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Abstract
A dynamics model is essential for the control of a robot. It can encapsulate information about different properties of the
robotic system like masses, joint configuration, friction, the center of gravity and inertia parameters in a mathematical
model. Online model learning is a viable alternative for robotic manipulators in comparison to analytical models and
models learned offline, as online learning offers the advantage of being able to dynamically react to a changing model
during execution. During an exploration phase, the model gets learned by an online algorithm using a constant stream
of data generated by the robot performing a desired trajectory. In this phase, it is important that the robot is robustly
controlled, while simultaneously generating rich data to learn on, ideally using a trajectory providing maximal excitation
of the parameters for the dynamics model.
In this thesis, I will lay out the foundations of online model learning, develop a robust controller for the Barrett WAM
4DoF and will evaluate the performance of different trajectories that have been used for online model learning on the
WAM 4DoF robot. Additionally, I will show that the analytical model of the WAM provided by Barrett is capturing the
real dynamics only badly and that trajectories, which bear the excitation of dynamic parameters in mind, indeed perform
superior to other, more trivial trajectories.

Zusammenfassung
Ein Dynamikmodell eines Roboters ist essentiell um diesen zu steuern. Es kann Informationen über den Roboter wie
Masses, Konfiguration der Gelenke, Reibung, Schwerpunkte und Trägheitsparameter in einem mathematischen Modell
vereinen. Das Online-Lernen von Modellen ist mittlerweile eine mögliche Alternative im Vergleich zu analytischen oder
offline gelernten Modellen. Der Vorteil von online gelernten Modellen besteht darin, dass während der Ausführung dya-
misch auf eine sich verändernde Umgebung, die damit das Dynamikmodell beeinflusst, reagiert werden kann. Während
einer Explorationsphase wird das Modell von einem Online-Algorithmus gelernt, der dafür mit einem konstanten Strom
von Daten versorgt wird, die von dem Roboter erzeugt werden, der eine gewünschte Trajektorie verfolgt. Während dieser
Phase ist es wichtig, dass der Roboter robust geregelt wird und dass gleichzeitig die erzeugten Daten reich an Informatio-
nen sind, idealerweise indem eine Trajektorie verwendet wird, die die Parameter des Dynamikmodells maximal anregt.
In dieser Thesis werde ich die Grundlagen des Online-Lernens von Modellen darlegen, einen robusten Regler für den Bar-
ret WAM 4DoF entwickeln und werde bewerten, was für einen Einfluss verschiedene, für das Online-Lernen verwendete,
Trajektorien auf die Leistung des Online-Lernens am WAM 4DoF Roboter haben. Außerdem werde ich zeigen, dass das
analytische Modell des WAM das von Barrett zur Verfügung gestellt wird, die tatsächlichen Dynamiken nur unzuläng-
lich darstellt und dass Trajektorien, die designt wurden, um die dynamischen Parameter anzuregen, tatsächlich besser
abschneiden, als andere einfachere Trajektorien.
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1 Introduction

1.1 Motivation

Robotic manipulators have been developed for more than 60 years now, with the first automata already appearing several
hundred years earlier. Those automata were either only plans, for example by Leonarda da Vinci in the 16th-century
[3], appeared in fiction, as in form of the humanoid automata "Olimpia" in E.T.A. Hoffmanns novel "The Sandman"
[4] or as a practical application, for example the first programmable loom in 1804. The development of transistors and
integrated circuits after the second world war then resulted in rapid progress in the fields of computer science, mechanical
engineering and in the intersection of both, robotics. In 1960 the company Unimation presented the first robot for
industrial use [5], in 1974 KUKA presented the Famulus, the first 6-DoF industrial robot with electromechanically driven
axes [6]. Since then robotic manipulators have established themselves as an essential workforce to automate industrial
production, most prominently in the production of cars. The typical workflow of an industrial robotic manipulator is
static. It has one preprogrammed task that it repeatedly executes using a set trajectory. Such behavior is sufficient for
a static environment like it is found inside a factory. However, requirements for robots in other areas are more complex
and challenging [7]
The use of robots expanded to many other areas, simplifying many tasks in our daily lives. Nowadays there exist vacuum
cleaner and lawnmower robots [8], autonomous cars [9], delivery drones for packages [10] or robots that can assist
humans, for example in elder care [11]. Their appearance can vary greatly: Walking [12], flying [10], driving [9] or
tracked robots [13], humanoid [12] or nature-inspired [14] robots, extremely small [15] or big robots [16].
Previously it was often important to execute one specific task thousands of times. However, for other robotic systems it is
also important that they are able to solve several different tasks only a few times, e.g. a robot working in close interaction
with humans. For example, a robot assisting with elderly care needs to react to the actions of its ward accordingly in a
dynamically changing environment.
Each of those different robots still shares one trait: Each of them can be described by a dynamical model, which encapsu-
lates information about the properties of the robot, like masses or inertia of the matrix. The model of a robot can be used
to calculate movements, e.g. how much force a motor needs to exert so that the robot follows a predefined trajectory to
a desired position.

With the change in appearance and usage of robotic manipulators, other areas of research also evolved. Greater compu-
tational power and more available data to process also propelled the area of machine learning in the last decades. This
lead to an interweaving of machine learning methods in the development of robots.
The task of finding a good model for a robot or any other dynamical system is known as model learning. Machine learning
techniques can be used to help acquire such a model. Typically, data is fed into the machine learning algorithm which
then generates a model fitting to the input data. This is known as offline learning since the model is generated without
using the robot itself. However it is also possible to perform online learning. Here the robot performs a task while the
model is learned, i.e. the robot creates a constant stream of data using a model, which gets fed to the model learning
algorithm, which in turn feeds a constant stream of updates of the used model to the robot.
This technique has some advantages over classical offline learning, but also drawbacks. The most interesting aspect
of online learning is the possibility for the robot to adapt to a dynamically changing environment, e.g. when it picks
something up, where the mass is unknown.
However, the drawbacks include that at the start of learning it is necessary to generate some data which can be used
for the first iteration of creating the model. Since no initial model is available, the robot needs an initial controller to
generate the initial data. Once a model is learned it is still possible that the model deviates strongly from the actual
model. The controller is then needed to compensate the torques generated by the model, should the robot deviate too
much from its desired trajectory. Finally, it is also possible that other unforeseen circumstances happen during the model
learning, which could lead to instability of the robot. Therefore the robot must be correctly controlled during the whole
exploration phase of model learning. In this work, I am going to develop a robust controller for the cable-driven Barret
WAM 4DoF. The controller will be able to guarantee the stability and safety of the robot during the whole exploration
phase of model learning and demonstrate its usage on several excitation trajectories. As a model learning algorithm, I am
going to use a system identification algorithm by Atkeson et al. [2], which finds the parameters for the dynamics model.
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1.2 Structure of the Thesis

The following thesis is structured as follows: In chapter 2 I am going to introduce important concepts necessary to
understand the importance of model learning and robust control. In chapter 3 I present the robust controller for the
Barrett WAM 4DoF including a joint limit avoidance. In chapter 4 I show the experimental setup where I tested the
controller on the Barrett WAM 4DoF using several excitation trajectories and compared the performance on an model
learning algorithm. I also extensively test the joint limit avoidance and show the limits of the analytic model of the WAM.
After that, I draw the conclusions and results of my work in chapter 5. In chapter 6 an outlook is presented, giving
possible approaches for further research.
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2 Foundations

