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Abstract
In the last few years, deep learning has alleviated most fields of machine learning to new levels. However, deep learning
has yet to prove its value in the field of model learning in robotics. Currently, dynamics models have to be derived ana-
lytically in a tedious process of measuring the mechanical system part by part. In applications like automated industrial
production where high precision and reliability are required, robot movements are engineered precisely costing money
and time. The reason why the models are not learned may be the fact that data-based approaches lack the physical
plausibility of analytical models. In this thesis I propose Deep Lagrangian Network (DeLaN) a deep learning approach
to inverse dynamics models. The novelty of DeLaN is the incorporation of a physics prior, the Lagrange-Euler partial
differential equation. Thus, DeLaN encodes physical knowledge while facilitating standard model learning advantages,
like end-to-end training using data samples. I compare my proposed approach to a standard feed-forward neural network
(FF-NN) in various experiments to showcase the usefulness of DeLaN in learning inverse dynamics models online. I am
also highlighting advantages and limitations of my approach based on the characteristics inherited from the physics prior.
In a nutshell, DeLaN is able to learn and control a real robot and provides capabilities to extrapolate to unseen tasks.

Zusammenfassung
In den letzten Jahren hat Deep Learning viele Bereiche des Machine Learnings auf neue Ebenen gehoben. Deep Lear-
ning muss seinen Wert für Model Learning in der Robotik allerdings noch beweisen. Dynamische Modelle werden aktuell
noch in einem aufwendigen Prozess analytisch hergeleitet, wobei das mechanische System Stück für Stück ausgemessen
werden muss. In Anwendungen, wie der automatisierten industriellen Produktion, die hohe Präzision und Zuverlässig-
keit benötigen, werden Roboterbewegungen präzise von Ingenieuren modelliert, was Zeit und Geld kostet. Der Grund,
warum die Modelle aktuell nicht gelernt werden, könnte der Fakt sein, dass datenbasierte Ansätze nicht die physikalische
Plausibilität analytischer Modelle bieten. In dieser Arbeit stelle ich Deep Lagrangian Network (DeLaN) vor, einen Deep
Learning Ansatz für inverse Dynamik Modelle. Die Neuheit an DeLaN ist die Einbindung einer physikalischen Voraus-
setzung, der partiellen Lagrange-Euler Differentialgleichung. Damit enkodiert DeLaN physikalisches Wissen und erlaubt
gleichzeitig die Nutzung von Vorteilen des klassischen Machine Learnings, wie Ende-zu-Ende Training basierend auf ein-
zelnen Messwerten. Ich vergleiche meinen Ansatz in verschiedenen Experimenten zu einem klassischen Feed-Forward
Neural Network, um die Anwendbarkeit DeLaNs auf Online Learning von inversen Dynamik Modellen zu zeigen. Außer-
dem stelle ich die Vorteile und Einschränkungen meines Ansatzes dar, die sich aus den Eigenschaften der eingebundenen
physikalischen Voraussetzung ergeben. Kurz gesagt, DeLaN ist in der Lage in Echtzeit zu lernen und einen echten Roboter
zu steuern und es bietet dabei die Fähigkeit zu neuen, unbekannten Aufgaben zu extrapolieren.
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1 Introduction
In recent years deep neural networks have led to great advances in many fields of machine learning. From already being
the state-of-the-art in almost all computer vision applications [1, 2] to becoming more and more prominent in many
other fields like reinforcement learning [3], speech recognition [4], or artificial intelligence in games [5].

One field of research where deep learning has yet to prove itself is model learning. That is the utilization of ma-
chine learning techniques to approximate a physical model. Learning models can be used for a variety of cases, e.g.,
for controlling a robot. Given the success of deep learning in other fields, applying it to model learning promises good
results. Though, currently most engineers prefer classical off-the-shelf modeling as it ensures physical plausibility - at
a high cost of precise measurements1 and engineering effort. Finding a simple yet efficient way to derive models that
perform on a similar or even higher level than their analytical counterpart could save time and money.

However, to enable learn models with deep neural networks, three major problems have to be faced. First, a prob-
lem in many machine learning applications is that, in order to train a sufficient model, huge amounts of labeled training
data are required. This is especially important for deep learning. Depending on the task this data is more widely available
(e.g., in image classification existing datasets can be used to pre-train a model [7]) while it is hard to obtain elsewhere.
Learning the dynamics model of a real robot requires to collect training data. Thus, in order to gather data points, tra-
jectories have to be executed on the (real) robot for which a model should be learned [8, 9]. Given the infinite possible
trajectories it is hard to find a set of training data that is both, large enough to lead to a good model and small enough
not to exceed memory and time limitations. Moreover, if the task for which the model should be learned is unknown
at training time it becomes particularly hard to find a sufficient training dataset. Second, the approximations learned
in model learning are data-based and, thus, are unaware of any underlying physics. This lack of physical plausibility
may be one reason why engineers are currently not using model learning. While the performance of learned models
may be comparable to analytical models they do not ensure robustness and extrapolation to unknown samples. It is,
however, not a trivial task to incorporate physics into a machine learning model while keeping the benefit of end-to-end
training which is provided by the data-based approaches. Third, (deep) neural networks are often referred to as being
intransparent or "black-boxes". This is due their many layers forming a complex architecture that is hard to understand or
visualize. Although their complex structure is one of the reasons of their successes in the past, it is desirable to increase
the understanding of a learned neural network. While some efforts have been made to make deep neural networks more
accessible [10, 11], it remains a continuing research effort.

In order to overcome those issues I propose the following solutions. First, as shown by various authors [12, 13, 14],
online learning can be used to obtain train samples on-the-fly. This thesis utilizes online learning by collecting data
points while the robot is executing its trajectories and using those to train and update the model. Thereby, it does not
only overcome the need of pre-collected data but also collects data that is relevant for the task at hand. Moreover, I
introduce a system architecture featuring an asynchronous training process. This ensures the applicability of the learned
model in real-time where high prediction rates, much faster than training is currently possible, are required. Second, I
propose the combination of a standard feed-forward neural network (FF-NN) and a physics prior based on Lagrangian
mechanics that is called Deep Lagrangian Network (DeLaN). DeLaN enables the use of neural networks while profiting
from knowledge already present. Furthermore, it can be shown that the proposed method could be used to incorporate
a variety of other partial differential equations (PDEs) into a neural network. The resulting network architecture can
be trained end-to-end which allows the use of standard optimization algorithms that are already widely used in deep
learning. This means that DeLaN can still be used in the same way as any other model learning approach, i.e., it does
not require any additional data. Moreover, DeLaN is able to model the inverse dynamics model of any mechanical system
without additional knowledge about the system beside its degrees of freedoms (dofs). It is, thus, a general means to
model a physical system. Third, by enforcing physical plausibility via incorporating prior knowledge some transparency
is added to the model as it becomes more clear which part of the function is learned and how the learned approximation
fits into the final model. However, it still allows to benefit from the modeling power of deep neural networks. This may
increase the acceptance of learned models in areas where reliability is important, e.g., in industrial applications or in
human-robot interaction tasks.

In this thesis I conduct multiple experiments to showcase the performance of DeLaN in comparison to both an ana-

1 Highly precise models usually require taking the physical system apart and measuring the separated pieces [6].
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lytical model as well as a classical FF-NN. DeLaN is tested in a real-time scenario on a simulated robot as well as the real
seven dofs robot Barrett WAM. The experiments show that DeLaN performs on a comparable level with the analytical
model maintaining a good extrapolation to unseen samples. Furthermore, it can be trained like any other neural network
in an end-to-end fashion without any adaptation to data collection or the optimization algorithms.

During the work on this thesis a paper was created and submitted to ICLR [15]. It is currently under a double blind
review process.

The thesis is structured as follows. Chapter 2 explains the background this work is built on and showcases impor-
tant related work. Chapter 3 contains the mathematical derivations required to incorporate a PDE into a neural network
as well as the description of the architecture of DeLaN. The experiments and their results are described in Chapter 4
followed by a discussion about the idea and approach in Chapter 5. Chapter 6 concludes my thesis by summarizing the
results of this work and highlighting future work to improve DeLaN.

2



2 Background and Related Work
In this chapter I highlight the background this work is built on as well as relevant related work. Section 2.1 explains
the basics of model learning and inverse dynamics control, Section 2.2 covers deep learning, and Section 2.3 closes with
related works.

2.1 Model Learning and Inverse Dynamics Control

Nguyen-Tuong et al. describe models as the the basic underlying mechanisms of the world. In robotics, for example,
models are required for kinematics, inverse dynamics control, autonomous navigation and many more applications. As
good models are hard to obtain analytically due to a lack of physical knowledge, acquiring them with techniques from
machine learning has been an upcoming field of research called model learning. [13] This thesis focuses mainly on
learning inverse dynamics models. A great overview of the basics and challenges of model learning can be found in a
survey by Nguyen-Tuong et al. [13].

Nguyen-Tuong et al. name four types of models: forward, inverse, mixed, and multi-step prediction models. For-
ward models directly represent a mapping from action to state, i.e., they represent the state-transfer function of the
system. Opposite to that, inverse models describe the action required to reach a desired state. Mixed models are a
combination of the two aforementioned models that can be used to tackle ill-posed inverse problems by introducing a
forward model that encodes additional information. Finally, multi-step prediction models are similar to forward models
although they do not only predict the state-transition for the next step but rather for a finite set of future steps. [13]

Three major modeling architectures exist. First, direct modeling is a straightforward approach where a direct map-
ping from input to output is learned. This is also the modeling architecture used in this work where the inputs are
defined as the desired state and the outputs are the torques required to reach that state [16]. Inverse dynamics can be
directly modeled as the problem is well-defined. Second, indirect modeling is used for ill-posed problems like inverse
kinematics. Here, a direct relationship from input to output is not given. A prominent example of indirect modeling is
feedback error learning [17, 18]. It uses the error of a feedback controller to learn the feed-forward model and has also
been applied to inverse dynamics learning in the past. One advantage of using the feedback error is that it measures
the performance on the task rather than on the training samples. Third, distal teacher learning is also used for ill-posed
problems but utilizes a forward model to steer the teaching of an inverse model [19]. By minimizing the error of a unique
forward model the non-uniqueness of the inverse model can be mitigated.

