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Figure 1: Top – We train a single locomotion policy for

multiple robot embodiments in simulation. Bottom – We

can transfer and deploy the policy on three real-world plat-

forms by randomizing the embodiments and environment

dynamics during training.

1 Introduction

In recent years, Deep Reinforcement Learning (DRL)

techniques are achieving state-of-the-art results in robust

legged locomotion [1, 2, 3, 4]. While there exists a wide

variety of legged platforms such as quadruped, humanoids,

and hexapods, the field is still missing a single learning

framework that can control all these different embodiments

easily and effectively and possibly transfer, zero or few-shot,

to unseen robot embodiments. In practice, the number of

joints and feet of a legged robot determines the size of its

action and observation space, which can differ for every new

robot. This often prevents a straightforward transfer of ex-

isting policies as the learning architecture fully depends on

the specific robot platform. To tackle this problem, we in-

troduce Unified Robot Morphology Architecture (URMA).

Our framework brings the end-to-end Multi-Task Reinforce-

ment Learning (MTRL) approach to the realm of legged

robots, enabling the learned policy to control any type of

robot morphology. The key idea of our method is to allow

the network to learn an abstract locomotion controller that

can be seamlessly shared between embodiments thanks to

our morphology-aware encoders and decoders. This flexible

architecture can be seen as a potential first step in building

a foundation model for legged robot locomotion. Our ex-

periments show that URMA can learn a locomotion policy

on multiple embodiments that can be easily transferred to

unseen robot platforms in simulation and the real world.

2 Related Workd

With the help of DRL techniques, legged robots can

perform impressive locomotion skills. There are numer-

ous examples of highly agile locomotion with quadrupedal

robots [1, 3, 5, 6, 7, 8], learning to run at high speeds, jump-

ing over obstacles, walking on rough terrain, performing

handstands, and completing parkour courses. Similar meth-

ods have been applied to generate robust walking gaits for

bipedal and humanoid robots [2, 9, 10]. However, an impor-

tant long-term objective is to develop foundation models for

locomotion, allowing zero-shot (or few-shot) deployment to

any arbitrary robot platform. To reach this objective, it is

fundamental to adapt the underlying learning system to sup-

port different tasks and morphologies. To handle differently

sized observation and action spaces, MTRL baselines often

resort to padding the observations and actions with zeros to

fit a maximum length [11] or to using a separate neural net-

work head for each task [12]. These methods allow for ef-

ficient training but can be limiting when trying to transfer

to new tasks or environments. Earlier work on controlling

different robot morphologies is based on the idea of using

Graph Neural Networks (GNNs) to capture the morphologi-

cal and kinematic structure of the robots [13, 14, 15]. These

approaches can control different robots even when remov-

ing some of their limbs, but they struggle to generalize to

many different morphologies. Transformer-based architec-

tures have been proposed to overcome those limitations by

using the attention mechanism to globally aggregate infor-

mation of varying numbers of joints [16, 17]. These methods

still lack substantial generality as they are limited to mor-

phologies that were defined a priori.



3 Unified Robot Morphology Architecture

We propose the URMA, a complete morphology-aware

architecture, that does not require defining the possible mor-

phologies beforehand and can adapt to arbitrary joint con-

figurations with the same network. Figure 2 presents a

schematic overview of URMA. To handle observations of

any morphology, URMA first splits the observation vector o

into robot-specific and general observations og, where the

former can be of varying size, and the latter has a fixed

dimensionality. For locomotion, we subdivide the robot-

specific observations into joint and feet-specific observa-

tions. In the following text, we describe everything w.r.t. the

joint-specific observations, but the same applies to the feet-

specific ones as well. Every joint of a robot is composed

of joint-specific observations o j and a description vector d j.

These description vectors are made up of fixed dynamics

and kinematics properties of the joint that can uniquely de-

scribe the joint, in our case: joint limits, maximum veloc-

ity and torque, relative joint position and rotation axis in a

nominal configuration, PD gains, etc. The description vec-

tors and joint-specific observations are encoded separately

by the Multilayer Perceptrons (MLPs) fφ and fψ and are

then passed through a simple attention head, with a learn-

able temperature τ and a minimum temperature ε , to get a

single latent vector

z̄joints = ∑
j∈J

z j, z j =

exp

(

fφ (d j)

τ + ε

)

∑ j∈J exp

(

fφ (d j)

τ + ε

) fψ(o j), (1)

that contains the information of the joint-specific observa-

tions of all joints. With the help of the attention mechanism,

the network can learn to separate the relevant joint informa-

tion and precisely route it into the specific dimensions of the

latent vector by reducing the temperature τ of the softmax

close to zero. The joint latent vector z̄joints is then concate-

nated with the feet latent vector z̄feet and the general obser-

vations og and passed to the policies core MLP hθ to get

the action latent vector z̄action = hθ (og, z̄joints, z̄feet). To obtain

the final action for the robot, we use our universal morphol-

ogy decoder, which takes the general action latent vector and

pairs it with the set of encoded specific joint descriptions and

the single joint latent vectors to produce the mean and stan-

dard deviation of the actions for every joint, from which the

final action is sampled as

a j
∼ N (µν(d

a
j , z̄action,z j),συ(d

a
j )), da

j = gω(d j). (2)

4 Experiments

To evaluate the training efficiency of MTRL in our

setting, we train URMA, a multi-head [12] and a zero-

padding [11] architecture on all 16 robots in the training

set simultaneously (100 million steps per robot) and com-

pare the average return to the single-robot training setting,

where a separate policy is trained for every robot. Figure 3
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Figure 2: Overview of the URMA architecture.