2.1 Forward and Inverse Models

In a robotics system, the state of the system typically consists of the joint position vector q and its derivatives, velocity
q̇ and acceleration q̈. The action needed to change the state of the system is the torque vector ⌧ that is acting on the
joints. A dynamics model can describe the relationship between the state of the system and a chosen action, either how
a chosen action affects the next state or which action needs to be taken to reach a desired state. In order to predict the
next state of the system, given the current state and an action, a forward mdoel is used. An inverse model is required to
predict the action needed to reach a desired state from the current state. Thus, for the forward dynamics problem, given
the current joint positions, velocities, and accelerations as well as the torque, the acceleration of the next time stamp
needs to be computed. To solve this problem it is only required to calculate the acceleration, as velocity and position
can be calculated based on the acceleration and the former state. For the inverse dynamics problem, the current state is
also given, as well as the next desired state, both consisting of position, velocity, and acceleration. Here, it is necessary
to compute the required torque to reach the desired state at the next time stamp. It is to note that there always exists
a solution to the forward dynamics problem, but not necessarily for the inverse dynamics. Given an action and a state,
there will always be a state that the action results in. However, there is not always an action to get from one state to
another. Therefore the inverse dynamics are typically a harder problem. The forward and inverse dynamics problem can
both be written as a function

f (q, q̇,⌧) = q̈, f
�1(q, q̇, q̈) = ⌧.

Once the inverse dynamics problem is exactly solved and f
�1 is known it is possible to let the robot track arbitrary tra-

jectories, which are sequences of desired states in its workspace. It does this by simply feeding the known information
about current position, velocity and acceleration and the next desired position, velocity and acceleration into f

�1 and
applying the resulting torques to the joints of the robot.

One common approach to model the dynamics of a robotic manipulator is the Rigid Body Dynamics Model (RBDM) [17],
where the torques are dependent on a function consisting of the inertia matrix H(q), the coriolis and centripetal forces
C(q, q̇) q̇ and the gravitational g(q) vector

f (q, q̇, q̈)�1 = H(q)+C(q, q̇) q̇+g(q) = ⌧.

The RBDM assumes rigid dynamics, i.e. that the used body cannot be deformed, therefore simplifying the model. This
however, does not capture the reality of robotic manipulators, as every robot has some parts which can be deformed.
Therefore the dynamics of a real system cannot be perfectly modeled by the RBDM. Often another term is added to model
all the forces not covered by the RBDM, for example, friction, elasticities, couplings or sensor noise [18]

H(q)+C(q, q̇) q̇+g(q)+✏(q, q̇, q̈) = ⌧.

Another formulation of the RBDM is that of a linear model [19]

�(q, q̇, q̈)⇥ = ⌧,

where ⇥ describes the vector of barycentric parameters for the robot and �(q, q̇, q̈) is the identification matrix.
The Rigid Body Dynamics Model offers simplicity and efficiency [20], which is both an advantage and a disadvantage.
Due to its simplicity, it makes it easier to find the few important parameters required to produce good results. However,
this model will never be entirely sufficient for the real dynamics of a system. It does not exactly model friction, elasticity
or sensor noise and can therefore not capture the real dynamics.

Another possibility of modeling is to use nonparametric models, where no static structure of the function is given. This
allows for more flexible models, as there are no assumptions made of the exact structure of the model. However, it also
reduces interpretability of the model, as the results cannot be mapped to certain parameters of the robot.
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2.2 Model Learning and System Identification

A robot model is essential for the control of a robot. It can encapsulate information about different properties of the
robotic system like masses, joint configuration, friction, the center of gravity and inertia parameters in a mathematical
model [21], describing the kinematics or dynamics of the robot body. Those models can be analytically calculated by
exactly measuring and weighing every single part of the robot, which usually requires complete decomposition of the
robotic manipulator. This method requires time, effort and monetary resources and is not realistic for complex modern
robots, e.g. humanoid robots [22]. Also, small details like the exact positioning of cables can never be exactly measured.
Alternatively, CAD programs may calculate parameters for the dynamics model, which are, however, often not complete
[23]. Additionally, all those analytical models are static and cannot react to external influences like an added mass at the
end effector, a changed tool at the end effector, partly damaged parts of the robot, unknown nonlinearities like friction or
a dynamically changing environment. Therefore, it is not favorable to use such a method unless the design of the robot
is sufficiently simplistic and the work environment of the robot is exactly known and static.

Model learning [24] and system identification offer an alternative to the analytical model. They use statistical methods
to find a model fitting to given data, which is strongly tied to the field of machine learning. Intuitively, one may think that
using model learning may perform worse than analytical models because measuring a robot should result in a more exact
model than finding some relation between data. However, most of the time model learning algorithms outperform the
analytical models, often even the provided model of robot manufacturers [25]. Additionally, both analytical and learned
models suffer from a model mismatch, which denotes the difference between an estimated model and the actual model.
The real-world dynamics can never be exactly captured, simply because too many uncertainties exist. In our example
this could be the temperature or the exact positioning of cables, which impacts inertia parameters of a cable very slightly.
Such a model mismatch is however not too severe, since the sensors of the robot are always noisy, never resulting in
exact measurement needed for exact control of the robotic manipulator.
Model learning has been successfully used for different applications in robotics, e.g. for learning a forward dynamics
model [1], an inverse dynamics model [26] or learning an inverse kinematics model [27]. Both model learning and
analytical models can be used to e.g. control a dynamic system like a robotic manipulator, but only model learning
allows for estimating a model directly from the data collected on the real robot [24].
The authors of [28] state three different components for a model-based adaptive control system which can be transferred
to the problem of online model learning: Modeling, exploration and control policy design. The first part describes the
choice of an explicit model for a system and the algorithm that learns that model. In the context of online model learning,
this could be for example using a nonparametric regression method like Local Gaussian Process Regression (LGP) [26]
or use of the Rigid Body Dynamics Model (RBDM) (see 2.1) in Deep Lagrangian Networks (DeLaN) [1]. Exploration
describes how the data used for learning is generated, which for robotic manipulators translates to the choice of the used
trajectory during learning. The control policy part is about how the system is controlled during learning and how exactly
the model is used for finding the next action. Most of the time the focus in research lies on the modeling part, however,
the latter two are also important factors for successful online model learning. In [29] the three main components for
model learning are identified as the used data, the set of possible models and the identification method, i.e. once again
the data is an important factor for successful model learning.
It is important to note that the goal of model learning is to find a good model which can then be analyzed, used for
other tasks or further used for the current task, e.g. tracking control. The goal is explicitly not to achieve perfect
tracking performance during the exploration phase and not to learn a control policy that is able to achieve this tracking
performance. This approach is related to the field of online adaptive control, where perturbations of the system are
counteracted by a learned control policy to improve tracking performance.
It is therefore of utmost importance that the data generated online used for model learning supports the learning process
as best as possible, i.e. the relation between torque and state should be as clear as possible for the learning algorithm
and well-conditioned. The performance of the above-mentioned modeling part can be enhanced by a good selection
of the trajectories used for the exploration to generate rich data, as well as a controller design that is robust while
simultaneously having low gains and only small chattering. Trajectories that excite lots of model parameters, therefore,
increasing the models performance are called "persistently exciting trajectories" in the system identification literature
[30]. One important aspect of the controller design in this context is the problem of chattering, which is that the torque
oscillates around a value, while the state changes only slightly, resulting in badly conditioned data. Both of these problems
should be paid attention to when doing online model learning.

