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Abstract

Legged robots, especially quadrupeds, are increasingly deployed in unstructured environ-

ments where terrain instability is common. While reinforcement learning (RL) has enabled

robust locomotion over uneven and laterally perturbed surfaces, the effects of vertical

ground motion—a frequent real-world disturbance in settings such as bridges, platforms,

and maritime environments—remain underexplored. This thesis addresses this gap by

evaluating quadruped locomotion under vertical oscillations using a real-world experi-

mental bridge with a dominant eigenfrequency of 2 Hz, designed to perturb locomotion.

We use the Unitree Go2 quadruped robot, trained in simulation with the Proximal Policy

Optimization (PPO) algorithm and the MuJoCo physics engine, to develop 18 locomotion

policies. These policies span six gait patterns (default, trot, pace, bound, pronk, free) and

three training regimes: a static surface and two oscillating bridge setups differing in their

height regulation strategy (relative to ground or bridge surface). Domain randomization

enables zero-shot policy transfer to the physical system. Our results show that policies

trained under oscillating conditions exhibit significantly improved stability and robustness

during real-world deployment. Furthermore, we introduce set of evaluation metrics be-

yond reward functions, focusing on height control, gait consistency, and adaptability. The

findings underscore the importance of including dynamic terrain perturbations during

training and highlight the potential of RL-based controllers for resilient locomotion in

vertically unstable environments.



Zusammenfassung

Roboter mit Beinen, insbesondere Vierbeiner, werden zunehmend in unstrukturierten

Umgebungen eingesetzt, in denen instabiles Terrain häufig vorkommt. Während Reinfor-

cement Learning (RL) bereits robuste Fortbewegung auf unebenen und lateral gestörten

Oberflächen ermöglicht hat, sind die Auswirkungen vertikaler Bodenbewegungen – eine

häufige reale Störung in Umgebungen wie Brücken, Plattformen und maritimen Bereichen

– noch wenig erforscht. In dieser Arbeit wird diese Lücke behandelt, indem die Fortbe-

wegung von Vierbeinern unter dem Einfluss vertikaler Schwingungen untersucht wird.

Hierfür wird eine reale experimentelle Brücke mit einer dominanten Eigenfrequenz von

2 Hz verwendet, die zur Störung der Fortbewegung entwickelt wurde. Für die Experimente

kommt der vierbeinige Roboter Unitree Go2 zum Einsatz, der in Simulation mit dem Proxi-

mal Policy Optimization (PPO) Algorithmus in der MuJoCo-Physik-Engine trainiert wurde,

um 18 Fortbewegungsstrategien zu entwickeln. Diese umfassen sechs Gangarten (default,

trot, pace, bound, pronk, free) sowie drei Trainingsstile: eine statische Oberfläche und

zwei oszillierende Brückenkonfigurationen, die sich in ihrer Höhenregulierungsstrategie

(relativ zum Boden oder zur Brückenoberfläche) unterscheiden. Die Randomisierung

der Trainingsumgebungen ermöglicht einen Zero-Shot-Transfer der Strategien auf das

physikalische System. Unsere Ergebnisse zeigen, dass die unter oszillierenden Bedin-

gungen trainierten Policies eine deutlich verbesserte Stabilität und Robustheit im realen

Einsatz aufweisen. Darüber hinaus führen wir einige Bewertungsmetriken ein, die über

die Reward-Funktionen hinausgehen und sich auf Höhenkontrolle, Ganggleichförmig-

keit und Anpassungsfähigkeit konzentrieren. Die Resultate verdeutlichen die Bedeutung

der Einbeziehung dynamischer Geländestörungen im Training und unterstreichen das

Potenzial von RL-basierten Steuerungen für robuste Fortbewegung in vertikal instabilen

Umgebungen.
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1. Introduction

Legged robots and quadrupeds in particular, have emerged as promising systems for

navigating unstructured and complex environments, including rough outdoor terrain,

disaster zones and human-built spaces. Their ability to maintain mobility where wheeled

or tracked robots fail makes them ideal for applications such as exploration, inspection and

rescue missions. Recent advancements have demonstrated remarkable agility in handling

obstacles, stairs and irregular terrain [1, 2, 3]. These developments have been fueled

by improvements in both mechanical design and control algorithms, allowing robots to

perform highly dynamic motions.