confirms the advantage in learning efficiency of MTRL over

single-task learning, as URMA and the multi-head base-

line learn significantly faster than training only on a single

robot at a time. URMA reaches the highest average return

at the end. Next, we evaluate the zero-shot transfer on the

Unitree A1, a robot whose embodiment is similar to other

quadrupeds in the training set. Figure 3 shows the evalu-

ation for the A1 during a training process with the other

15 robots and highlights that both URMA and the multi-

head baseline can transfer perfectly well to the A1 while

never having seen it during training. To investigate an out-

of-distribution embodiment, we use the same setup as for the

A1 and evaluate zero-shot on the MAB Robotics Silver Bad-

ger robot, which has an additional spine joint in the trunk

and lacks feet observations, and then fine-tune the policies

for 20 million steps only on the Silver Badger itself. The

results show that URMA can handle the additional joint and

the missing feet observations better than the baselines and

is the only method capable of achieving a good gait at the

end of training. To further assess the adaptability of our ap-

proach, we evaluate the zero-shot performance in the setting

where observations are dropped out, which can easily hap-

pen in real-world scenarios due to sensor failures. We train

the architectures on all robots with all observations and eval-

uate them on all robots while completely dropping the feet

observations. Figure 3 confirms the results from the previ-

ous experiment and shows that URMA can handle missing

observations better than the baselines. Finally, we deploy

the same URMA policy on the real Unitree A1, MAB Honey

Badger, and MAB Silver Badger quadruped robots. Figure 1

shows the robots walking with the learned policy on pave-

ment, grass, and plastic turf terrain with slight inclinations.

While the Unitree A1 and the MAB Silver Badger are in the

training set, the network is not trained on the MAB Honey

Badger. Despite the Honey Badger’s gait not being as good

as the other two robots, it can still locomote robustly on the

terrain we tested, proving the generalization capabilities of

our architecture and training scheme.
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Figure 3: Top left – Average return of the three architectures

during training on all 16 robots compared to the single-robot

training setting. Top right – Zero-shot transfer to the Uni-

tree A1 while training on the other 15 robots. Bottom left –

Zero-shot transfer to the MAB Robotics Silver Badger while

training on the other 15 robots and fine-tuning on only the

Silver Badger afterward. Bottom right – Zero-shot evalua-

tion on all 16 robots while removing the feet observations.

5 Conclusion

We presented URMA, an end-to-end framework to learn

robust locomotion for different types of robot morphologies

with a single neural network architecture. Our morphology-

aware encoders and decoders allow URMA to learn a sin-

gle control policy for 16 different embodiments from three

different legged robot morphologies. In practice, URMA

reaches higher final performance when training with all em-

bodiments, shows higher robustness to observation dropout,

and better zero-shot capabilities to new robots compared to

MTRL baselines. Furthermore, we deploy the same policy

zero-shot on two known and one unseen quadruped robot in

the real world. We argue that this multi-embodiment learn-

ing setting can be easily extended to more complex scenarios

and can serve as a basis for locomotion foundation models

that can act on the lowest level of robot control. Finally, the

URMA architecture is general enough to be applied to not

only any robot embodiment but also any control task, mak-

ing task generalization, also for non-locomotion tasks, an

interesting avenue for future research.

6 Acknowledgments

This project was funded by National Science Centre,

Poland under the OPUS call in the Weave program UMO-

2021/43/I/ST6/02711, and by the German Science Founda-

tion (DFG) under grant number PE 2315/17-1. Part of the

calculations were conducted on the Lichtenberg high perfor-

mance computer at TU Darmstadt.

References

[1] Takahiro Miki, Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen,

Vladlen Koltun, and Marco Hutter. Learning robust perceptive lo-

comotion for quadrupedal robots in the wild. Science Robotics,

7(62):eabk2822, 2022.

[2] Ashish Kumar, Zhongyu Li, Jun Zeng, Deepak Pathak, Koushil

Sreenath, and Jitendra Malik. Adapting rapid motor adaptation for

bipedal robots. In 2022 IEEE/RSJ International Conference on Intel-

ligent Robots and Systems (IROS), pages 1161–1168. IEEE, 2022.

[3] Gabriel B Margolis and Pulkit Agrawal. Walk these ways: Tuning

robot control for generalization with multiplicity of behavior. In Con-

ference on Robot Learning, pages 22–31. PMLR, 2023.

[4] Gilbert Feng, Hongbo Zhang, Zhongyu Li, Xue Bin Peng, Bhu-

van Basireddy, Linzhu Yue, Zhitao Song, Lizhi Yang, Yunhui Liu,

Koushil Sreenath, et al. Genloco: Generalized locomotion controllers

for quadrupedal robots. In Conference on Robot Learning, pages

1893–1903. PMLR, 2023.

[5] Suyoung Choi, Gwanghyeon Ji, Jeongsoo Park, Hyeongjun Kim,

Juhyeok Mun, Jeong Hyun Lee, and Jemin Hwangbo. Learning

quadrupedal locomotion on deformable terrain. Science Robotics,

8(74):eade2256, 2023.

[6] Ken Caluwaerts, Atil Iscen, J Chase Kew, Wenhao Yu, Tingnan

Zhang, Daniel Freeman, Kuang-Huei Lee, Lisa Lee, Stefano Saliceti,

Vincent Zhuang, et al. Barkour: Benchmarking animal-level agility

with quadruped robots. arXiv preprint arXiv:2305.14654, 2023.

[7] Ziwen Zhuang, Zipeng Fu, Jianren Wang, Christopher Atkeson,
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