2.3 Online and O�ine Learning

There are two different ways to learn a model, abstracting from the actually used learning algorithm. On one hand, the
model can be learned offline, where learning data is fed to the algorithm and a model is learned, which, once the learning
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Figure 2.1.: Online Learning
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Figure 2.2.: O�ine Learning

is finished, can be used for the robot to perform a task. On the other hand, the model can also be learned online, where
the robot executes the desired task and while doing so collects data, which is used by the learning algorithm to constantly
update the model. In turn, this model then gets used to control the robot and collect more data. The phase of online
learning where the collected data is used to learn and update the model is called exploration. When learning offline, the
model is learned only on the data initially supplied. Therefore the model performance may deteriorate strongly when the
data of the actual task deviates from the initial data used to learn. Online learning has the big advantage that the data is
generated while performing the execution of the task. Therefore the model can react to changing conditions impacting
the model during execution, e.g. when the model of the robot changes because some mass is added to the end effector.
The model can then be updated using the constant feedback stream of the acquired data.
In [31] the authors note that the three biggest problems for online model learning are the speed of the learning algo-
rithm, the large amounts of data that need to be processed and that the algorithm needs to be able to continuously
process a stream of data during online learning. A robotic manipulator is typically controlled with a frequency of about
100 - 1000Hz [32] and therefore needs that many predictions in one second, while having to learn and update the model
in parallel. Online model learning has one further major drawback: The model cannot be evaluated before execution and
therefore the model could differ strongly from the actual model during exploration, resulting in a large model mismatch.
Thus, in the worst case, it is possible that the robot may self-destruct, for example, because a joint limit is violated or the
computed torque results in a too strong force. It is essential to prevent this behavior and ensure that the robot is safely
controlled during the online model learning.

2.4 Robust and Adaptive Control

Robust control explicitly deals with uncertainties in control systems as it assumes that there exists some bounded error
between the real and a learned model. Robust control then ensures that as long as the error between the models stays
bounded by some constant, the controlled system will be stable. As model mismatch will always exist, robust control
offers guarantees that the model mismatch will not impact the stability of the system. The most simple type of robust
control is to choose high-gain feedback laws, which will overcome model disturbances simply by the high gains. Other
robust control methods include H1 control [33] or Sliding Mode Control (SMC) [34]. High gain feedback is undesirable
for a model learning problem because it leads to chattering torques which results in a badly conditioned learning prob-
lem. Additionally, a perfect tracking of the desired trajectory is not favorable, as small perturbations from the trajectory
allow for richer data to learn from. Sliding Mode Control allows for easy design of control laws with few parameters.
Chattering depends on the choice of the gains and can be reduced with an activation function. As well, stability of the
controller is easy to show.

Adaptive control on the other hand also deals with uncertainties. However, it does not assume anything about the bounds
of these uncertainties. Instead, it changes the control law according to the change in the system. It is however important
that the change of the control parameters happens faster than the change of the robot parameters, which sometimes may
be hard to achieve. Therefore, robust control is a way to stabilize a system without changing the control term during
execution, while adaptive control changes the control term during execution such that the controlled system stays stable.
Therefore, the parameters for robust control are set, while they vary for adaptive control.
Robust control has the advantage of better dealing with unmodeled dynamics, e.g. elasticities, can better react to quick or
immediate changes of perameters, e.g. when picking up a mass and can deal with other disturbances [34]. On the other
hand, an advantage of adaptive control is that it does not need any prior information about the unknown parameters,
i.e. it would not need some bounds as later introduced in 3.3.
Robust control is the better choice for online model learning as it is a predictable control law to use during the exploration,
it is easier to implement and is more intuitively to understand.
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Figure 2.3.: Left: The physical Barrett WAM 4DoF robot in the lab of IAS in its resting position. Right: The WAM during
execution of a trajectory. The base joint is rotated, the arm is tilted and rotated, the elbow joint is unfolded.

2.4.1 Control and its Impact on Learning

With very high control gains it is an easy task to achieve near-perfect position tracking. However, in the context of model
learning, this is undesirable. While using high control gains ensures that almost no position error exists, it often also
leads to bigger velocity and acceleration error as well as chattering torque, i.e. the torque oscillates between two values.
This behavior is due to overshooting over the desired position and then applying the reverse torque to again overshoot.
Such chattering results in data that is impracticable for learning, since a learning algorithm needs data that provides
a relation between position, velocity, acceleration and torque. With chattering in the data, the problem becomes badly
conditioned.
To summarize, it is important to choose the control law and the control gains so that the stability of the robot is ensured
at all times while simultaneously creating data which is of sufficient quality to learn on.

2.5 Barrett WAM 4DoF

The Barrett Whole Arm Manipulator (WAM) 4Dof robot is a cable-driven, human-like robotic manipulator widely used
in research, originally developed at MIT [35]. The WAM 4Dof mimics a human arm: The base joint as well as the second
and third joint resemble the human shoulder, the final joint imitates the function of the elbow joint. The Barrett WAM is
easily transformable into a 7DoF robot by replacing its lower arm module, also allowing it to mimic the function of the
wrist. The WAM is a complex dynamic robot, mainly due to its direct cable drives, which induce a lot of nonlinearities,
therefore making it hard to create a model analytically.
The robot has already been used for various online model learning experiments, for example in [26] or [1], where it has
been demonstrated that the model of the WAM is learnable online.

2.6 Related Work

As addressed in 2.2 model learning consists of the model, the exploration and the control policy. In this thesis, I will
focus on the latter two. In this section, I am going to present common approaches to the exploration and control policy
during model learning.
During the exploration phase, it is necessary to stabilize the system using a controller. The choice of the exact control law
is left up to the researcher. Most often some sort of computed torque control (CTC) with a PD controller is used, which
is a special form of feedback linearization. This has been employed in model learning applications like [1], [26], [31],
[36], [37], [38] or [39]. The disadvantage of computed torque control is the fact that control performance is bad if the
model structure does not contain all of the existing dynamics, therefore assuming that the learned model is of sufficient
quality [40]. Using robust control for designing a control law ensures good control performance, as long as the error on
the learned model stays within predefined known bounds. It therefore guarantees stability during execution using the
learned model, which is an advantage primarily for early stages of learning.
An alternative to CTC is to use a sliding mode controller (SMC), which has been used in addition to a neural network for
control [41] and reinforcement learning [42]. Others [43], [44] have used a cartesian controller [45].

During the exploration phase, it is important that the used trajectory is meaningful for the robotic manipulator, i.e. all
of the parameters that are relevant for the model should be employed for the execution of trajectory. Basically every
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approach for exploration during online learning uses some sort of rhythmic movements, i.e. only cosine [1] or sine
functions [46] or finite Fourier series (FFS) [22] in the joint space. Others have used trajectories in the task space, for
example, a rhythmic movement in the form of an 8-figure in task space [47], hand-drawn characters in a virtual plane in
the task space [26] or simply circles in different planes in the task space [43], [48], [49].
It is to note that only in [22] a rigorous explanation for the used trajectory and its parameters are found, while other
papers do not explain their choice of trajectories.

The idea of inverse dynamics control is finding a nonlinear control law, canceling the nonlinear terms of the model,
resulting in a linear system [50].
In the following, I am going to briefly present publications that I will use for the experiments in chapter 4.

2.6.1 Experimental Robot Identification using Optimised Periodic Trajectories

Swevers et al. [22] create excitation trajectories by transforming the RBDM into a set of linear equations using barycentric
parameters ⇥, which contain the robot parameters

�(q, q̇, q̈)⇥ = ⌧.