Craig gives a summary of mechanics in robotics including the formulation of inverse dynamics for a robot [20]. In
general, models describing system dynamics, i.e., the coupling of system-input ⌧ and state q, are essential for model-
based control approaches [21]. Depending on the control approach, the control law relies either on the forward dynamics
model f , a mapping from control input to the change of system state, or on the inverse dynamics model f�1, a mapping
from system change to control input, i.e.

f(q, q̇, ⌧ ) = q̈, f
�1(q, q̇, q̈) = ⌧ .

Inverse dynamics control [22] is a prominent example of utilizing the inverse model to compensate system dynamics,
while model-predictive control [23] or optimal control [24] use the forward model to plan the control input.

In contrast to model learning, classical mechanics use analytical models. Those analytical models are often obtained
using parameter estimation methods on pre-defined physical models which optimize the model parameters from mea-
sured data either in a special parameter estimation process [25] or online using adaptive control [26]. A prominent
example to derive a model from known parameters is the recursive Newton-Euler algorithm (RNE) [27]. In order to
achieve precise models with this techniques it is necessary to know certain properties of the robot, e.g., inertia tensors or
centers of mass. To gain this information either complex simulations are required or, for more precise models, the system
has to be taken apart and each part has to be measured individually [6]. This has to be repeated for each individual
mechanical system.

3
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Figure 2.1.: Schematic drawing of a single neuron (a) and a multilayer perceptron with one hidden layer (b).
(a) The shown neuron represents the j-th neuron of the i-th layer of a multilayer perceptron. It takes all
outputs of the previous layer as input and multiplies each with a respective weight. The weighted inputs are
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(b) A fully connected multilayer perceptron with one hidden layer. A single neuron is highlighted by the same
color coding as seen in (a). Each layer except for the output layer contains a bias input with value 1 weighted
by the respective bias parameter bj

i
. While the neurons of one layer are independent, each one relies on all

neurons of the previous layer.

2.2 Deep Learning

Deep learning is a class of machine learning algorithms that use multiple layers of neurons inspired by those of the
human brain. In general, the goal of any machine learning algorithm is to learn a mapping from a (multidimensional)
input space X to a (multidimensional) output space Y . Models are learned as an approximation from samples x ! y of
the true function by means of optimization. From their first appearance in the 1940s, neural networks have shown great
success in various fields of machine learning. An overview of the history of deep learning is given by Schmidhuber [28].

The most simple form of deep neural network is the Multilayer Perceptron (MLP) or feed-forward neural network
(FF-NN). It consists of multiple layers where each layer is a set of neurons with multiple inputs that are weighted
and summed up, i.e., an affine transformation is performed. Afterwards, a non-linear activation function is applied and
the result is passed to the neurons of the next layer. The i-th layer of a FF-NN is defined as

hi = gi (Wihi�1 + bi) = gi (ai) , (2.1)

where Wi are the weights applied to the inputs of the previous layer hi�1, bi are biases and gi is the non-linear activa-
tion function. ai is called the activation of the neuron. [29]

A schematic drawing of a single neuron can be seen in Figure 2.1a. It shows the computational graph of the affine
transformation and the non-linearity. Figure 2.1b shows a multilayer perceptron with one hidden layer. The single neu-
ron of Figure 2.1a is highlighted by color.
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Figure 2.2.: Activation functions and their derivatives. On the left, the Rectified Linear Unit (ReLU) and its derivative are
plotted. On the right, Softplus, with parameter � = 1.0, and its respective derivative is shown. Both activation
functions result in a positive output that has no upper bound. It can be seen that Softplus resembles a smooth
approximation of the ReLU function.

In this work I use two different activation functions: Rectified Linear Unit (ReLU) [30] and Softplus [31]. They are
defined as

ReLU(a) =

8
<

:
a if a > 0

0 otherwise
, Softplus(a) =

1
�
log (1 + exp(�a)) .

In Softplus, � is an arbitrary parameter, although, the higher � the closer Softplus approximates ReLU. Figure 2.2 shows
the plots of both activation functions and their derivatives for activations a = [�3, 3]. It can be seen that Softplus has a
similar, but smoother, shape as ReLU.

When training a neural network the weights and biases have to be learned, i.e., a loss function is optimized w.r.t.
the parameters ✓ = (W,b). This is often done using back-propagation [32] where the gradient of an error function is
passed backwards through the network. Multiple optimization algorithms have been proposed in the past, e.g., ADAM
[33], AdaGrad [34], or RMSProp [4]. In today’s frameworks, the computation of the gradients is usually done using
the reverse of the automatic differentiation [35], often called Autograd. An exhaustive overview of neural networks and
deep learning is given by Haykin [36] and Goodfellow et al. [29].

2.3 Related Work

In this section I highlight the decisions made by related works compared to my approach.

When learning models, mostly standard machine learning techniques are applied to fit either the forward- or inverse-
model to sensor data. Often used algorithms are Linear Regression [9, 37], Gaussian Mixture Regression [38, 39],
Gaussian Process Regression [40, 12, 41], Support Vector Regression [42, 43], feed-forward- [44, 45, 46, 47] or recur-
rent neural networks [8]. Only a few exceptions incorporate prior knowledge into the learning problem. Atkeson et al.
used the Newton-Euler formalism to derive physics features such that learning of the inverse dynamics model simplifies
to linear regression [48]. Similarly, Ledezma et al. encoded the equations describing the analytical inverse dynamics
model, derived using the Newton-Euler formalism, as network and trained the network using end-to-end training [46].
Sanchez-Gonzalez et al. used the graph representation of the mechanical system as structured input [47]. However,
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those approaches are specific to the task at hand and do not extend easily to various systems as the approach I propose
does. Hu et al. summarize multiple approaches from different fields of study into the general idea of incorporating prior
knowledge into a neural network. They call it generalized-constrained neural network (GCNN). Their work states various
ways how and where knowledge could be encoded in a neural network. Following their definition, my approach would
also be a GCNN. [49] However, they do only describe the idea of constraining a neural network on a very basic level and
are not mentioning PDEs.

With DeLaN I follow the line of structured learning problems but use a more general formulation. Rather than re-
quiring knowledge of the physical system to construct a graph or derive the Newton-Euler approach, DeLaNs are
identical for all mechanical systems and do not require specific knowledge of those. Only the system state and input
is specific to each system but neither the topology nor the optimization procedure.

In related works, the learned models were either trained using data collected offline [9, 8] or online [12]. The on-
line data collection does not require collecting samples prior to training and provides better models as the acquired data
distribution depends on the control law and task [12]. Therefore, I also utilize online learning with the additional advan-
tage of mitigating the problem of persistent excitation [50, 25]. Furthermore, being able to train online makes DeLaN a
more versatile approach compared to slow training models like Gaussian Process Regression.

When evaluating the model performance, either the mean squared error (MSE) [9, 8, 46] on test data or the track-
ing error of desired trajectories [12, 47] was used. The tracking error is the relevant performance indicator as the MSE
exaggerates model performance [51, 52] based on samples and a better MSE does not necessarily imply a better tracking
error. Thus, within my evaluation I assess the performance using the tracking error as it measures the performance w.r.t.
the task that is performed. In addition to most previous works, I also strictly limit all model predictions to real-time and
use untrained models, i.e., the models are randomly initialized and must learn during the experiment. It should be noted
that training is performed using the MSE.

The combination of PDEs and neural networks has also previously been investigated in literature. Early on Lagaris
et al. proposed to learn PDE solutions using neural networks [53, 54] and currently this topic is being rediscovered
by various authors [55, 56, 57]. Most research focuses on using machine learning to overcome the limitations of PDE
solvers. Sigarno et al., for example, proposed the Deep Galerkin method to solve a high-dimensional PDE from scattered
data [56]. Similar to this work, Raissi et al. took the opposite standpoint of using the knowledge of the specific PDE
to structure the learning problem and achieve lower sample complexity [58]. One approach by Sahoo et al. uses deep
learning to discover equations that relate from input to output of a system, i.e., they discover PDEs by learning a model
[59].

I follow the same motivation of utilizing information from a PDE. But rather than explicitly solving the PDE, DeLaN
only uses the structure of the PDE to guide the learning problem of inferring the equations of motion. Thereby, the PDE
is only implicitly solved. In addition, the proposed approach uses a different encoding of the partial derivatives, which
achieves the efficient computation within a single feed-forward pass, enabling the application of DeLaN within real-time
control loops.
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3 Approach
In this chapter I showcase the derivations and network architecture required to encode Lagrangian Mechanics as physics
prior into a neural network. I keep all derivations on a general level as the approach is applicable to any physical
system. In the experiment chapter (Chapter 4) the approach is extensively evaluated on inverse dynamics control of a
robot. Starting in Section 3.1 I highlight the basic equations of Lagrangian Mechanics that are the basis upon which the
approach is built. Section 3.2 states the learning problem and requirements that have to be met in order to encode a PDE
into a neural network. Section 3.3 introduces DeLaN and shows how it can be built from a standard FF-NN. The chapter
is concluded in Section 3.4 by a description of the online learning system used in this thesis.