Despite these successes, the majority of current locomotion research focuses on scenarios

where the ground is either static or changes in a predictable way. Environments with

active ground perturbations—such as vibrating platforms, swinging bridges, or machinery-

mounted surfaces—pose a different challenge. These situations are common in real-world

applications, yet remain underexplored in robotics. While some studies incorporate

variations in ground stiffness [4] or surface friction [5, 6], few consider the implications

of vertical ground movements. The same is true in the field of human locomotion, where

such perturbations are known to significantly affect gait dynamics [7], yet are difficult

to replicate in controlled experimental settings. The scarcity of work in this area stems

in part from the technical challenges of replicating vertical oscillations in a safe and

repeatable way. Furthermore, conventional control methods, including those used in

many commercial quadrupeds, are typically tuned for stable or slowly varying terrain

and struggle to cope with sudden vertical displacements. Humans and some animals, in

contrast, adjust almost reflexively to changes in ground level or compliance, employing

strategies such as modulating leg stiffness and timing [8, 9, 10]. Replicating this kind of

adaptive behavior in robots remains a major open problem.

In response, Reinforcement Learning (RL) has emerged as a powerful approach to acquire

adaptive and robust controllers for legged locomotion. RL treats locomotion as a sequential

decision-making problem, allowing robots to learn complex motor skills by interacting
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with simulated environments. Algorithms such as Proximal Policy Optimization (PPO)

[11] have been used to train policies capable of agile running [6], high jumps [12],

parkour-like movements [13] and even acrobatics [14]. Domain randomization techniques

further support the sim-to-real transfer by injecting variability in the training environment,

covering factors such as sensor noise, latency and external perturbations [15, 16].

However, a shortcoming in most RL-based locomotion research is the omission of active

ground dynamics. While many policies are trained to handle uneven terrain or lateral

disturbances such as random side pushes [17, 18], vertical ground motion—a common

and impactful real-world phenomenon—remains largely unaddressed in both training and

evaluation. This omission is especially significant given that many real-world structures,

such as bridges, elevated platforms and ships, frequently exhibit vertical oscillations caused

by human activity, mechanical systems, or environmental forces [19, 20]. As a result,

there is a substantial research gap in understanding how learned locomotion policies

generalize to environments where vertical instability is a dominant factor, hindering

their reliability in critical applications such as disaster response, industrial inspection and

maritime operations.

1.1. Motivation

To address this, the present thesis explores how different quadruped gaits and training

regimes perform under vertical ground oscillations. Specifically, we study the Unitree Go2

quadruped (Unitree, Hangzhou, China) walking on a purpose-built oscillating bridge,

developed within the HUMan-structure interaction and gait adaptation during locomotion

on VIBrating structures (HUMVIB) project. This custom structure, composed of steel

beams and concrete slabs, has a dominant eigenfrequency of approximately 2Hz, making

it susceptible to resonance effects during locomotion [21, 22].

The primary aim is to evaluate how gait selection, timing and footfall patterns influence

stability and performance under vertical excitation. Additionally, we assess whether the

robot passively adapts its posture or if active height regulation is needed. Another goal is

to identify training strategies that lead to more robust and transferable policies and to

explore whether simulation-trained behaviors remain effective on real-world oscillating

structures.

To support this, we developed methods for generating distinct gait types and evaluation

metrics both in simulation and reality. We propose novel performance metrics tailored to

2



vertically dynamic terrain, moving beyond standard reward-based measures to capture

height control and locomotion stability.

Ultimately, this work contributes to a deeper understanding of adaptive locomotion on

unstable surfaces and offers practical strategies for improving real-world quadruped

deployment in environments where traditional assumptions of ground stability no longer

apply.
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2. Foundations

This chapter lays the theoretical groundwork for our study by introducing key concepts in

legged locomotion, control strategies and simulation tools. It begins with an overview of

locomotion learning and gait types, then covers the reinforcement learning framework

and simulation environment used to train policies. Finally, it introduces the experimental

infrastructure, including the oscillating HUMVIB bridge, the harmonic oscillator model

and the physical robot.

2.1. Locomotion Learning

Legged locomotion is a fundamental capability in mobile robotics, requiring coordination

of multiple joints to produce stable and efficient movement. Traditional control approaches

often rely on analytic models of dynamics and kinematics [23]. While these can work

well in structured environments, they struggle with real-world complexity, such as uneven

terrain or unexpected disturbances.