�(q, q̇, q̈) is a regressor matrix of dimensions n⇥ r, where n is the DoF and r is the number of parameters in ⇥. During
an excitation experiment, M samples can be collected to construct observation matrices of the regression matrix and the
corresponding torque at each timestep

A=

0
BBBBB@

�(q(t1), q̇(t1), q̈(t1))

�(q(t2), q̇(t2), q̈(t2))
...

�(q(tM ), q̇(tM ), q̈(tM ))

1
CCCCCA

, b=

0
BBBBB@

⌧(t1)T

⌧(t2)T

...

⌧(tM )T

1
CCCCCA

i.e. A⇥ = b.
They then use linear least squares to estimate a solution of ⇥. To measure the sensitivity of this solution to disturbances
the condition number of A can be used. The lower the condition number, the better is the resulting solution to the
optimization problem and therefore enhances the model performance. Since A only depends on the regression matrix
�(q, q̇, q̈), which in turn only depends on the chosen trajectory which defines q, q̇, q̈, the choice of the trajectory directly
influences the condition number of A. Therefore they choose excitation trajectories such that cond(A) gets minimized.
As trajectories, they suggest to use finite Fourier series

qi(t) = q
(i)
0 +

NX

l=1

a
(i)
l

! f l
sin(! f l t)�

b
(i)
l

! f l
cos(! f l t) (2.1)

which are parametrized by a
(i)
l

and b
(i)
l

with N = 5. The frequency ! f is the same for all joints, the velocities q̇i and
accelerations q̈i are the time derivatives of qi . This results in a constrained optimization problem of the condition number
of A over the parameters a

(i)
l

and a
(i)
l

, with the constraints of the joint limits, maximum joint velocity, and acceleration.
The constrained optimization then yields the trajectory (2.1) and the corresponding derivatives, which should provide
few disturbances and therefore facilitate the model learning process.

Calafiore et al. [46] follow a similar approach and optimize the regression matrix. However, they only use harmonic sine
equations as trajectories instead of finite Fourier series and have individual frequencies for the different sine terms.

2.6.2 Deep Lagrangian Networks: Using Physics as a Prior for Deep Learning

In this approach of a model learning algorithm, Lutter et al. [1] use a neural network to learn the RBDM using Lagrangian
mechanics as a guide for the network. For the exploration, they use plain cosine trajectories with different frequencies
for each joint during learning on the Barrett WAM 7DoF. The reasoning for using the cosine is to have zero velocity at the
start of each trajectory. During the exploration phase, the robot is controlled by a low gain PD-Controller.
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2.6.3 Computed Torque Control for Nonparametric Regression Models

In their work, Nguyen-Tuong et al. [36] compare the performance of Locally Weighted Projection Regression and Gaus-
sian Process Regression for online model learning. They use feedforward nonlinear control and inverse dynamics control
during the execution of trajectories consisting of two sinusoids, i.e.

qi(t) = Ai sin(2⇡ f
i

1 t) + A/3sin(2⇡ f
i

2 t),

where Ai denotes the amplitude and f
i

1 and f
i

2 the frequencies.

2.6.4 Summary

Various robust control strategies have been proposed for online model learning. In section 3 I am going to develop a
controller for the WAM 4DoF based on [34] and [51]. Next, I am experimentally validating the controller on the real
Barrett WAM 4DoF and testing the model learning performance using a system identification algorithm [2] which uses
trajectories proposed for model learning in different papers [36], [1], [47], [48] and [22].
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3 Robust Controller

3.1 Introduction

A general nonlinear dynamic system is typically given as an n-th order problem, such that

x
(n) = f (x , ẋ , · · · , x

(n�1), t)

where x corresponds to the state of the system and x(i) denotes the i-th derivative of the state and f is the dynamics.
If the system is controlled a control input u and the control gain b is added

x
(n) = f (x , ẋ , · · · , x

(n�1), t) + b(x , ẋ , · · · , x
(n�1), t)u.

Typically the main interest in such a system is to show that the system is stable, i.e. after some time t f , it stops at an
equilibrium point so that x = xequil i brium and x(i) = 0 for i = 1,..., n. If f itself is not stable, the control gain b is chosen
such that the system becomes stable and has the desired equilibrium point xd

equil i brium
. This can be extended such that

the system does not just tend towards the desired equilibrium point, but instead follows a trajectory, i.e. a desired state
xd varying over time. The control gain b again has to be chosen such that the system tracks the trajectory as close as
possible, which means to reduce the error between the actual state x and the desired state xd and its derivatives.

3.2 Sliding Mode Control

To be able to control an n-th order problem more intuitiuvely, it can be advantageous to reduce its order. A first-order
problem only consisting of x and ẋ can be controlled by simply choosing the control law such that the sign of ẋ is inverse
to that of the error of x.
This leads to the idea of Sliding Mode Control (SMC). SMC reduces an n-th order nonlinear tracking problem into a
first-order stabilization problem [34]. A sliding surface s = 0 is defined as

s = (
d

d t
+�)n�1

x̃ .

For a second-order problem this definition would result in s = ˙̃x+� x̃ , where x̃ is the position error, ˙̃x is the velocity error
and � is a positive weighting coefficient. By application of a first-order lowpass filter (for a proof see [34]) it becomes
evident that if s = 0 then ˙̃x = 0 and x̃ = 0. Therefore, to track a trajectory consisting of a desired position and velocity,
it is sufficient to control s = 0.

Now the goal is to find a control law, such that s = 0 after some time t f . For that to happen it is necessary that s

always tends towards 0, i.e. the sign of the derivative of s is always the opposite sign of s, which can be formalized as

1
2

d

d t
s

2  0. (3.1)

This condition is known as "Sliding condition" [52].
A more strict alternative is to define

1
2

d

d t
s

2  �⌘s

which implies that ṡ is always smaller than -⌘, where ⌘ is a positive constant. With this condition, one can prove that s
not only tends towards 0 at all times, but that it reaches s = 0 zero in finite time.
Theorem: Lyapunov Function:

A function V (q) is a Lyapunov function if V (q) is positive definite and its time derivative is continuous and negative
semidefinite [34].

Theorem: Stability after Lyapunov:

A system is stable in the sense of Lyapunov if a Lyapunov function V (q) exists.
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3.3 Architecture

This sliding condition (3.1) only holds for one-dimensional problems. Since the Barret WAM consists of four degrees of
freedom, the approach needs to be extended to more dimensions. The sliding surface s= 0 is defined as

s= q̇� q̇d+⇤(q�qd)

where ⇤ is a symmetric positive definite weighting matrix [34].
The sliding condition can be constructed simultaneously as

1
2
(sT

H(q) s) �
4X

i=1

⌘i | si | .

Using the sliding condition a Lyapunov function can be constructed. If it is possible to show that its derivative is decreas-
ing, the system is stable in the sense of Lyapunov.

3.3.1 Sliding condition proof:

To prove the stability of the controller, a Lyapunov function V (q) gets constructed

V (q) =
1
2
(sT

H(q) s).

Since H(q) is positive definite, V (q) will always be positive. To prove the stability it needs to be shown that the derivative
of V is always less than or equal to zero, i.e. the value of V (q) monotonously decreases.