3.1 Lagrangian Mechanics

Describing the equation of motions for mechanical systems has been extensively studied in the past. Therefore, various
formalisms to derive these equations exist. Among the most prominent are Newtonian, Hamiltonian, and Lagrangian
Mechanics. The proposed network architecture of this work, DeLaN, is based on Lagrangian Mechanics [60, 22, 61], more
specifically the Lagrange-Euler formulation with non-conservative forces and generalized coordinates [60]. Generalized
coordinates are coordinates that uniquely define the system configuration. The Lagrange-Euler formalism defines the
Lagrangian L as a function of generalized coordinates q describing the complete dynamics of a given system. It should
be noted that the Lagrangian is not unique and every L, which yields the correct equations of motions is valid. In general,
the Lagrangian is chosen to be

L = T � V, (3.1)

where T is the kinetic energy and V is the potential energy of the system. The kinetic energy T can be computed for all
choices of generalized coordinates using T = 1/2 q̇|

H(q)q̇, where H(q) is the inertia matrix which has to be symmetric
and positive definite [22]. The positive definiteness ensures that all non-zero velocities lead to positive kinetic energy.
Applying the calculus of variations yields the Euler-Lagrange equation with generalized forces (or torques) ⌧ described
by

d

dt

@L

@q̇i

� @L

@qi

= ⌧i. (3.2)

Substituting L using Equation (3.1) into Equation (3.2) and assuming @V/@q = g(q) and @V/@q̇ = 0 yields

H(q)q̈+ Ḣ(q)q̇� 1
2

✓
@

@q
(q̇|

H(q)q̇)

◆|
+ g(q) = ⌧ . (3.3)

Within engineering disciplines Equation (3.3) is further abstracted to

H(q)q̈+ c(q, q̇) + g(q) = ⌧ . (3.4)

In this equation H is the inertia or mass matrix, c abstracts the forces generated by the Centripetal and Coriolis forces
and g corresponds to the gravitational force [61].

3.2 Incorporating Lagrangian Mechanics into Neural Networks

Starting from the Lagrange-Euler PDE (Equation (3.3)), traditional engineering approaches would estimate H(q),
c(q, q̇), g(q) from approximated or measured masses, lengths, and moments of inertia. These can be obtained by
either measuring out the system or by complex simulations, e.g., using the finite element method. On the other hand,
most traditional model learning approaches would ignore any physical structure and learn the inverse dynamics model
directly from data.

The architecture I propose, DeLaN, bridges the gap between the two aforementioned approaches by incorporating
the structure introduced by the Lagrange-Euler PDE into the learning problem. However, DeLaN can be trained like
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Figure 3.1.: The computational graph of Deep Lagrangian Network (DeLaN). Shown in blue and green are the neural
networks with the three separate heads computing g(q), ld(q), lo(q), where ld and lo are the vectorized
form of the diagonal and lower part of L respectively. ld uses ReLU activations to ensure that the diagonal of
L is non-negative and the addition of a small bias bmakes the diagonal positive. Hence, H is positive definite.
The orange boxes correspond to reshaping operations and the derivatives contained in the Lagrange-Euler
equation. For training, the gradients are backpropagated through all orange paths. It can also be seen that
the networks share the same base as all heads depend on the same mechanical system.

any classical machine learning model in an end-to-end fashion. More precisely, DeLaN approximates the inverse dy-
namics model of any physical system by representing the unknown functions g(q) and H(q) as FF-NNs. Rather than
modeling H directly, it is learned via its lower triangular matrix L, as explained in Section 3.2.1. Therefore, g(q) and
H(q) are described by

H(q) = L̂(q ; ✓) L̂(q ; ✓)|, g(q) = ĝ(q ;  ), (3.5)

where .̂ refers to the approximation of the true function by a FF-NN and ✓ and  are the respective network parameters.
The parameters can be obtained by minimizing the violation of the physical law described by Equation (3.3). This results
in the following optimization problem to find optimal network parameters ✓⇤ and  ⇤.

✓⇤,  ⇤ = argmin
✓, 

`

⇣
f̂(q, q̇, q̈ ; ✓, ), ⌧

⌘
, (3.6)

with f̂
�1(q, q̇, q̈ ; ✓,  ) = L̂ L̂

|
q̈+

d

dt

⇣
L̂ L̂

|⌘
q̇� 1

2

✓
@

@q

⇣
q̇
|
L̂ L̂

|
q̇

⌘◆|
+ ĝ, (3.7)

s.t. 0 < x
|
L̂ L̂

|
x, 8 x 2 Rn

0 . (3.8)

f̂
�1 is the inverse dynamics model and ` can be any differentiable loss function. The samples used for training are the

joint state, i.e., joint positions, velocities, and accelerations (q, q̇, q̈), and the torques ⌧ that caused the states.
The computational graph of f̂�1 is shown in Figure 3.1. As can be seen, L̂ and ĝ both depend on a shared network.
Only a final layer, in this work also called network head, is different for the learned functions. This keeps the network
architecture on a smaller scale. Parameters are shared between L and g as both rely on the same physical system. As
the network outputs a one-dimensional vector, reshaping operations are applied to obtain g and g and matrix calculus
combines them with the inputs resulting in the torque described in Equation (3.7).

From the formulation of Equation (3.5) a property of the approach can be concluded. Neither L̂ nor ĝ depend on q̇

or q̈. Hence, the obtained models should, within limits, generalize to arbitrary velocities and accelerations. Moreover,
this results in a smaller input space compared to a FF-NN which depends on the full state.

In addition, the learned model can be reformulated and used as a forward model. Solving Equation (3.7) for q̈ yields the
forward model described by

f̂(q, q̇, ⌧ ; ✓,  ) =
⇣
L̂ L̂

|⌘�1
✓
⌧ � d

dt

⇣
L̂ L̂

|⌘
q̇+

1
2

✓
@

@q

⇣
q̇
|
L̂ L̂

|
q̇

⌘◆|
� ĝ

◆
, (3.9)
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where L̂ L̂
|

is guaranteed to be invertible due to the positive definite constraint (Equation (3.8)). This means that DeLaN
could also be used in cases where a forward model is required, e.g., optimal control, even if it is only trained in an inverse
dynamics use case.

One remaining issue is that the optimization problem of Equation (3.6) cannot be solved directly due to the ill-posedness
of the Lagrangian L not being unique. This can be seen as the Lagrange-Euler PDE is invariant to linear transformation.
Hence, any Lagrangian L

0 = ↵L + � solves the Lagrange-Euler PDE if ↵ is non-zero and L is a valid Lagrangian. This
problem can be mitigated by adding an additional penalty term to Equation (3.6), i.e.,

✓⇤,  ⇤ = argmin
✓, 

`

⇣
f̂(q, q̇, q̈ ; ✓, ), ⌧

⌘
+ � ⌦(✓,  ), (3.10)

where ⌦ is the L2-norm of the network weights and � is a parameter adjusting the impact of the penalty term. In the
domain of deep learning this is also known as regularization.

The optimization problem of Equation (3.10) is built on two assumptions that have to hold in order to solve the
problem with a gradient based end-to-end approach. First, the matrix H(q) is symmetric and positive definite for
all network parameters. Second, the derivatives contained within the PDE can be computed in closed form using a single
feed-forward pass.

In the following sections, it is proven that both necessary conditions hold for the proposed architecture. First a network
architecture is introduced, which ensures the symmetry and positive definiteness of H for all parameters (Section 3.2.1).
Afterwards, the derivatives within the Lagrange-Euler PDE are derived in closed form (Section 3.2.2).

3.2.1 Symmetry and Positive Definiteness ofH

Ensuring the symmetry and positive definiteness of H is essential as this constraint enforces positive kinetic energy for
all non-zero velocities. In addition, the positive definiteness makes H invertible and, thus, the obtained model can be
used as forward model.

By representing the matrix H as the product of a lower-triangular matrix symmetry and positive semi-definiteness is
secured. It also reduces the number of parameters of the respective network head by roughly a half. Furthermore, H is
guaranteed to be positive definite if the diagonal elements of L are positive. To achieve this, DeLaN uses two different
heads for representing L. One, modeling the diagonal Ld, uses a non-negative activation function, e.g., ReLu or Softplus,
and adds a small, positive scalar b to each elements to ensure that they are non-zero. Thereby, the eigenvalues of H are
lower bounded by b

2. The other one, Ll, with a linear activation, models the elements below the diagonal of L. The
positive diagonal also makes L invertible.

Figure 3.1 shows how L is obtained by reshaping and adding the one-dimensional outputs ld and ll of the network.

3.2.2 Derivatives of L

The inverse dynamics formulation of Equation (3.7) requires two derivatives of L. As L is modeled by a neural network
the derivatives of the network form the derivative of L. Recalling the definition of the i-th layer of a neural network from
Section 2.2 (Equation (2.1))

hi = gi (Wihi�1 + bi) = gi (ai) ,

where Wi and bi are the learnable parameters of that layer. Using the chain rule, the derivative of the i-th layer w.r.t.
q = h0 is

@hi

@q
=

@hi

@hi�1

@hi�1

@q
, with

@hi

@hi�1
=

2

666664

@h0
i

@h0
i�1

· · · @h0
i

@h
ni�1
i�1

...
. . .

...
@h

ni
i

@h0
i�1

· · · @h
ni
i

@h
ni�1
i�1

3

777775
and

@hi

@hk

i�1

= g
0 (Wihi�1 + bi) ⇤Wiek,

@hi

@hi�1
= diag

�
g
0(Wihi�1 + bi)

�
Wi, (3.11)

@hN

@q
=

@hN

@hN�1

@hN�1

@hN�2
. . .

@h1

@q
. (3.12)
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g
0 resembles the derivative of the non-linear activation function, ek is the k-th unit vector, and (⇤) denotes an element-

wise multiplication. As can be seen in Equation (3.12) the derivative can be passed through the network by calculating
the derivative of each layer w.r.t. the previous layer.
Similarly, the derivative of the i-th layer w.r.t. time is

dhi

dt
=

@hi

@q

dq

dt
=

@hi

@q
q̇. (3.13)

This shows that only the derivative of Equation (3.12) is required to calculate both derivatives needed in my approach,
as q̇ is available from the network input.

These derivatives can now be applied to L. Let l be the vectorized form of the non-zero entries of L, i.e.,

l = (l11, l21, l22, ..., ln,n), where L =

0

BBBBBB@

l11 0 . . . 0

l21 l22 . . . 0
...

. . .
...

ln1 ln2 . . . lnn

1

CCCCCCA
.