To address these limitations, biologically inspired methods have been explored. Animals

exhibit remarkably adaptive and efficient locomotion across diverse conditions. Controllers

based on central pattern generators, which mimic neural circuits producing rhythmic

motion, have been widely used in robotics to generate stable gaits with minimal sensory

input [24]. Similarly, reflex-based control and neuromechanical models offer reactive

behavior and robustness, drawing on insights from biological locomotion systems [25].

Recent years have seen a growing shift towards learning-based approaches, which al-

lows robots to autonomously discover control strategies through data. These include

optimization-based methods [26], imitation learning [27] and increasingly RL, which

frames control as a sequential decision-making problem. RL has shown success in learning
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robust locomotion policies that generalize across tasks and environments without requir-

ing precise system models [28, 29]. A notable line of work demonstrates the zero-shot

transfer of proprioceptive policies, trained solely in simulation, that are capable of blindly

traversing unstructured real-world terrains, such as snow, rubble and dense vegetation

[30]. This is made possible by onboard terrain mapping based exclusively on inertial and

kinematic sensing [31]. Together, these advances underscore the growing importance of

RL and learning-based perception in enabling legged robots to operate autonomously in

complex, unpredictable environments.

2.2. Gaits

Quadrupedal robots and animals utilize different gaits depending on their speed, terrain

and stability requirements. Gaits are defined by the sequence and timing of footfalls,

which influence the efficiency, stability and adaptability of movement. Among the common

gaits used in both biological and robotic quadrupeds are the trot, pace, bound and pronk.

Each of these gaits has distinct advantages depending on the context of locomotion. In

robotics, selecting an appropriate gait involves trade-offs between speed, stability and

energy efficiency, making gait optimization an essential aspect of quadrupedal robot

control.

2.2.1. Trot

The trot is a diagonally synchronized gait where the front-left and rear-right legs move

together, alternating with the front-right and rear-left legs. This gait is widely used for

efficient locomotion at moderate speeds and provides good stability due to the alternating

diagonal support. Trot is commonly observed in horses, dogs and robotic quadrupeds

designed for stable traversal over varied terrain [32]. It minimizes vertical oscillations

and is often preferred for energy-efficient locomotion in robotic applications [33].

2.2.2. Pace

In a pacing gait, legs on the same side move together, creating a lateral sway but en-

abling smoother motion [34]. Common in camels and some horse breeds, it suits fast,

energy-efficient travel on flat terrain [35]. While pacing reduces vertical energy loss
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and prevents hind-foot interference—a benefit for long-legged animals—it compromises

stability, especially in short-legged ones. Not all long-legged animals pace, but all animals

that do are long-legged [36].

2.2.3. Bound

Bounding is a high-speed gait where the forelimbs move together followed by the rear

limbs moving together. This gait is typical of small mammals like rabbits and certain

carnivores when accelerating or chasing prey [37]. In robotics, bounding is used for fast

locomotion, particularly when stability is less critical than speed [32]. This gait is often

employed in agile robotic systems designed for dynamic movement, such as navigating

obstacles or rapid maneuvers in unstructured environments.

2.2.4. Pronk

The pronking gait involves all four legs leaving and touching the ground simultaneously.

This gait is seen in animals such as gazelles and springboks, often as a display of strength

or agility [38]. In robotics, pronking is useful for testing symmetrical force distribution and

for applications requiring sudden jumps or bounces, such as traversing gaps or negotiating

soft terrain.

2.3. MuJoCo

MuJoCo (Multi-Joint dynamics with Contact) is a physics engine designed for fast and

accurate simulation of robotic systems. Its strength lies in simulating complex interactions

between rigid bodies, particularly in tasks involving contact dynamics such as locomotion

and manipulation. MuJoCo provides soft contact modeling, inverse dynamics, and real-

time simulation, enabling researchers to learn and test control strategies before deploying

them on real robots [39].
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2.4. Reinforcement Learning

RL is a branch of machine learning concerned with how agents can learn to make op-

timal decisions, with respect to the rewards, by interacting with their environment to

achieve long-term goals. This process is typically modeled as a Markov Decision Process

(MDP), which provides a formal framework for decision-making under uncertainty, where

outcomes are influenced both by the agent’s actions and by chance.