V̇ (q) = s
T

H(q) ṡ+
1
2

s
T

Ḣ(q) s

= s
T

H(q)(q̈� q̈d+⇤(q̇� q̇d) +
1
2

s
T

Ḣ(q) s

= s
T

H(q)(q̈� q̈ref)) +
1
2

s
T

H(q) s

= s
T (⌧�C(q, q̇) q̇�g(q)�H(q) q̈ref) +

1
2

s
T

Ḣ(q) s

= s
T (⌧�C(q, q̇)(s+ q̇ref)� g(q)�H(q) q̈ref) +

1
2

s
T

Ḣ(q) s

= s
T (⌧�C(q, q̇) q̇ref�g(q)�H(q) q̈ref)� s

T
C(q, q̇) s+

1
2

s
T

Ḣ(q) s

= s
T (⌧�C(q, q̇) q̇ref�g(q)�H(q) q̈ref) + s

T (Ḣ(q)� 2C(q, q̇)| {z }
=0

) s

= s
T (⌧�C(q, q̇) q̇ref�g(q)�H(q) q̈ref)

If the control term is chosen as ⌧ = Ĥ(q) q̈ref+ Ĉ(q, q̇) q̇ref+ ĝ(q), where Ĥ(q), Ĉ(q, q̇) and ĝ(q) are the estimated inertia
matrix, the matrix of coriolis and centripetal forces and the vector of gravitational forces, then

V̇ (q) = s
T (Ĥ(q) q̈ref+ Ĉ(q, q̇) q̇ref+ ĝ(q)�C(q, q̇) q̇ref�g(q)�H(q) q̈ref)

= s
T (Ĥ(q) q̈ref�H(q) q̈ref+ Ĉ(q, q̇) q̇ref�C(q, q̇) q̇ref+ ĝ(q)�g(q))

= s
T (H̃(q) q̈ref+ C̃(q, q̇) q̇ref+ g̃(q)).

With that result it becomes apparent that if the there was no model mismatch, i.e. H̃(q), C̃(q, q̇) and g̃(q), which denote
the error between the estimated and the actual inertia matrix, the matrix of coriolis and centripetal forces and the vector
of gravitational forces would all be zero, then V̇ (q) would always be zero. If the desired state and the actual state were
equal at the start, the sliding surface could never be left by the robot. However, since a non-existent model mismatch
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cannot be assumed and the sensors are noisy, it has to be ensured that those errors are compensated. This can be done
by adding the term �K sgn(s) to the control term, where K is a diagonal matrix of control gains and sgn() is the signum
function.

V̇ (q) = s
T (H̃(q)(q) q̈ref+ C̃(q, q̇) q̇ref+ g̃(q)�K sgn(s)) 0

s
T (H̃(q) q̈ref+ C̃(q, q̇) q̇ref+ g̃(q)) s

T
K sgn(s)

s
T (H̃(q) q̈ref+ C̃(q, q̇) q̇ref+ g̃(q))

4X

i=1

Kii | si |

| H̃(q) q̈ref+ C̃(q, q̇) q̇ref+ g̃(q) |i  Kii (3.2)

Therefore the gains K have to be chosen such that the above inequality is always true. Since the exact model is not known
the modeling error also needs to be estimated. The gain matrix K is chosen as K = diag(15, 40, 8, 15), which values are
chosen with respect to the approximate torques needed to control the WAM 4DoF only using the term �K sgn(s).

3.3.2 Activation Function against chattering

When using the sign function another problem occurs. Since the torque is not calculated continuously in real-time but
at a static frequency, the system is time-discrete. When the system is reasonably close to the sliding surface, then due
to Equation 3.2 s tends towards 0. But since the next time step happens after a set time, s will not equal 0 perfectly at
that next time step but instead will have changed its sign now being reasonably close to s = 0 from the opposite side.
This problem is known as chattering, where the sign of s changes every time step, which also results in chattering of the
torque.
This problem can be tackled in three different ways: First, the frequency of the controller can be increased so that one
time step becomes smaller and s does not overshoot as much. Second, the value of the gain matrix K could be lowered to
decrease the resulting force and therefore decrease the amount of overshooting. Third, instead of using the sign function
an activation function can be used to smooth the chattering, which indirectly lowers the value of K but only in close
proximity to the sliding surface.
The first two options are not feasible because the frequency has to be chosen such that a model learning algorithm can
be used in parallel while online learning, which does not allow for a higher frequency. The gains k are chosen such that
they fulfill the sliding condition and so that they result in strong enough torques to control the robot without any other
forces applied.
Only the third option can be implemented to reduce chattering. Using a linear activation that clips the values in [-1, 1],
the control law becomes

⌧= Ĥ(q) q̈ref+ Ĉ(q, q̇) q̇ref+ ĝ(q)�K lin[�1,1](s)

which is short for

⌧i =

8
<
:

(Ĥ(q) q̈ref+ Ĉ(q, q̇) q̇ref+ ĝ(q))i � kii s  �1
(Ĥ(q) q̈ref+ Ĉ(q, q̇) q̇ref+ ĝ(q))i � kiisi �1 s  1
(Ĥ(q) q̈ref+ Ĉ(q, q̇) q̇ref+ ĝ(q))i + kii 1 s

for i = 1,2,3,4.
Now the gains scale with the distance to the sliding surface, therefore reducing the chattering in close proximity to the
sliding surface, since the full gains do not get activated at all times.

3.4 Joint Limit Avoidance

The most dangerous thing for the robot to happen during model learning would be that the joint limits are violated,
i.e. one joint position equals a joint limit while still moving in direction of that joint limit. This results in a collision,
depending on the velocity of the joint and could lead from deformations in the link and joint to a collapse of the robot.
Therefore additional safety measures have to be implemented in the controller to ensure avoidance and a minimum
distance to the joint limits.
This avoidance is implemented using an artificial spring-damper system that is only activated after some threshold q

t
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close to a joint limit is crossed.
Should a joint cross this threshold, torque calculated by

⌧i

av oidance
= �ki

p(qi � q
i

t
)� ki

d q̇i (3.3)

is added to the other torque of the controller. ⌧i

av oidance
is the joint-wise torque calculated only if the threshold q

i

t
for a

joint is crossed. The spring coefficient ki
p and the damping coefficient ki

d are simply joint-wise proportional and derivative
gains. This results in a simple PD-Controller in the critical area near the joint limits.

The joint limits of the WAM 4Dof are

Joint 1 2 3 4

Minimum position -2.6 -2.0 -2.8 -0.9

Maximal position 2.6 2.0 2.8 3.2

The area equal to 5% of the range of each joint before each joint limit is chosen as the critical area where the joint limit
avoidance is applied, which results in the following thresholds qt

Joint 1 2 3 4

Lower thresholds -2.34 -1.8 -2.52 -0.69

Upper thresholds 2.34 1.8 2.52 3.0

The gain vectors kp and kd are chosen as

Joint 1 2 3 4

kp 400 600 200 200

kd 3.5 7.5 2.5 1.25

Each used trajectory for model learning also avoids the critical area, therefore ensuring that the critical areas are only
entered due to modeling errors, but not intentional.
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4 Evaluation

4.1 Joint Limit Avoidance Experiment
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Figure 4.1.: The four di�erent responses to the joint limit avoidance for each joint in applied torque, position and velocity
is plotted in blue, the dotted orange line is the threshold after which the joint limit avoidance is active, the
red dashed line is the joint limit which cannot be crossed. During execution only the shown joint is loose while
all others have been stabilized.