Note that all following equations can also be applied to the split heads ld and lo, see Figure 3.1, even though they
are only derived for l. For l being the final layer hN of the network the derivative w.r.t. time can be calculated using
Equation (3.13)

d

dt
l =

d

dt
hN =

@hN

@q
q̇ =

@l

@q
q̇. (3.14)

As can be seen in Equation (3.12) the derivative w.r.t. q can be computed by applying the chain rule, i.e.,

@l

@q
=

@l

@hN�1

@hN�1

@hN�2
· · · @h1

@q
. (3.15)

The mapping between the derivatives is then defined by a reshaping operation, i.e., from @l/@q to @L/@q. Using this
property the derivatives (d/dt) (LL|) and (@/@qi) [q̇

|
LL

|
q̇] can be computed by reshaping the derivatives of l.

The temporal derivative Ḣ,

Ḣ =
d

dt
H =

d

dt
(LL|) = L

dL

dt

|
+

dL

dt
L

|
,

requires dL/dt which is the reshaped form of dl/dt (Equation (3.14)).
Similarly to the previous derivation, the partial derivative of the quadratic term can be computed by the multiplication
rule. That yields

@

@qi

(q̇|
LL

|
q̇) = q̇

| @

@qi

(LL|) q̇ = q̇
| @L

@qi

L
|
q̇+ q̇

|
L
@L

|

@qi

q̇,

whereas @L/@qi can be constructed using the columns of previously derived @l/@q (Equation (3.15)).
Therefore, all derivatives included within f̂ can be computed in closed form.

3.3 The Deep Lagrangian Network

With all required prerequisites met, I propose Deep Lagrangian Network (DeLaN). It is an adapted FF-NN able to encode
the Lagrange-Euler PDE as well as other PDEs.

Following Equation (3.7), the network derivatives have to be available within the forward path. Thus, to simultane-
ously compute l and @l/@q, the forward path is extended. Using the compositional structure of @l/@q highlighted
in Equation (3.15), @l/@q can be computed by chaining Lagrangian layers. The Lagrangian layer is an extension to the
standard perceptron layer (Equation (2.1)) consisting of the affine transformation and non-linearity by adding a pathway
computing @hi/@hi�1. Using Equation (3.11) the Lagrangian layer is described by

ai = Wihi�1 + bi, hi = gi (ai) ,
@hi

@hi�1
= diag

�
g
0
i(ai)

�
Wi.
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Figure 3.2.: (a) Computational graph of the Lagrangian layer. The green boxes highlight the learnable parameters. The
upper computational sub-graph corresponds to the standard network layer while the lower sub-graph is the
extension of the Lagrangian layer to simultaneously compute @hi/@hi�1. (b) Computational graph of the
chained Lagrangian layer to compute L, dL/dt and @L/@qi using a single feed-forward pass. Note that
layers do not depend on the derivative of the previous layer as the chain rule allows independent calculation
of each single derivative.

The derivatives of the activation functions used can be derived analytically. For the activation functions used in my thesis
this results in

ReLU0(a) =

8
<

:
1 if a � 0

0 otherwise
, Softplus0(a) =

exp(�a)
1 + exp(�a)

.

Figure 2.2 shows the plot of these two derivatives for activations a = [�3, 3].

Figure 3.2 (a) visualizes the computational graph of the Lagrangian Layer and Figure 3.2 (b) the resulting network
structure and the reshaping operations to compute L, dL/dt and @L/@qi. I can be seen how the standard path is ex-
tended by the derivative. It also shows that the derivatives are chained but that they are computed independently per
layer. The structure required for DeLaN only adds minimal computational overhead and enables the usage of automatic
differentiation (Autograd) to compute the gradients w.r.t. to network weights. This means that it can be implemented
and trained with any existing framework that supports Autograd. It should also be noted that the gradient passes through
the derivatives’ paths, i.e., the training also explicitly optimizes the derivatives.

3.4 The Online-Learning System

To be able to train DeLaN or any other machine learning model online I propose an asynchronous real-time control and
training system. This architecture allows to perform real-time control even if the training takes multiple seconds. The
basic system setup can be seen in Figure 3.3. It consists of two major parts, the control loop and the training process.

First, the control loop is a classical feedback loop with a feed-forward model and manages the control of the system.
Thus, it receives the desired state qd, q̇d, q̈d and passes torques to the mechanical system. Sensor data from the result-
ing movement is collected and passed back to the PD-controller (feedback control). This process is running independently
to ensure that the system is controlled no matter what the training process is doing. It should be noted that at the start,
where no prior training has been performed, the feed-forward model’s output is basically irrelevant and the executed
movement is only dependent on the PD-controller. Second, the training process collects data samples from the control
loop and trains new feed-forward models. The training samples consist of the measured sensor data (q, q̇, q̈) and the
torques passed to the system ⌧ , i.e., a mapping (q, q̇, q̈) ! ⌧ is learned. New models are then continuously trained on
all samples collected so far and the current model is passed to the control loop after each epoch of training, i.e., after
the whole number of collected samples has been used for training once. Moreover, the model can be trained on any loss
function. In my case the loss function is defined between the predicted and measured torques and, hence, measures the
performance on the data. Note that also other loss functions, like feedback error, could be implemented which measure
performance on the task.

11



RobotPD-Controller

Inverse Model

-

Inverse ModelLoss

Training ProcessControl Loop

Inverse Model Inverse ModelLoss

Figure 3.3.: Real-time control loop using a PD-Controller in combination with a feed-forward torque ⌧FF to compensate
the system dynamics. ⌧FF is generated from a learned inverse dynamics model f̂�1. The training process
reads the joint states and applied torques to learn the system dynamics online. This training is performed
asynchronous to enable feed-forward prediction rates of 200Hz. Once a new model becomes available the
inverse model f̂�1 in the control loop is updated.
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4 Experiments and Results
To demonstrate the applicability to online learning and extrapolation assets of DeLaN, several experiments are conducted
on the proposed network topology. Model-based control is chosen as use case as it is a typical application of the inverse
dynamics model. Tests are performed on a simulated 2-dof robot (Figure 4.1b) and the physical 7-dof robot Barrett WAM,
simulated and real (see Figure 4.4b). The performance of DeLaN is evaluated using the tracking error on train and test
trajectories and compared to a FF-NN and an analytical model.

The chapter is structured as follows. First, Section 4.1 describes the experimental setup. It explains the structure of
the test environment and the performance measure used. Furthermore, it contains information about the datasets used
as well as the baselines that DeLaN is compared to. Second, Section 4.2 contains the results of all experiments performed
on the simulated 2-dof robot. Third, the results of the experiments done on the real robot, Barrett WAM, are shown
in Section 4.3. Following is a section about issues regarding the random initialization of the network that were found
during the execution and evaluation of the experiments (Section 4.4). Finally, the chapter concludes in Section 4.5 with
a brief summary of the results.

4.1 Experimental Setup

The experiments were conducted in two basic setups. Most experiments are performed online which adds special re-
quirements to the models and setup while some are performed offline.

In the online scenario the robot has to execute multiple desired trajectories with specified joint positions, velocities
and accelerations. The system used is shown in Figure 3.3. The robot is controlled by a signal of motor torques ⌧
which is generated in a control loop. The control loop consists of a non-linear feed-forward controller, i.e., a low gain
PD-controller, in combination with a feed-forward model. The feed-forward model f̂�1(qd, q̇d, q̈d) compensates system
dynamics by producing a feed-forward torque ⌧ff . It is represented by the inverse dynamics model of the robot, i.e.,
either an analytical model or a learned model. Thus, the control law is described by

⌧ = Kp (qd � q) +Kd (q̇d � q̇) + ⌧ff , with ⌧ff = f̂
�1(qd, q̇d, q̈d),

where Kp and Kd are the controller gains and qd, q̇d, q̈d are the desired joint positions, velocities, and accelerations.
For all experiments the control frequency, i.e., the frequency with which a new torque is passed to the robot, is set to
500Hz. As the learned models require more time to make predictions the desired joint state and ⌧ff are updated with a
frequency of fd = 200Hz. Hence, the computation time of the feed-forward model is strictly limited to Td  1/200s.

An online experiment has two phases, the training and the testing phase. In both phases trajectories are executed.
However, only in the training phase new samples are collected after the execution of a desired trajectory is finished. The
samples consist of the joint states measured by the sensors and the respective torque that was passed to the robot. Once
the testing phase is entered, the asynchronous training process is stopped. In order to assess the performance of the
feed-forward model a trajectory tracking performance measure is used. In this work I define tracking performance as the
sum of the mean squared error (MSE) evaluated at the sampling points of the reference trajectory. To be precise, for a
desired trajectory (xd)0,...,Tt and a real trajectory (xr)0,...,Tt , both from start time 0 to total time Tt, the MSE is defined
as

MSE((xd)0,...,Tt , (xr)0,...,Tt) =
TtX

i=0

((xd,i � xr,i))
2
.

This tracking performance measure allows to evaluate and compare the performance of each feed-forward model based
on their performance on the real task rather than the performance on the learning data as would be the case in a classical
machine learning approach. It should be mentioned that the models, in case they are learned, are optimized on the loss
between prediction and samples rather than on the tracking performance measure. This guarantees independence of
training the model and controlling the robot.

In the offline learning scenarios sets of samples are collected from an online test run, either in a simulation or on
the real robot. Those samples consist of input (q, q̇, q̈) and target ⌧ . The samples are then used to perform standard
supervised learning. Additional information on how learning was performed is given in the description of the respective
experiment.
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Figure 4.1.: Visualization of the task space trajectories of the datasets. (a) The character trajectories of the 2-dof robot.
They contain each single stroke character. While the trajectories cover only a small portion of the 2-dof
robot’s task space they contain smooth and sharp turns. (b) The cosine trajectories of the 2-dof robot. They
cover a wide area of the robot’s task space with high velocities while being relatively smooth. (c) The cosine
trajectories of theWAM. Similar to (b), the trajectories cover a wide area of the task space with high velocities.

Datasets

In this thesis I used two different datasets. The first dataset contains all single stroke characters1 while the second data
set uses cosine curves in joint space.

