal sequence
w.r.t. the current tracking error. Similar to reinforcement learning, these approaches have also been applied to robot locomotion
[12, 13], robot manipulation [14] and control of under-actuated systems [15]. In addition, most RL and OC algorithms use discrete
time rather than continuous time. For RL the most notable exception for continuous time is the work of Kenji Doya [16]. For OC the
discretization of time is especially important as the resulting artifacts might yield solutions violating hard constraints.

In this paper we propose Deep Optimal Control, a continuous time optimal control algorithm which similar to reinforcement learning
learns an optimal policy rather than an single optimal trajectory. Deep optimal control is off-policy and the resulting policies describe
a feedback control law and do not require any replanning. These properties are achieved by using the special case of Pontryagin’s
principle stating optimality of any trajectory using the Euler-Lagrange differential equation and learning a policy-network that fulfills
these equations on the state-space. More concretely, the policy network and the corresponding derivatives are embedded in the
differential equation and the error on the differential equation is minimized using samples. Such learning is possible due to the fully
differentiability of deep networks and has been demonstrated in our previous research on Deep Lagrangian Networks [17]. There we
showed that the Euler-Lagrange differential equation can be used as training objective to achieve unsupervised learning of the system
dynamics and the system energies.

In the following we briefly formulate the specific OC problem (Section 1.2) and propose our Deep Optimal Control approach in
section 1.3. Subsequently, we introduce our current evaluation approach in section 1.4.

1.2 Problem Formulation

Let J be the reward function and π be the policy. Then the optimal policy π∗ maximizing the reward for the time horizon T and fixed
starting point is described by

π∗ = argmax
π

J(q) = argmin
π

∫ T

0
r(q, Ûq, t)dt with π(q, t) = Ûq, q(0) = q0, q ∈ S ⊆ Rn q ∈ U ⊆ Rn (1)

where q, Ûq describe the system configuration and r is the scalar reward at time t. This definition simultaneously implies that the
trajectory q(t) and the corresponding acceleration Üq(t) is described by

q(t) = q0+

∫ t

0
π(q(u), u)du, Üq(t) =

dπ
dt
=
∂π

∂q

T ∂q
∂t
+
∂π

∂t
=
∂π

∂q

T

π+
∂π

∂t
. (2)

Furthermore, Üq B u defines the desired change of the dynamics and hence, a feedback-control law. The optimization problem of
Equation 1 is a special case of the Pontryagin’s Principle and one can derive a necessary optimality criteria for all trajectories, that are
at least twice differentiable, i.e., q ∈ C2 [18]. The necessary condition can be derived using calculus of variations by perturbing the
locally optimal trajectory, i.e., q = q∗+ δq, and setting the change in cost δJ to zero. Following this derivation shows that all optimal
trajectories must fulfill the Euler-Lagrange equation and the boundary conditions described by

∂L∗(t)
∂q

−
d
dt
∂L∗(t)
∂ Ûq

= 0 ∀ 0 < t < T (3)

∂L∗(t)
∂ Ûq

T

δq(t) = 0 for t ∈ {0, T} (4)(
L∗(T)−

∂L∗(T)
∂ Ûq

T

Ûq∗(t)
)
δt = 0 for t = T (5)

where L∗(t) = r(q∗(t), Ûq∗(t), t) is the Lagrangian of the optimal trajectory q∗(t), Ûq∗(t). For the stated problem only the boundary
condition at t = T is relevant, because the initial value q0 guarantees that δq(0) = 0. Furthermore, we will only consider the infinite
time horizon, i.e. T =∞, and discounted rewards, i.e., all reward functions r must be of form

r(q, Ûq, t) = exp (−λt) r̃(q, Ûq) (6)
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where λ is a positive discounting constant. The discounted reward formulation guarantees that the integral of Equation 1 is defined
for the infinite time horizon. Substituting Equation 6 into the boundary conditions (Equation 4 & Equation 5) and taking the limit
yields

lim
T→∞

∂L(T)
∂ Ûq

T

δq(t) = lim
T→∞

exp (−λT)
(
∂r̃
∂ Ûq

T

δq(t)
)

= 0 (7)

lim
T→∞

(
L(T)−

∂L(T)
∂ Ûq

T

Ûq(t)
)
δt = lim

T→∞
exp (−λT)

(
r̃ −

∂r̃
∂ Ûq

T

Ûq(t)
)
δt = 0. (8)

These equations show that the boundary constraints are always fulfilled for the discounted reward and infinite time horizon problem.
Therefore, the optimal policymust only adhere to the Euler-Lagrange differential equation described byEquation 3 and is time-invariant
due to the infinite horizon, i.e., π∗ = π(q).

1.3 Deep Optimal Control

Optimal control would use a differential equation solver to solve for the optimal trajectory using numerical optimization leading to
a single trajectory. Instead of solving this differential equation, we propose Deep Optimal Control to learn a policy that fulfills the
necessary optimality condition in continuous time. Therefore, we embed a policy network π(q; θ) inside the differential equation
and minimize the error of the equality. More concretely, let r be a known and differentiable reward function, than the Euler-Lagrange
equation is expressed by

∂r
∂q
−

(
∂

∂q
∂r
∂ Ûq

)T
Ûq−

(
∂

∂ Ûq
∂r
∂ Ûq

)T
Üq−

∂

∂t
∂r
∂ Ûq
= 0, (9)

exp (−λt)

(
∂r̃
∂q
−

(
∂

∂q
∂r̃
∂ Ûq

)T
Ûq−

(
∂

∂ Ûq
∂r̃
∂ Ûq

)T
Üq+λ

∂r̃
∂ Ûq

)
= 0. (10)

It is important to note that r̃ is independent of time, and hence, this equality depends only on system configuration q, Ûq and the
discounting factor λ but not on time for t�∞. The dependence on λ is important as λ tunes the short- or farsightedness of the optimal
policy. Substituting Ûq = π and Üq = (∂π/∂q)T π and reformulating this equality as cost function yields the optimization problem for
learning the optimal parameters θ∗ of the policy. The resulting optimization problem is described by

θ∗ = argmin
θ

N∑
i=1

∂r̃i
∂q
−

(
∂

∂q
∂r̃i
∂π

)T
π−

(
∂

∂π

∂ri
∂π

)T
∂π

∂q

T

π+λ
∂r̃i
∂π

2

2

(11)

where r̃i = r̃(qi, π(qi;θ)) and ‖.‖2 is the l2-norm. Due to the fully differentiability of the neural network ∂π/∂q can be computed in
closed form and machine precision [19]. As no component within the objective is dependent on time, the optimization problem can be
solved by uniformly sampling qi in the state domain S. The samples must not originate from the current policy as the optimal control
formulation is off-policy. Despite that the optimization objective is quite different from standard optimization losses our previous
work on Deep Lagrangian Networks showed that such objective can be used for training a deep network.

1.4 Evaluation

Currently we are evaluating this approach on a simple toy task and a robotic planning experiment. For the toy task, Deep Optimal
Control is applied to a simple 2d navigation experiment in continuous time. Within this environment the agent can choose between
to equally important goals. Depending on the starting position, one goal is better than the other. However, during execution minimal
tracking errors due to transition noise can significantly change the optimal trajectory. Therefore, standard optimal control algorithms
cannot solve this problem without replanning while the policy learned using Deep Optimal Control should yield optimal performance.
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