To evaluate the performance of the implemented joint limit avoidance in the controller I am going to simulate a ’failed’
model, which either does not output any torque at all or pushes with some torque in the direction of a joint limit. First,
each joint but one is stabilized in a position while the one joint is loose and free to move due to an external influence like
gravity. Due to the geometric construction of the robot and its installment in the lab the first and the third joint can not
be influenced by gravity towards their joint limits. Therefore a torque of 10Nm is applied to each when they are loose
to force them towards their joint limit. Each joint starts in the center of its range, i.e. q0 = [0,0, 0,1.15]. The threshold
after which the joint limit avoidance is activated was chosen to be 10% of the total range of each joint. The response of
the joint limit avoidance is depicted in B.3. It can be seen that the trajectories are under critically damped. If an exact
model would be known, e.g. by model learning, the gain parameters could be tuned such that the response would be
critically damped. Also, a stationary point is adopted once the response has worn off due to the damping term which
reduces the energy in the system.

Figure 4.2.: The joint limit avoidance experiment for the second joint. The behavior of the robot is depicted from left to
right. The first picture shows the initial position of the robot, in the next two pictures the robots falls due
to gravity. The fourth image shows the maximum overshoot over the virtual joint limit threshold. The arm is
then sprung up, until it ends in the resting position of the last picture.
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Table 4.1.: The di�erent frequencies used to create the four di�erent cosine classes, the amplitude A and the starting
position q0 in Lutter et al.

Joint

cosine class 1 2 3 4

0 0.7 5 3 2

1 0.7 3 5 2

2 1.1 2 7 5

3 1.1 5 7 3

Joint

1 2 3 4

A 0.866 0.66 0.933 0.683

q0 0 0 0 1.15

4.2 Excitation Trajectories Experiment

Depending on the task the robotic manipulator performs different desired trajectories during the online learning phase.
For this exploration, it is unfavorable to directly perform the task as the model learnings performance may be deteriorated
based on the chosen trajectory. Instead, it is desirable to lay a baseline for the model by performing some set trajectories
first, which are known to produce a stable model. Those trajectories should be designed in a way such that they support
the model learning as best as possible.
In this section, I am going to evaluate the model learning performance of different trajectories proposed in literature for
online model learning. The four different trajectories that I am going to use are: Cosine curves in the joint space as used
in [1], optimized FFS in the joint space as proposed in [22] and a circle [44] and an 8-figure [47], each in task space.
Each of those trajectories has been used for online model learning in experiments. The reasoning for using the optimized
FFS trajectories is that the resulting parameters should be insensitive to perturbations of the trajectory. The cosine curves
are used because of their inherent property of having a zero velocity at the start of the trajectory. For the trajectories in
the task space, no motivation or explanation is given in the corresponding publications.

4.2.1 Trajectories

In the following I am going to shortly present the four different trajectories used for the later experiments. All of them
have been used for a model learning application in literature.

Cosine Curves

The trajectories used are simple joint wise cosine curves following the formula

qi(t) = q0i + Ai cos(2⇡0.05c
(m)
i

t + sin(0.5⇡t))

where qi denotes the joint position of the i-th joint, q0i the initial starting position of the i-th joint and Ai the amplitude,
which is one-sixth of the range of each joint, resulting in using one-third of the total range of each joint. c

(m)
i

is the value
for the i-th joint of the m-th of four so-called ’cosine classes’, which allow for four different trajectories in total, and  is
a sine factor. The used values for the trajectories are given in 4.1. The trajectories in joint as well as in task space can be
seen in 4.3. Of the four available trajectories, I chose to use the first, i.e. cos_0, which showcased the best model learning
performance of the four. Results of the four trajectories are shown in B.2. In the following, I will refer to this trajectory
as cosine curve/trajectory.

Optimized Finite Fourier Series

The used trajectories for the optimized FFS have been calculated by myself using the methodology proposed in [22]. For
that I used the linear model of the WAM and FFS of length 3. I optimized the condition number of the regression matrix
using the python library scipy with the optimization method "trust-constr" which optimized over the parameters a

(l)
i

, b
(l)
i

and q0i with i = 0, · · · , 3 denoting the joint number and l = 0, · · · , 4 denoting the Fourier coefficient number, resulting
in the aforementioned equation

qi(t) = q0i +
NX

l=1

a
l

i

! f l
sin(! f l t)�

b
l

i

! f l
cos(! f l t).
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Figure 4.3.: The four di�erent classes for trajectories used in Lutter et al. [1] depicted in the joint space as well as in the
task space when executed on the physical WAM. The di�erent frequencies of the joints can be seen that allow
for strong coupling e�ects between the joints and also the used amplitude for the joints, which is the same
for the last three joints but di�erent for the first joint. In the task space it can be seen that the trajectory
uses a wide area of the workspace without repeating a movement in the task space due to the di�erent
frequencies.
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Table 4.2.: The parameters used to create the FFS of Swevers.

Joint

1 2 3 4

a
(1) 0.163 -0.087 0.597 -0.244

a
(2) 0.608 0.120 -0.257 -0.583

a
(3) -0.004 -0.330 0.299 0.014

b
(1) -0.510 -0.112 -0.371 -0.215

b
(2) 0.006 -0.247 -0.531 -0.415

b
(3) -0.193 0.181 0.241 -0.036

q0 -0.362 -0.196 -0.663 0.319
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Figure 4.4.: The resulting swevers trajectory given as the joint position over time for each joint in its corresponding work
space after optimization with parameters N = 3 and! = 2, which result in a period length of ⇡s.

Velocity and acceleration are computed by taking the time derivative of the above equation

q̇i(t) =
NX

l=1

a
l

i
cos(! f l t) + b

l

i
sin(! f l t)

q̈i(t) =
NX

l=1

�a
l

i
! f l sin(! f l t) + b

l

i
! f l cos(! f l t).

After optimization, the condition number of the matrix was 5.154e16, which is several magnitudes higher than the
number of 3 reported in the original paper. This is probably because of the linear model of the WAM has more DoF than
the robot used in the paper and the dynamic parameters of the WAM have not been summarized to be independent. The
resulting coefficients a

(l)
i

, b
(l)
i

and q0i are shown in 4.2, the resulting trajectory in the joint space in 4.4. An additional
trajectory created for a FFS with length 1 can be found in the appendix. In the following I will refer to this trajectory as
the swevers trajectory.

Task Space Trajectories

The trajectory of the 8-figure and the circle in task space can be seen in 4.5. They are performed in the Y-Z-plane of the
WAM. Both trajectories are performed with a frequency of 1/⇡, i.e. one circle/8-figure is completed every ⇡ seconds. In
the following, I will refer to those trajectories as circle/8-figure respectively.
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(a) circle (b) 8-figure

Figure 4.5.: Tracking of the task space trajectories performed on the physical WAM 4DoF using an analytical model.

4.2.2 Experiment Setup Simulation

First, one of the four trajectories is executed on the simulated Barrett WAM 4DoF using the SL simulation environment.
The generated data from the simulation, consisting of torque, position, velocity, and acceleration for each joint, which
has been sampled at a rate of 200Hz is then used to learn a dynamics model of the robot using a system identification
algorithm by Atkeson [2]. The dynamic model then consists of a total of 60 parameters, the mass of the segment, the
mass times the position of the center of mass in each direction and the six inertias of the segment for each of the six
segments.
The learned model is then evaluated on a total of four different test trajectories, which are the same trajectories presented
in 4.2.1. During that evaluation, FF-control is applied with a PD-feedback controller. Each test trajectory is performed for
20 seconds, in which the mean squared error (MSE) is tracked. In 4.6 and 4.7 the results are shown.
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Figure 4.6.: The results of the model learning using system identification [2] in simulation, after performing the trajectory
under each diagram. The mean squared error (MSE) is shown for each joint and each test trajectory as well
as the average MSE for each joint over all test trajectories.
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Figure 4.7.: The results of the model learning using system identification [2] in simulation, after performing a trajectory
slightly altered in comparision to 4.6. The trajectories used for evaluation are the same as in 4.6. (a): The
circle trajectory is only performed with half the frequency. (b): The 8-figure is only performed with half the
frequency. (c): The cosine trajectory is performed with only half the amplitude. (d): The swevers trajectory is
only optimized over a FFS with parameter N = 1.
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4.3 Performance of the Analytical Model of the Barrett WAM 4DoF
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Figure 4.8.: The results of the cosine trajectory performed in simulation. On the top, the applied torque is plotted, divided
in the feedforward and the feedback part. Below, the desired position and velocity as well as the actual
position and velocity are plotted.