The characters dataset contains 20 trajectories resembling hand-writtern, single-stroke characters given in joint space.
Each trajectory is spatially and temporally re-scaled to comply with the robot kinematics. To be precise, first the points
at start and end of each trajectory where no movement is made, i.e., where q̇ = 0, are cropped. Then, the total time
of the trajectory is scaled to a desired total time Tt. At last, with the new time stamps and the desired joint positions
the required velocities and accelerations are computed using numerical differentiation. The task space trajectories are
then calculated with the forward kinematics of the robot (see Figure 4.1a). Due to the different characters, the desired
trajectories contain smooth and sharp turns and cover a wide variety of different shapes but are limited to a small task
space region.

In contrast, the cosine trajectories are designed to be smooth but to cover a large task space region. The trajectories
are generated joint-wise, i.e., for the i-th joint the trajectory is defined by

q
i

d(t) = q
i

0 +A
i cos

⇣
2⇡!i

�t+ sin (0.5⇡t)
⌘
,

where q
i

0 is the initial joint position, Ai the amplitude, !i the frequency and � a velocity scaling factor. For each joint
a different frequency !i is selected. The frequencies are chosen to be prime numbers to minimize repetition throughout
a trajectory. In addition, � can be varied to compare the impact of different velocity profiles. Moreover, a sine is added
within the cosine to prevent the model from being able to learn a Fourier transform rather than the true inverse dynamics
model. For the 2-dof robot two trajectories with the following frequencies are created:

Name !
1

!
2

"cos_0" 2 5

"cos_1" 3 7

For all trajectories the amplitude is A = (0.3⇡, 0.5⇡) and the initial position is q0 = (�0.3,�0.1). Similarly, two
trajectories are created for the WAM. Here, the last three joints remain still as they do not have a significant impact on
the resulting trajectory and, thus, would only distort the results. The frequencies used in the cosine dataset of the WAM
are as follows:

1 The data set was created by Williams et al. [62] and is available at [63])
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Name !
1

!
2

!
3

!
4

"cos_0" 7 5 3 2

"cos_1" 7 3 5 2

The amplitude A is set to 1/6 of the range of each respective joint, i.e., qimax � q
i

min, and q0 is set to the middle value of
the joint limits. Similarly to the characters, joint velocities and accelerations of the cosine trajectories are computed by
numerical differentiation. The forward kinematics model of the robot is used to generate the task space trajectories (see
Figure 4.1b and Figure 4.1c).

Baselines

In order to asses the advantages and flaws of DeLaN it has to be compared to some baselines. I chose three baselines, an
analytical inverse dynamics model, a standard FF-NN and the performance of only a PD-Controller, i.e., where the output
of the feed-forward model is always 0.

For the analytical models the torque is computed using the Recursive Newton-Euler algorithm (RNE) [64]. It com-
putes the feed-forward torque ⌧ff using estimated physical properties of the system, i.e., the link dimensions, masses
and moments of inertia. For implementations the open-source library PyBullet2 [65] is used. The robot properties are
given in URDF-files.

Both networks, DeLaN and the FF-NN, use the same architecture and ReLu non-linearities to make them comparable.
They are implemented using PyTorch3. The optimization algorithm used is ADAM. DeLaN and the FF-NN have to learn
the system dynamics starting from random initialization using the so called Xavier initialization [66]. This means that
runs with different random seeds may produce different results (as investigated further in Section 4.4).

4.2 Simulated Robot Experiments

The 2-dof robot shown in Figure 4.1b is simulated using PyBullet. Three experiments were conducted. First offline
training on the characters dataset to validate the approach of DeLaN. Second, the performance of the different models is
evaluated online on the characers. And, third, the experiment is repeated on the cosine trajectories with different velocity
profiles to assess the model’s capability of extrapolation.

4.2.1 Validation of Learning the Physics Prior

In the first experiment, DeLaN is trained offline on samples of six characters and evaluated on the samples of three
characters, ’a’, ’d’, and ’e’. Those were not part of the training set. The target torque ⌧ is generated by PyBullet’s inverse
dynamics model. The goal of this experiment is to validate the physics prior of DeLaN. DeLaN should be able to learn
the individual parts of Equation (3.4), Hq̈, c(q, q̇), and g(q), from the super-imposed torque ⌧ . Given the fact that
PyBullet’s inverse dynamics model is also based on Equation (3.4) the resulting torques should match.

To compare DeLaN and the analytical model the individual torque components of the Lagrange-Euler PDE are obtained
by

⌧ = f
�1(q, q̇, q̈),

⌧g = f
�1(q, 0, 0),

⌧c = f
�1(q, q̇, 0)� ⌧g,

⌧H = f
�1(q, 0, q̈)� ⌧g.

Figure 4.2 shows the ground truth torques and the torques learned by DeLaN, i.e., the torque components and the super-
imposed torque (Figure 4.2a-d). Even though DeLaN is only trained on the super-imposed torques, the result shows that
it learns to disambiguate the inertial force Hq̈, the Coriolis and Centripetal force c(q, q̇), and the gravitational force
g(q). That can be seen as the respective curves overlap closely with the "true" torques. Hence, DeLaN is capable of

2 The source code for PyBullet is available at https://github.com/bulletphysics/bullet3
3 The framework is available at https://pytorch.org/
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Figure 4.2.: Comparison between true and learned inverse dynamics model. The torque ⌧ required to generate the char-
acters ’a’, ’d’ and ’e’ is plotted in black. Using six di�erent characters as samples, Deep Lagrangian Network
(DeLaN) was trained o�ine and learns the red trajectory. DeLaN can not only learn the desired torques
but also disambiguate the individual torque components even though it was trained on the super-imposed
torques (a). Using Equation (3.7) DeLaN can represent the inertial force Hq̈ (b), the Coriolis and Centripetal
forces c(q, q̇) (c), and the gravitational force g(q) (d). All components match the ground truth data closely.
(e) The o�ineMSE of the feed-forward neural network (FF-NN) and DeLaN for each joint over varying training
set sizes. It highlight DeLaN’s better extrapolation capabilities compared to the FF-NN.

learning the underlying physical model defined by the physics prior. Furthermore, the proposed network topology can be
trained with standard end-to-end optimization on only the super-imposed torques.

Figure 4.2e shows the offline MSE on the test set averaged over multiple seeds for the FF-NN and DeLaN w.r.t. to
different training set sizes. The different training set sizes correspond to the combination of n random characters, i.e.,
a training set size of 1 corresponds to training the model on a single character and evaluating the performance on the
remaining 19 characters. DeLaN clearly obtains a lower test MSE compared to the FF-NN. Especially the difference in
performance increases when the training set is reduced. This increasing difference on the test MSE highlights DeLaN’s
reduced sample complexity and the good extrapolation to unseen samples.

4.2.2 Online Learning Performance

The second experiment on the 2-dof robot is an online scenario as described in Section 4.1. First, a set of training trajec-
tories is executed and online learning is performed. The characters used for training are randomly chosen and not part
of the testing set. Furthermore, the training set is iterated multiple times to give the models enough time and samples
to train. Figure 4.3 compares the accumulated tracking error per testing character of DeLaN and the FF-NN for four
different training set sizes (n = 1, 6, 8, 10). It can be seen that DeLaN outperforms the FF-NN on every character and
that DeLaN requires less training samples as the error for n = 6 is similar to the error for n = 10. Figure 4.4a shows
the testing error averaged over all test characters. It highlights the better performance of DeLaN compared to the FF-NN.
Furthermore, it shows that DeLaN extrapolates better to unknown samples as it requires less training characters than the
FF-NN.

On the other hand, Figure 4.8 shows the qualitative comparison of the control performance. It depicts the resulting
trajectories of test characters for different training set sizes, over multiple runs. It can be seen that DeLaN performs well
on all characters even if only a small amount of characters was used for training. In contrast, the FF-NN performs much
worse. Some character trajectories, like ’b’, ’o’, and ’q’, are not executed properly even if twelve characters are used for
training. While the analytical model performs perfect (as it resembles the underlying simulation) it can be seen that the
PD-controller struggles with gravity and the high speed of the trajectory execution.

Overall the experiment shows that DeLaN has a lower sample complexity and better extrapolation to unseen trajec-
tories compared to the FF-NN even when trained online. Moreover, the obtained tracking error is comparable to the
analytical model which, in this case, contains the simulation parameters and, thus, is optimal. In contrast, the FF-NN
shows significant deviation from the desired trajectories when trained on less than 10 random characters.
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Figure 4.3.: The performance of Deep Lagrangian Network (DeLaN) and the feed-forward neural network (FF-NN) for
each character. The 4 columns of the boxplots correspond to di�erent numbers of training characters, i.e.,
n = 1, 6, 8, 10. Errors are accumulated over multiple runs as boxplots, i.e., the box spans from the first to
the third quartile and the black line resembles the median. It can be seen that DeLaN outperforms the FF-NN
on every character and requires less samples for a good overall performance. Both model’s errors are one to
two orders of magnitude smaller than those of the PD-controller while DeLaN is close to the analytical model
(RNE) that is used in the simulation and, thus, is the lower bound.

4.2.3 Extrapolation to High Velocities

The third experiment on the 2-dof robot was performed on the cosine dataset. Here, the models are only trained online
on two cosine trajectories with a velocity scale of 1x. The goal is to assess the capabilities of the model types to extrapo-
late w.r.t. velocities and accelerations. Thus, the learned models are tested on the same trajectories with multiple velocity
scales.

Figure 4.5a and b compare the performance of DeLaN and the FF-NN (the gray areas represent the test data where
velocities are increased). It can be seen that DeLaN and the FF-NN perform comparable on the training trajectories.
However, when the velocities are increased the performance of the FF-NN deteriorates because the new trajectories are
no longer within the vicinity of the training data. This is due to the input domain of the FF-NN being defined as (q, q̇, q̈).
Therefore, it cannot extrapolate to the testing data well. In contrast, the domain of the networks L̂ and ĝ composing
DeLaN only consists of q, and, thus, are not impacted by velocities or accelerations. This enables DeLaN, within limits, to
extrapolate to the test trajectories with higher velocities. The increase in tracking error can be explained by the structure
of f̂�1, where even small model errors scale quadratic with velocities. However, the obtained tracking error on the
testing trajectories remains significantly lower compared to the FF-NN. It should also be noted that the performance of
DeLaN for higher velocities is comparable to the analytical solution. This further confirms that the model learned by
DeLaN is similar to the "true" physical model. All in all, this experiment highlights DeLaN’s advantage over classical
model learning approaches as it profits from the incorporated prior knowledge.