Agent

Environment

action

At

reward

Rt

state

St

Rt+1

St+1

Figure 2.1.: The agent3environment interaction in a reinforcement learning setup. The
agent receives observations, selects actions, and receives rewards from the
environment.

As illustrated in Figure 2.1 and described by Sutton and Barto [40], the agent and

environment interact over a sequence of discrete time steps t. At each time step, the agent

observes the current state St ∈ S, where S is the set of all possible states. Based on this

observation, it selects an action At ∈ A(St), drawn from the set of valid actions in that

state A(St). As a result of the action, the agent receives a scalar reward Rt+1 ∈ R and

transitions to a new state St+1, completing one cycle of interaction.

The agent’s behavior is defined by a policy Ãθ(a|s), which maps states to probabilities

of selecting each action. The goal of reinforcement learning is to find the policy that

maximizes the expected return:

J(Ã) = Eπ

[

∞
∑

t=0

µtRt+1

]

, (2.1)

where µ ∈ [0, 1) is a discount factor that determines the importance of future rewards.

The optimal policy is then defined as:

Ã∗ = argmax
π

J(Ã). (2.2)
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Effective learning requires balancing exploration of unknown strategies with exploitation

of known ones that yield high rewards.

In robotic locomotion, for example, RL enables agents to learn how coordinated joint

movements impact stability, energy efficiency, or speed. These objectives are encoded in

the reward function, guiding the robot to discover locomotion strategies that would be

difficult to derive analytically.

2.4.1. Proximal Policy Optimization

To optimize the policy, this work uses the PPO algorithm [11]. PPO improves the stability of

policy updates by introducing a clipped surrogate objective, which constrains the difference

between new and old policies during training. The central idea is to avoid overly large

policy updates that could destabilize learning, while still enabling improvement.

The standard objective in policy gradient methods is to maximize the expected advantage-

weighted probability of actions under the current policy:

LPG(¹) = Et

[

Ãθ(at|st)Ât

]

, (2.3)

where Ât is an estimator of the advantage function at time step t. This advantage function
measures how much better an action is compared to the average, helping the agent to

favor more promising actions.

In practice, this expression is reformulated using importance sampling to correct for the

fact that data was collected under an earlier policy Ãθold . The probability ratio

rt(¹) =
Ãθ(at|st)

Ãθold(at|st)
(2.4)

is introduced to reweight the objective. The PPO algorithm then applies clipping to this

ratio to constrain updates:

LCLIP(¹) = Et

[

min
(

rt(¹)Ât, clip(rt(¹), 1− ϵ, 1 + ϵ)Ât

)]

, (2.5)

where ϵ is a small positive constant. This clipped objective discourages large policy

updates, maintaining a balance between policy improvement and stability. By doing so,

PPO achieves a strong performance across a variety of RL tasks, including high-dimensional

control problems such as robotic locomotion.
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2.4.2. RL-X

RL-X [41] is an open-source general-purpose Deep Reinforcement Learning (DRL) library

used in this work for training locomotion policies. Originally developed for RoboCup

simulation leagues, RL-X is designed to be modular making it suitable for a broad range of

robot learning tasks. Each algorithm and environment is implemented in a self-contained

directory, which promotes rapid prototyping, customization of robot models and easy

experimentation with different reward structures. We are using RL-X in conjunction with

the Multi-Joint dynamics with Contact (MuJoCo) physics engine to simulate dynamic

locomotion across varied gaits and environments. The training relies on the PPO algorithm,

with mini-batch gradient descent applied over trajectories collected through environment

rollouts. RL-X also integrates with Weights & Biases, enabling comprehensive logging,

visualization, and monitoring of experiment progress.

2.5. HUMVIB Bridge

Bridges, like all flexible structures, can oscillate when subjected to dynamic loading from

environmental forces such as wind, traffic, or pedestrians. These oscillations occur in

distinct mode shapes, each characterized by a specific frequency and deformation pattern.

The most relevant types for pedestrian-induced vibrations are lateral bending, vertical

bending and torsional modes. In lateral bending, the bridge sways horizontally side-to-

side; in vertical bending, the deck moves up and down along its span; and in torsional

modes, the structure twists around its longitudinal axis, with opposite sides of the deck

moving in opposing vertical directions. The excitation of these modes—especially those

with frequencies near human walking—can strongly influence gait and stability.