Finally, to highlight the importance of model learning, I am going to demonstrate how the analytical model of the WAM
provided by the manufacturer Barrett performs. For that I will perform a trajectory on the robot, which is controlled
using feedforward control, i.e. a feedforward term, which utilizes the inverse dynamics of the analytical model in form
of the recursive Newton Euler algorithm [53] combined with a feedback term, which is a PD controller. This setup is
performed in simulation as well as on the real robot.
The supplied model consists of the mass, the center of gravity and the six moments of inertia for each link of the robot,
as well as the kinematic structure of the joints and links. During the work with the model I discovered that the provided
model by Barrett is inconsistent in at least one parameter: In the description of the model the sign of one moment of
inertia differs from the provided URDF file.

In 4.9 the results of a trajectory is depicted where the analytical model was used in the aforementioned setup on the
physical WAM, in 4.8 the results in simulation are plotted. The used trajectory here is the same cosine curve used in
section 4.2, the results are similar when using other trajectories.
First, it is to note that the actual torques required on the real robot are lower than that of the simulation, even though
the simulation does not takes friction into account. Also, the position and velocity error on the physical WAM are smaller
than in simulation. Apart from that, it can be seen that the feedforward part of the control term only plays a slight role
in the applied torque, while the feedback term dominates the total torque, which leads to a still reasonable tracking
of the trajectory. However, due to this the total torque is higher than it needs to be, resulting in higher tracking error,
higher power consumption and higher wear of the robot. Looking at the second joint, the most dominant part of the
robot motion and the smoothest torque curve, it is visible that the overall direction of the feedforward control is right.
However, the feedforward torque would need to be stronger to apply the desired movement. Similar observations can be
made for the other joints, although not as clearly visible. While the used algorithm assumes rigid body dynamics and no
friction, the results still seem to be too far off the real dynamics of the robot. The WAM is advertised as nearly frictionless,
therefore friction forces should not be responsible for the reality gap of the model.
When repeating the trajectory and experimentally scaling up the feedforward part the model performs better. The re-
quired torques are smaller, the feedforward part is bigger and the feedback term needed to compensate errors is smalle.
Additionally, the position and velocity errors are smaller. Scaling the feedforward part has similar effects as scaling the
moments of inertia for each link. Those additional results are shown in ??.
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Figure 4.9.: The results of the cosine trajectory performed on the physical WAM. On the top, the applied torque is plotted,
divided in the feedforward and the feedback part. Below, the desired position and velocity as well as the
actual position and velocity are plotted.

While the method used to compute the inverse dynamics does not reflect the whole reality, those results show that, while
the parameters might be physically plausible, they don’t results in a model that is usable for the inverse dynamics. The
masses might be close to the real values, however both the center of gravity and the moments of inertia are complex or
impossible to calculate exactly using analytical methods. Therefore and because of the results of ??, it is to assume that
the given parameters might not be exact, especially the moments of inertia.
Thus, this example shows, why (online) model learning can be necessary to get more exact dynamic parameters of a
robotic manipulator.
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5 Discussion

5.1 Excitation Trajectories

The results in 4.6 indicate that the choice of the trajectory used for learning does indeed has an influence on the perfor-
mance of the model learning. While the algorithm is able to learn a model with every trajectory, the tracking performance
on some are better than on others.
First, it is interesting to note, that the tracking error on the different trajectories varies by quite a margin. The larger the
frequency of the movement on the test trajectory the bigger the error, which is only natural because the faster movement
leads to less precise tracking. The circle trajectory was performed with a frequency of 1/⇡, i.e. a period length of ⇡s. The
optimized swevers trajectory also had a frequency of 1/⇡ as the fundamental frequency, therefore those two are interest-
ing to compare. The 8-figure trajectory was also performed with this frequency, however, due to the shape of the figure
the second joint had a frequency of roughly 2/⇡, i.e. double the frequency. Last, the cosine trajectory was performed
with the values given in 4.1, which resulted in much faster frequencies, therefore, resulting in higher tracking errors.
Also, it is interesting to note that the tracking error on the first joint is by far the largest on basically every trajectory,
which indicates that this joint did not get excited enough during learning but could also be due to the fact that the first
joint experiences the most coupling effects produced by the other joints, especially the second joint. Especially during
trajectories with a high frequency, like the cosine curves of Lutter, this is visible.
Both the circle and the 8-figure trajectory, both trajectories of the task space, result in similar tracking errors. This comes
to no surprise, as both of those trajectories were performed in about the same work space of the robot and with a similar
frequency. They both learn a model that fits their own trajectories well, resulting in a very low error. When performing
more complex trajectories the tracking performance however deteriorates. This should be because of two reasons: First,
the frequencies of the trajectories are synchronized while they are asynchronous on the cosine trajectory which is then
information missing on the data and it is harder to learn the influence of the movements of other joints. Second, the
speed required for the swevers and the cosine trajectory is higher and therefore the model is not well suited for higher
velocities. Also, the circle trajectory when performed with a lower frequency actually achieves better results for the
tracking error of the first joint in both the cosine and the swevers trajectory, however, results in a worse performance
of the other joints. This could be due to the fact that the frequency of the movement of the first joint of the trajectory
and the cosine one are similar therefore learning a model that fits the cosine trajectory well. Since the other frequencies
aren’t too similar the tracking error becomes worse for the other joints.
On the other hand, both the cosine trajectory and the swevers one lead to quite good results. The cosine trajectory has
similar tracking errors for each trajectory, however performing worse on the task space trajectories. This could be due
to the fact that the used work space of the cosine trajectory and that of the task space trajectory is vastly different. It
can be also seen that the tracking performance of the second joint on the cosine trajectory is better when the initially
used trajectory was not the cosine trajectory. In no other combination does an initial trajectory performs worse on its
own trajectory than the other ones. This in combination with the otherwise high tracking error on the first joint could
imply that the learned model from the cosine trajectory actually does a tradeoff between the tracking errors of the first
and second joint. Since the second joint seems to have strong coupling effects on the first joint those forces are also
considered in the learned model.
Another interesting result is that even though the total range of the joint limits used by the cosine and the swevers
trajectory are vastly different the learned model performs comparably. This could indicate that a more strict constraint
on joint limits could be mitigated by adding higher frequency harmonic terms to the trajectory. It can be seen from
4.7 (d) that using no harmonic terms in the FFS increases the tracking error substantially while the used range of
the trajectory stays about the same (see ??). The same is true for 4.7 (c) where a reduced amplitude results in a
higher tracking error. Therefore increasing the use of the range of the available work space during model learning as
well as higher-order frequency terms should help in finding better models. From 4.7 (d) it can be also seen that a
trajectory optimized under some optimality criterion doesn’t necessarily provides the best excitation of the dynamic pa-
rameters. This result is however due to the fact that the parametrization of the trajectory is badly chosen, i.e. the form of
the model itself, the FFS, the frequency and most importantly the length of the Fourier series, deteriorating the excitation.