4.3 Physical Robot Experiments

In order to get results for a robot that is subject to true physics, experiments are conducted on the real robot Barett WAM
(see Figure 4.4b). It features direct cable drives that are able to produce high torques generating fast and dexterous
movements but yielding complex dynamics, which cannot be modelled using rigid-body dynamics. Therefore, the Barrett
WAM is ideal for testing the applicability of model learning and analytical models4 on complex dynamics.

Three experiments are performed on the WAM. First, I focus on the cosine trajectories as these trajectories produce
dynamic movements. Note that the characters dataset cannot be used as the trajectories are mainly dominated by the
gravitational forces. This experiment aims at confirming the results of the cosine experiment on the simulated 2-dof
robot. The performance is evaluated in a simulation using SL[68] and on the real robot. Second, I try to learn the
model analytical model from samples collected from the real Barrett WAM. This experiment targets the applicability of
my physics prior to a mechanical system where its assumptions do not hold. Third, following the results of the first

4 The analytical model of the Barrett WAM is obtained using a publicly available URDF [67]
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Figure 4.4.: (a) The median performance of Deep Lagrangian Network (DeLaN), the feed-forward neural network (FF-
NN), the PD-controller and the analytical baseline (RNE) averaged over multiple seeds. The shaded areas
mark the 5th to 95th percentile. It highlights the fact that DeLaN outperforms the FF-NN in every case which
means that it extrapolates better to unknown samples.
(b) The Barrett WAM at the IAS lab in Darmstadt used for the real robot experiments.

experiment I try to evaluate what the reasons behind limitations of DeLaN are. The test is conducted offline on samples
collected on the real robot.

4.3.1 Learning on a Complex Robot

The first experiment is similar to the cosine experiment on the 2-dof robot. Training is performed online with a velocity
scale of 1⇥ which is increased during validation. Figures 4.5c and d show the tracking error on the cosine trajectories
using the real (triangles) and the simulated (squares) Barrett WAM. It is important to note, that the simulation is only
based on rigid-body dynamics and does not including the direct cables drives. Moreover, the simulation parameters are
inconsistent with the parameters of the analytical model. Therefore, the analytical model is not optimal.

On the training trajectories executed on the physical system the FF-NN performs better compared to DeLaN and the
analytical model. DeLaN achieves slightly better tracking error than the analytical model, which uses the same rigid-
body assumptions as DeLaN. That shows that DeLaN can learn a dynamics model of the WAM but is limited by the model
assumptions of Lagrangian Mechanics. These assumptions cannot represent the dynamics of the cable drives. On the
other hand, it highlights that DeLaN has the potential to replace analytical models in the future. When looking at the
results of the simulation, DeLaN and the FF-NN perform comparable but significantly better than the analytical model.
These results highlight that DeLaN can learn an accurate model of a complex robot, as long as the underlying assump-
tions of the physics prior hold. This means that DeLaN can learn a model within the model class of the physics prior but
also inherits the limitations of the physics prior. The experiment also shows that the FF-NN can locally learn correlations
of the torques w.r.t. q, q̇ and q̈ while such cannot be represented by the network topology of DeLaN. In the definition of
the pysics prior such correlation should not exist.

When increasing the velocity scale of the trajectories the tracking error of the FF-NN deteriorates much faster com-
pared to DeLaN. That shows that the FF-NN cannot extrapolate to the new velocities neither in the simulation nor on the
real robot. This may be due to the FF-NN overfitting the training data. In contrast, DeLaN can extrapolate to the higher
velocities and maintains a good tracking error. Even further, it obtains a better tracking error compared the analytical
model on all velocity scales in the simulation. This highlights the improved extrapolation of DeLaN compared to other
model learning approaches. The tracking error of the analytical model remains constant and demonstrates the guaran-
teed extrapolation of analytical models.

In conclusion, this experiment has shown that the physics prior of DeLaN has the drawback of limiting the modeling
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Figure 4.5.: The tracking error of the cosine trajectories for the simulated 2-dof robot (a and b), the simulated and the
physical Barrett WAM (c and d). The feed-forward neural network (FF-NN) and Deep Lagrangian Network
(DeLaN) are trained only on the trajectories at a velocity scale of 1⇥. Afterwards the models are tested on
the same trajectories with increased velocities to evaluate the extrapolation to new velocities. (a) and (b) The
analytical solution performs best which can be explained by the fact that it is the same model that is used
for simulation. While the FF-NN and DeLaN perform on a similar level for velocity 1⇥ the first’s performance
deteriorates fast while DeLaN performs similar to the analytical model. (c) and (d) The results of the simulated
WAM (squares) are similar to the results of the 2-dof robot. However, on the real WAM (triangles) the FF-NN
outperforms DeLaN clearly. This originates in DeLaN’s limited modeling power. On the other hand, DeLaN
maintains a better extrapolation to higher velocities where the FF-NN fails.

power of the network. The FF-NN can learn any function that depends on the full joint state. However, DeLaN has the
advantage of better extrapolation and a comparable performance to the analytical model. With some adaptations, DeLaN
might be able to outperform the FF-NN while maintaining the advantage of extrapolation.

4.3.2 Learning the Analytical Model from Real Data

The second experiment evaluates whether DeLaN is able to learn the analytical model from real data, i.e., if the physics
prior can be trained using end-to-end training. Similar to the first 2-dof robot experiment in Section 4.2.1 (see also Fig-
ure 4.2) a model is trained offline and then compared with the analytical model w.r.t. the individual parts of the torque.
The data was collected on an online run on the cosine dataset on the real robot. The model is trained on a subset of the
samples and evaluated on the rest of the samples.

Figure 4.6 shows the torque parts and the super-imposed torque on which the model was trained. The ground truth
is plotted in black while DeLaN is coloured red and the analytical model is colored purple. It can be seen that the learned
model is close to the analytical model while also following the real dynamics. This highlights the fact that the assumption
of the physics prior enforces a physically plausible model. Furthermore, it shows that DeLaN can train such a model of
a real mechanical system only by the super-imposed torque in an end-to-end fashion. On the other hand, it can be seen
that DeLaN is not able to completely model the real torque which is due to limitations brought by the physics prior. This
will be further discussed in the next section.

4.3.3 Evaluating the Limitations of DeLaN

In this final offline experiment I try to shed some light on the limitations introduced by the physics prior of DeLaN. Using
data recorded on the real Barrett WAM, a model is trained. The MSE is then calculated for each sample and plotted
over each element of the respective joint state. The goal is to find a correlation between some inputs and the error to
assess possible additions to the physics prior that would increase the model performance without decreasing the physical
plausability.

Figure 4.7 visualizes the median of the mean tracking error over absolute joint-wise velocities. Therefore, all sam-
ples are added to bins and then the median is calculated for each bin. Similarly, the shaded areas depict the 5-th to 95-th
percentile of the error. The green dashed line shows the percentage of samples that are contained in each bin. It can
be seen that an increasing velocity correlates with an increasing error. This hints that friction may be a missing part of
the PDE that limits the current modeling power of DeLaN given the similarity to the Stribeck curve for viscous friction
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Figure 4.6.: Torques required to perform a cosine trajectory on the real Barrett WAM. Deep Lagrangian Network (DeLaN)
(red) is trained o�ine on collected samples of the super-imposed torque. It is split into its components and
compared to the analytical model (RNE) (purple). The true torque is plotted in black. It shows that DeLaN is
able to model a real physical system while also maintaining the plausability of the physics prior.

that is also found in robotics [69]. On the other hand, the plots contain no sign of stiction, i.e., a higher MSE when the
velocities are close to 0. Therefore, it may be another physical effect that is missing in my physics prior and this topic
remains future work (see Section 5.3).

A full visualization of the error over all inputs can be found in the appendix, Figure A.1.

4.4 Seeding and Initialization Issues

During the experiments multiple random seeds were used for initialization and train / test set selection. For some seeds
it appeared as if DeLaN did not converge to the desired model. It rather tried to approximate the mapping of the first
joint using the gravitational term only. Further investigation into the problem revealed an issue with the actions taken in
Section 3.2.1. In order to make H symmetrical it is expressed by a lower triangular matrix L. Moreover, the diagonal
entries of L are enforced to be positive by applying a non-negative activation.

Given how H is modeled a case can arise were three conditions are met. (1) all training samples are in vicinity of
each other, (2) ReLU is used as activation function, and (3) the initial weights are in such a way that the activation of the
first neuron, i.e., the first diagonal entry of L, is 0. In that case the first row and column of H become 0 which leads to
the output of the network for the first joint being 0 and, thus, no gradient will be passed through that node. After longer
periods of training it is possible for the activation to become positive when the earlier network structure changes due to
its shared nature between l and g.

I propose two ways to mitigate this problem. First, using an non-linear function that does not output 0 for negative
activations, like Softplus or the absolute, should not lead to the stagnation in training. Second, the initialization of the
biases could be changed to force the first neuron to be active more often, i.e., the biases would be initialized with a higher
order of magnitude.

A second, similar issue that occurred during a WAM experiment is that DeLaN may learn only a gravitational force
for a joint and keeps its respective row and column of H at 0. This can happen if the joint movement is not influenced by
gravity and the overall accelerations of that joint are low, i.e., there is only a small separate excitation w.r.t. q and q̈. To
mitigate this problem the training process has to be adjusted. One way is to initialize the gravity head of the network with
lower values to have a higher gradient running through ld and lo. This behaviour may also indicate a model architecture
that is too complex, i.e., the model is overfitting. Decreasing the width and/or depth of the network can solve this issue.
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Figure 4.7.: Plots showing the median of the mean tracking error (MSE) (blue) obtained from training Deep Lagrangian
Network (DeLaN) o�ine on data of the real robot Barrett WAM. All samples are added to bins of size 0.1 and
all statistical values are calculated on those bins. The shaded area resembles the 5-th to 95-th percentile of the
MSE. The dashed green lines depict the percentage of samples that are in each respective bin. The plots give
insights in the correlation between individual velocities and the remaining error that cannot be modeled by
DeLaN due to its physics prior. It can be seen that higher velocities result in a higher prediction error indicating
that the current model assumption (Lagrange-Euler PDE) lacks a term representing friction.