The results presented here indicate that several factors influence the performance of model learning: First, it seems to
be important that the used range of the work space should be as big as possible to capture the different dynamics of the
whole work space. Otherwise, the model might not generalize well to unseen areas. Therefore, trajectories that model a
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certain figure in the task space, like the circle or the 8-figure, should be avoided, unless the learned model is used for a
very similar task in the same work space. Second, it seems that adding harmonic terms to the trajectories also improves
the performance. Those harmonic terms could also be used to mitigate reduced performance induced by a constraint on
the usable work space during learning. Third, the velocity of the movement should be in a similar area as it is during the
execution of the task that the model is used for.
Still, finding the right trajectory that maximizes model learning performance is a hard task as there are infinitely many
possibilities to define a trajectory. The trajectory could be a trigonometric function in the joint or task space as presented
here, but could also be some other trajectory, e.g. a kinematic movement from point A to point B or some other polynomial
function. Next, the trajectory has many parameters, even when only considering the case of trigonometric functions in
the joint space: Choice of cosine or sine trajectories or a combination of both, the choice of using only a fundamental
frequency or additional harmonic frequencies, amplitude and time that the trajectory is performed. Each of those choices
influences the data generated by the trajectory and therefore directly the performance of the learned model. Finding a
trajectory that actually maximizes the model performance, therefore, seems to be impossible right now as the theoretical
background of the influence of each parameter has not been completely researched yet. In [29] it is stated that "[a] full
understanding of the important aspects of a good solution is still lacking", referring to optimal experiment design for
nonlinear systems. Additionally, it is not entirely possible to define a criterion of maximized model performance as no
perfect model is known and performance always needs to measured implicitly. An extensive empirical evaluation on a
real robot is additionally expensive due to wear.
Therefore the results of the carried out evaluation are a first little step towards better understanding the influence of
different trajectories for model learning.

5.2 Robust Controller

The robust controller has been successfully used for the initial data generation for model learning. However, the practical
use of the controller was limited, as it could not be used for the evaluation of the test trajectories due to high computa-
tional requirements. The controller requires the inertia matrix H(q), the matrix of coriolis and centripetal forces C(q, q̇)
and the vector of gravitational forces g(q), which are, depending on the used model learning algorithm, not explicitly
available. With the system identification used in chapter 4, those values had to be computed using the inverse dynam-
ics, which lead to six sequential evaluations of the product of the regression matrix and the dynamic parameters. This
resulted in a maximum control frequency of 150Hz on the physical WAM, which was too slow to conduct the evaluation
on the robot. Therefore a feedforward control had to be chosen for the test trajectories. An additional problem is that
instead of the matrix C(q, q̇) often only the vector C(q, q̇) q̇ is available, such that the given proof in chapter 3 does not
hold true in practice. However, since the values of coriolis and centripetal forces are small in general and therefore this
problem can be neglected.
An interesting aspect to use the controller in, is a model learning algorithm where an initial model, possibly random, is
given, e.g. such as in [1], where a neural network is used to learn H(q), C(q, q̇) and g(q) and the initial configuration of
the network is used for the first model.

The joint limit avoidance has been employed during all experiments, however at no point during those experiments it
was necessary that the joint limit avoidance had to be activated. Still, the robustness properties were important to ensure
that even when trajectories of low excitement were used, no joint limits were violated even when the used task space
was unknown from the previous data.
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6 Conclusion and Outlook
In this thesis, I presented the foundations of online model learning and implemented two robustness measures, a robust
controller using sliding mode control and a joint limit avoidance, on the physical Barret WAM 4DoF. Both systems have
been successfully tested and their stability properties have been shown. Lastly, different trajectories used in the model
learning community have been evaluated regarding their excitation of dynamic parameters while using the robust con-
troller and the joint limit avoidance. The tracking performance of the resulting model after execution of those trajectories
have been measured and the results have been discussed. Additionally, the tracking performance of the analytical model
has been evaluated as well.

For the future, it would be interesting to further evaluate the ideas proposed here. The robust controller and the joint
limit avoidance could be used for future experiments carried out on the WAM, taking advantage of the discussed ro-
bustness properties. Additionally, it could be of interest to also look into adaptive control or more complex methods of
robust control, as sliding mode control is one of the simplest forms of robust control. While in the end it is important
that the robot is sufficiently stabilized during the model learning process, more sophisticated methods like H1 control
may lead to better performance for model learning. Additional experiments could be carried out where the dynamic
parameters are changed during the model learning process, e.g. by adding a mass at the end effector to test the limits of
the robustness.

The analytical model of the WAM hasn’t looked too exact. It should be verified whether the given parameters correspond
to the real values. Alternatively, a model could be created using model learning.

The evaluation of different excitation trajectories should be extended to include more different parameters. It would be
interesting to test whether the found properties of excitation trajectories also hold true when applied for different model
learning algorithms, e.g. DeLaN [1] or Local Gaussian Process Regression [26], or if the trajectories are used on different
robots, especially when the amount of DoFs is different from that of the WAM. Other properties to research could be the
impact of the total time that a trajectory is performed. In the trajectories used here, several periods were performed. It
could be of interest, whether the data at the same point of time in a period is providing additional information or not.
This could potentially decrease the time needed for the model learning if the data from one period is processed well.
The influence of coupling effects, inferred by different frequencies of the movements of the joints could also be further
investigated. While the frequency in [22] is a priori set for all joints, it is part of the optimization in [46]. It would also
be interesting to examine the impact of the initial data by using other performance measures than the MSE, e.g. also
taking into account the velocity error or the jerk, the derivative of the acceleration, of the performed trajectory.
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A Trajectory Tracking
To visualize the movements of the robot in the task space a simple tool was developed to track the end effector. This
tracking is especially helpful for interpreting the tracking performance of a learned model.
First, the end effector has been painted in red to create a point that is easily trackable. A video of the trajectory is then
converted into the HSV color space. After that, the video is transformed into a binary video by thresholding the video
frame by frame. The threshold is chosen such that red pixels in the video turn white and all others black. The resulting
frames are then eroded and dilated to remove any outliers. Using the OpenCV library [56], the biggest remaining part is
found and its center coordinates are saved.
Once all those coordinates have been found, n many coordinates are connected in the final video, resulting in a trail
behind the performed trajectory. This trail can be seen in A.3 where a circle trajectory is tracked. It is visible that the
circle is not a perfect circle but is rather edgy.
The tool is fully parameterizable: The length of the trail in frames can be specified, as well as the width of the trail and
the color of the trail can be changed after a set time to visualize changes during the trajectory. This behavior is shown in
A.1. Also, it is possible to track other colors than red.

Figure A.1.: The four cosine trajectories given in 4.2.1 plotted in di�erent colors in the task space.

Figure A.2.: The 8-figure plotted with a thick line.

Figure A.3.: The tracking of a circle trajectory from left to right. In the right picture the whole trajectory can be seen.

29



B Additional Figures
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Figure B.1.: The results of feedforward control using the analytical model in simulation when scaling up the feedforward
torques by a factor of three.
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Figure B.2.: The tracking errors for the di�erent cosine curves used in Lutter et al. [1] with the parametrizations given in
figure 4.1. (a): Using each of the four cosine classes to learn a model and then performing the circle trajectory.
(b) + (c): The tracking error when testing on the 8-figure and the swevers trajectory respectively.
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Figure B.3.: The results of feedforward control using the analytical model in simulation when scaling up the feedforward
torques by a factor of three.
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