4.5 Summary of Experiments and Results

In this chapter I conducted several experiments on a simulated 2-dof robot as well as on a simulated and a real Barrett
WAM. I want to highlight two major insights from those experiments.

First, DeLaN is able to perform on a similar level to an analytical model of the robots with the advantage of good
extrapolation to unseen samples. This is a trait not shared by the FF-NN. It also shows that DeLaN may be able to replace
analytical models in the future as a model is easier to obtain but has similar advantages.

Second, DeLaN inherits the limitations of the physics prior. This means that DeLaN’s performance gets worse when
the model assumption is violated. One experiment revealed that one potential limitation may be friction as it is not
modeled within the Lagrangian-Euler PDE. Adding additional terms to the current PDE could mitigate limitations and
bring DeLaN closer to the modeling power of the FF-NN, but remains future work (see Section 5.3).
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Figure 4.8.: The qualitative performance for the analytical baseline (RNE), the PD-controller, the feed-forward neural net-
work (FF-NN) and Deep Lagrangian Network (DeLaN) for di�erent numbers of random training characters.
The desired trajectories are shown in black the trajectories resulting from the models in red. It can be seen
that DeLaN achieves a good tracking performance when training on six to eight characters while the FF-NN
extrapolates worse to unseen trajectories as it has a worse performance even if trained on twelve characters.
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5 Discussion
In this chapter I summarize the most important insights obtained during the work on my thesis. I state advantages and
disadvantages of DeLaN’s architecture compared to a similar FF-NN in Section 5.1. This is followed by issues discovered
regarding the convergence of the network optimization in Section 5.2 and the physical plausibility and limitations orig-
inating in the physics prior in Section 5.3. Those three conclude the major insights gained during my work. Section 5.4
and Section 5.5 describe future experiments that I would conduct. The first proposes to compare DeLaN to other machine
learning algorithms besides the FF-NN. The second explains how the experiment setup could be changed to gain addi-
tional characteristics of DeLaN when applied to online learning. Section 5.6 highlights current fields of research where
DeLaN could be used beneficially. At last, Section 5.7 suggests to derive and evaluate the forward model from a learned
inverse model.

5.1 Architectural Advantages

In the experiments, DeLaN has proven to have the upper hand compared to the FF-NN when it comes to the network
architecture. It especially profits from a smaller input space. As the training process is only reliant on the joint positions
but not the velocities and accelerations, DeLaN has built-in means to tackle the problem of persistent excitation, i.e., it
requires less samples overall to cover a greater variety of samples. While the extrapolation to unseen samples shown
by DeLaN has not yet reached the same level as that of an analytical model it performs arguably better than a standard
FF-NN.

Furthermore, early tests have shown that DeLaN is more robust to sensor noise which can be useful in a real envi-
ronment were noise cannot always be avoided. Though, this has to be further studied to get an expressive quantitative
evaluation.

Another advantage of DeLaN or any FF-NN in general is the natural applicability in online learning. As their training
process is incrementally, i.e., optimization is repeatedly performed over mini-batches of the train samples, all FF-NNs
have built-in ways to deal with adding new train data on-the-fly. Other machine learning approaches, like Linear Regres-
sion, Support Vector Regression, or Gaussian Process Regression require the full batch of training data instantly. Hence,
they have to be retrained when new samples are added. Although, specialized versions of the aforementioned algo-
rithms exist that tackle this issue by using locally weighted models or other adaptations to make online learning possible
[12, 42, 14].

5.2 Network Convergence

As highlighted in Section 4.4, with its given structure DeLaN can be subject to convergence issues. This means that in
some cases the training process gets stuck on a poor local optimum depending on the network initialization. I proposed
two possible means to mitigate this issue, although they do not solve the problem entirely. Therefore, different initializa-
tion methods have to be tested when applying DeLaN to a new task.

In the future this convergence problem should be further investigated. One aspects to look at would be the network
structure of DeLaN. Changes to the structure of the network head that outputs ld are the most promising approach. An
option might be to find other ways than using a ReLU to enforce the non-negativity of the entries. The problem of ReLU is
that it outputs 0 for all negative values which results in a gradient of 0. Hence, the backward-pass ignores all parameters
for that specific neuron and it is not optimized. This problem can be tackled by applying less strict non-linearities, e.g.,
the absolute or Softplus.

5.3 Physical Plausibility and Limitations

One of the issues stated at the beginning of this thesis is that classical model learning approaches lack the physical plausi-
bility of analytical models derived from physical formalisms. This may be one of the main reasons why model learning is
not yet state-of-the-art in robotics. As reliability is important, missing transparency of the models is an exclusion criterion.

23



However, due to the incorporation of a physics-prior, DeLaN adds a level of transparency to the learned model that
a standard machine learning model cannot provide. The experiments have also shown that the model obtained through
end-to-end training is similar to the analytical model which is based on the same physical assumption. This makes DeLaN
a feasible alternative to the tedious process of measuring the mechanical system while maintaining the various applica-
tions of the matrices that form the Lagrange-Euler PDE.

On the backside, the physics prior limits the ability of the network to fit any arbitrary function. In Section 4.3.2 I
described that behaviour where the model prior is learned in a similar fashion to the analytical model but some of the
underlying physics could not be expressed. I tried to gain some insight into what is missing in the formulation of the
prior in Section 4.3.3. It could be shown that the error correlates with the velocity which indicates that friction may be
one of the missing terms of the Lagrange-Euler PDE.

Future work should focus on how to mitigate this limitation and how to make DeLaN more flexible while preserving
physical plausibility. If DeLaN can perform on a similar level to the FF-NN while keeping its advantages over classical
model learning it could be applied to tasks where reliability in control is important, e.g., in industrial robotics.

Adding a simple FF-NN to the equation that learns the torque that is not covered by DeLaN should produce good re-
sults while maintaining the level of physical plausibility. The network should be able to model the full correlation
between torque and all inputs, i.e., it resembles a term ⌫(q, q̇, q̈) ! ⌧ . Though, it has to be evaluated how to train
such a network as classical end-to-end training might focus the optimization solely on the newly added FF-NN. This is
similar to the issue discussed in Section 4.4. One possible solution would be to train the DeLaN first and introducing the
non-linear term later in the training process to ensure it does only learn the missing correlation.

5.4 Additional Baselines

In my thesis I solely compare DeLaN only to a FF-NN and the analytical model. I chose the FF-NN because of its archi-
tectural similarity to DeLaN which makes the results comparable while keeping other experiment parameters fixed, e.g.,
the train time of both is on an even level. In order to get a broader comparison to the many machine learning models
available future work could focus on reevaluating the experiments shown on additional model learning techniques.

I would suggest to evaluate Gaussian Process Regression (GPR) [40, 41] and Support Vector Regression (SVR) [43].
Both are frequently applied in machine learning and have been used as baselines before [12]. Hence, they also allow
comparability of DeLaN to other approaches that have been evaluated against those two.

While the first has achieved great results in past experiments it requires longer training times due to a complexity of
O(n3) [70]. Its applicability to my online learning system has to be tested. Moreover, it is a statistics-based machine
learning approach and, thus, has high uncertainties in unknown regions of the input space, i.e., it should extrapolate
worse than DeLaN. There are also approaches that decrease the training time of GPR, e.g., Local Gaussian Process Re-
gression (LGP) [12]. SVR, on the other hand, should train a bit faster than GPR, given a slightly lower complexity [71],
but is not expected to be faster than the DeLaN once a high amount of train samples is added. There are also existent
approaches were SVR is used in online learning using local models [42]. Another algorithm that could be tested and
has been used for inverse dynamics in the past is Locally Weighted Projection Regression (LWPR) [14] or other locally
weighted regression methods [9]. They all feature a low time complexion w.r.t. the number of train samples, e.g., LWPR
has time complexity O(n).

I would conduct all proposed experiments on the simulated robots and the real robot using the mentioned algorithms
and their online versions. Thus, an upper limit for those algorithms is obtained, i.e., their offline training performance,
as well as the performance of their online counterparts. From there, the approaches can be compared to DeLaN to de-
termine whether it outperforms current online learning approaches and to compare future adaptations made to DeLaN
with state-of-the-art regression methods. The ultimate goal for DeLaN is to outperform offline learning algorithms with
online training times.

5.5 Evaluation with Varied Experimental Setup

Another aspect that should be evaluated is the performance of the models on different datasets or experimental setups.
Especially on the real WAM it would be interesting to know which model is suited best for which kind of task given that I
only evaluated the real robot on a single dataset. For example, a FF-NN might be best for slow movements while DeLaN
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performs better if larger portions of the task space have to be covered.

In general, online learning is steered by the samples given to the training process. The better extrapolation w.r.t. unseen
samples of DeLaN compared to the FF-NN could be even more beneficial the more complex a task gets. Therefore, I
suggest to evaluate the extrapolation of the model learning algorithms w.r.t. task space regions. In this thesis I tested
extrapolation by increasing the velocity and acceleration of a known trajectory. In contrast, the models could be trained
on trajectories that cover only a part of the task space and could then be evaluated on trajectories in other regions of
the task space. If DeLaN would maintain results usable in a real scenario due to its physics prior it could be used as a
substitute for an analytical model. Although, DeLaN may fail in such a scenario due to l̂ and ĝ depending on q.

Furthermore, noise could be added to the sensor measurements. In every real scenario noise is present, and espe-
cially in remote controlled environments this might be more of an issue than in the use case of this thesis. While
analytical models are robust to noise this is not ensured for model learning approaches. Given the incorporated PDE
of DeLaN it should handle noise better than the FF-NN or other model learning approaches. Hence, I would conduct
experiments with a varying level of noise. Every parameter of the experiment stays fixed, i.e., dataset, number of
training samples, model hyperparameters, etc. Then from the same random initialization (using a fixed seed for all
pseudo-random numbers) the models are trained online with a different amount of Gaussian noise added to the sensor
measurements. The tracking error would then be compared to measure the models’ robustness.

Another aspect that could be tested is long-term online learning. Imagine a robot that autonomously performs a
task while its dynamics model is learned online. As it is previously unknown which movements the robot has to do
there is no prior knowledge of when the learning process could be stopped. This may lead to overfitting and, hence, the
model becoming worse from some point in time onward. While the experiments conducted indicate that DeLaN is less
susceptible to overfitting than the FF-NN the impact of long-term training has yet to be evaluated. Given the outcome,
there are multiple options to deal with overfitting. One that is already in place is regularization. Regularization is ba-
sically the addition of a term to the optimization objective function that penalizes high parameter values. I introduced
it to DeLaN’s optimization problem in Equation 3.10. A second means to deal with overfitting is early-stopping using a
validation set [72]. Here, the learning process is ended once a given criterion is fulfilled, e.g., the validation error did not
decrease for multiple epochs. It would require to split a small amount of samples from the training data for validation
or to alter the training process, e.g., when using k-fold cross-validation. Though, early stopping may be harmful as it
prevents adaptation to changing dynamics once the learning is stopped. This can be an issue in a scenario where the
dynamics model changes at runtime, for example if a robot at a remote location gets damaged. A third, and maybe
most promising, option is to include dropout layers [73] into DeLaN’s network architecture. By randomly deactivating
neurons in the training process, dropout layers effectively decrease the overfitting capabilities of a neural network while
maintaining a high level of prediction accuracy.

The final experiment I would perform is to evaluate the adaptability of DeLaN to changes in the dynamics model.
One example where this may occur is when a robot is grabbing a heavy object. An analytical model cannot compen-
sate changing dynamics and it would be required to derive a model for each possible configuration of robot and grabbed
object. DeLaN should be able to adapt to changing dynamics through continuous online learning. An experiment would
be to start learning on a trajectory, e.g., the cosine trajectory, and after a few iterations adding a weight to the robots
end-effector. The performance of all models could then be compared on two measurements. First, the resulting tracking
error and, second, the time required for the error to decrease to a level similar to the error before the weight was added.
One parameter that could be crucial for fast adaptation is the total amount of samples kept in the training set. On one
hand, a larger size would require more time until all samples are replaced. On the other hand, a smaller training set may
limit the overall power of DeLaN.

5.6 Exporting DeLaN to Other Fields of Research

In this section I want to showcase some current fields of research where DeLaN could be applied. Those mentioned do
not cover all possible options but are rather a few interesting examples.

One currently heavily investigated field of research is model-based reinforcement learning (RL) [74, 75, 76, 77]. Model-
based RL utilizes model learning to obtain required but unknown models, e.g., the state-transition model. Once a model
is learned, model-free RL techniques could be applied [78]. Many RL approaches rely on the dynamics model of a system
[75, 76, 77]. DeLaN could be used in such cases where a dynamics model is needed. Through the physics prior the model
should be trained fast while adding physical plausibility. Furthermore, the prior would allow to control which model class
is learned. Although it could be necessary to adapt the prior to model the dynamics function of the respective system, as
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explained earlier, DeLaN could easily be adapted by changing the incorporated PDE.

Furthermore, DeLaN can be applied in optimal control. The combination of machine learning and optimal control is
an ongoing research effort [79]. DeLaN can be integrated as model into an optimal controller and by minimizing a given
cost functional, i.e., the loss function used for training, optimality is obtained. Optimal control is also closely related to
RL and, thus, DeLaN and optimal control could be combined using model-based RL [80].

A third possible future application of DeLaN is in compliant control. The goal of compliant control is to react to
forces that the environment acts upon the system. Compliant models can be learned [81, 82, 83] and, as they are
dependent on PDEs, this can be done using DeLaN. In cases where compliant control is desired which are often cases
where a human interacts with a robot the reliability of the system’s compliance is mandatory. Through the physics prior of
DeLaN it can be assured that the learned model follows a given directive. Thus, DeLaN may be able to model a compliant
controller while being trained in complete end-to-end fashion.

DeLaN could also be used in applications where any dynamics model is required as the prior could be adapted eas-
ily. One interesting application that is currently investigated would be the dynamics of microbiomes [84], another one
would be fluid dynamics [85].

5.7 Deriving and Using the Forward Model

Another experiment, though more complex to realize, is to derive and use the forward dynamics model from DeLaN. As
shown in Equation (3.9) the matrix L and vector g which are the output of DeLaN could be used to derive the forward
dynamics model f̂ . The experiment would be to train DeLaN on an inverse dynamics task, as shown in this thesis. f̂

could then be derived using the learned network and applied to a task like model-predictive control or optimal control.
Here, DeLaN’s performance could hint the usability of such a derived forward model and, if results are sufficient, this
could be another major advantage of DeLaN making it more versatile.
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6 Conclusion
The focus of this thesis was the application of deep learning as means of modeling inverse dynamics of a real system, i.e.,
a real robot. The contribution of this work is a twofold. First, the concept of incorporating a physics prior within a deep
learning framework was proposed. All necessary mathematical equations were derived and the network architecture of a
standard feed-forward neural network (FF-NN) was extended to facilitate encoding a partial differential equation (PDE)
as part of the network. Second, experiments were conducted on this concept to determine its advantages and drawbacks
as well as its real-time applicability and, thus, usability in robot control. These experiments were performed both in
simulations and on a real, physical robot.

In particular, I first proposed Deep Lagrangian Network (DeLaN), a deep neural network upon which Lagrangian Mechan-
ics is imposed. This specific network topology allows to learn the inverse dynamics of any mechanical system. Thereby
it combines the advantages of classical model learning, the possibility to use end-to-end training from samples, with the
physical plausibility of an analytical model. The necessary mathematical derivations to incorporate a PDE into a neural
network were derived. From that a new feed-forward network layer, the Lagrangian layer, was proposed that extends
the standard layer by passing the derivative of the layer w.r.t. the previous layer. In the case of inverse dynamics model
learning DeLaN reduces the required input space to a third. This makes the resulting model more robust and reduces
the amount of samples needed for a sufficient model. Furthermore, a system architecture that allows the asynchronous
training and control of a mechanical system has been showcased. The architecture enables real-time control while facili-
tating online learning allowing to profit from its advantages, e.g., not needing to gather training samples previous to the
execution of the task or the problem of persistent excitation.

The experiments have shown that DeLaN is able to learn the underlying physics from a super-imposed signal, i.e., it
can recover the contribution of the inertial-, gravitational, Coriolis, and Centripetal forces from sensor data. In quan-
titative evaluations within a real-time control loop I assessed the tracking error on the task that should be performed
by the robot. The evaluations showed that DeLaN can learn the system dynamics online while obtaining lower sample
complexity and better generalization compared to a FF-NN. DeLaN also performs close to an analytical model, derived by
the Recursive Newton Euler (RNE) algorithm, which highlights the possible advantages compared to classical machine
learning approaches. Moreover, DeLaN can extrapolate to new trajectories as well as to increased velocities, where the
performance of the FF-NN deteriorates due to overfitting to the training data. This is an issue that most classical model
learning approaches are subject to and may be one of the main reasons analytical models are still the state-of-the-art in
current robot applications.

However, experiments also discovered that, when applied to a real physical system with complex dynamics, the bounded
representational power of the physics prior may be limiting. This can be explained by the fact that DeLaN can only
approximate models that are based on the same physical assumption. Anything that is not modeled in that assumption
cannot be learned. In case of the Lagrange-Euler PDE this is true for, e.g., friction. But, through this limited representa-
tional power the physical plausibility is enforced.

In future work the physics prior should be extended to represent a wider system class by introducing additional non-
conservative forces within the Lagrangian. It then has to be evaluated whether the training process has to be adapted
to keep the physical plausibility intact. Moreover, some additional experiments should be conducted on DeLaN. DeLaN
should be compared to other machine learning algorithms in the future. This would facilitate ranking DeLaN among
the wide variety of available model learning options. A broader comparison could also highlight scenarios where DeLaN
outperforms existing approaches or where it should not be used. Another experiments worth doing would be the eval-
uation of DeLaN’s robustness to noise and adaptability to changing dynamics. The latter is something that especially an
analytical model is unable to describe and, thus, would be a major point for DeLaN. Furthermore, the impact of long-term
online training has yet to be evaluated. This is important in order to use DeLaN in a prolonged scenario where online
training and adaptability is required, e.g., in a scenario with a remote, autonomous robot.

DeLaN should also be applied to other fields of research. One prominent application where DeLaN could shine is
model-based reinforcement learning. Reinforcement learning often requires dynamics models, but as they are usu-
ally unknown, they have to be learned. This is a case where DeLaN with its physics prior could be integrated relatively
easy into existing approaches [75, 76, 77] adding benefits like physical plausibility, extrapolation to unknown states,
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and a more controlled training process. Additionally, DeLaN could be applied to various control scenarios, like opti-
mal or compliant control. Combinations of either of the two with machine learning techniques is currently investigated
[79, 81, 82, 83] and, hence, possible use cases for DeLaN could be found. Other fields of research that depend on any
system dynamics could also make use of DeLaN when adapting the incorporated PDE. Two examples would be the dy-
namics of microbiomes [84] or fluid dynamics [85].

To conclude, Deep Lagrangian Network (DeLaN) is a novel means of modeling inverse dynamics of robots, or any
mechanical system. Given the results of my experiments it could become a reasonable alternative to analytical mod-
els in applications like production lines or human-robot-interaction where a reliable model is necessary. This would save
great amounts of money and time that currently have to be spent on engineering the analytical models.
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