The HUMVIB bridge [42] at the Technical University of Darmstadt is a purpose-built foot-

bridge designed to study such human–structure interactions. The bridge spans 13.24m,

weighs approximately 12.2 t and consists of two steel beams supporting a 13-part seg-

mented concrete deck. The segments are separated by 2 cm gaps, allowing for significant

structural flexibility. Its dynamic behavior has been thoroughly characterized and includes

multiple modal responses: the first lateral bending mode at 1.63Hz, the first vertical

bending mode at 2.04Hz and the first torsional mode at 4.09Hz. These are followed by

higher-order modes including the second lateral bending mode at 4.96Hz, the second

vertical bending mode at 7.80Hz. Among these, the first vertical mode at 2.04Hz is of
particular importance, as it lies close to the natural frequency of human walking and is
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Figure 2.2.: Schematic of the Unitree Go2 quadruped crossing the HUMVIB bridge, which
measures 13.24m in length and 2.5m in width. The coordinate systems used
for both the bridge and the robot’s motion are also shown.

thus the most likely to be excited by pedestrians. Equipped with comprehensive instru-

mentation to measure displacements, Ground Reaction Forces (GRFs), and accelerations

with Inertial Measurement Units (IMUs), the HUMVIB bridge serves as an ideal platform

for analyzing gait adaptation, stability, and control strategies under real-world oscillatory

conditions.

2.6. Harmonic Oscillator

Harmonic oscillators provide a fundamental model for analyzing systems that exhibit

periodic motion around an equilibrium point [43]. They are widely used to approximate

various physical systems, including aspects of human gait [44, 45] and serve as a natural

representation for the oscillatory behavior of flexible structures such as bridges.

An one dimensional mass-spring harmonic oscillator is a system that experiences a restoring

force proportional to its displacement from equilibrium, resulting in sinusoidal motion

governed by the system’s massm and stiffness k. In this common example the force follows
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Hooke’s Law [46] while damping or external forces influence its real-world behavior. The

eigenfrequency fn of such a system is determined by its mass and stiffness, with the

angular frequency Én related to the frequency by Én = 2Ãfn and to the system parameters

by É2
n = k/m. From these relationships, the stiffness k can be calculated as:

k = (2Ãfn)
2m (2.6)

Additionally, the maximum acceleration amax, which occurs at the equilibrium point, is

determined by the amplitude A and angular frequency Én:

amax = A É2
n (2.7)

Rearranging this expression allows the amplitude to be computed based on a known

acceleration, mass and stiffness:

A =
amax m

k
(2.8)

This set of equations enables the design of harmonic oscillators with specified dynamic

characteristics.

2.7. Unitree Go2

Figure 2.3.: Schematic of the Unitree Go2

The Unitree Go2 EDU (Unitree, Hangzhou,

China), shown in Figure 2.3, is a versa-

tile quadrupedal robot designed for re-

search in locomotion, perception and au-

tonomous navigation. Weighing approxi-

mately 15 kg and measuring 70 cm × 31 cm
× 40 cm when standing, it features 12

high-performance actuators with integrated

torque sensing, capable of delivering up to

45Nm of torque. The robot is equipped

with an IMU, foot-end force sensors and

a 3D LIDAR for perception. Its standard

software supports multiple gait modes and

enables dynamic locomotion at speeds up to

3.7m/s. Its Robot Operating System (ROS2)

compatible software architecture and inte-

grated sensors make it a flexible platform

for advanced robotics development.
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3. Methodology

This chapter presents the methodology used to develop and evaluate robust locomotion

policies for a quadruped robot operating on a vertically oscillating bridge. Our goal is to

investigate how periodic vertical disturbances influence gait stability and to train control

strategies that maintain reliable locomotion under such challenging conditions. We begin

by detailing the RL setup and the simulation model of the bridge. Then, we explain how

different gaits were trained under varying height regulation strategies and conclude with

an overview of the real-world testing and evaluation procedure.

3.1. Training Setup

RL-X was used to train a range of distinct gait policies for the Unitree Go2, to which the

framework had not previously been applied. Training was conducted in simulation using

the CPU-based MuJoCo physics engine, with 48 parallel environments enabling efficient

data collection. The PPO algorithm was used to learn locomotion policies, following estab-

lished approaches in prior work [16, 5, 47]. The full table of hyperparameters is shown

in Table A.1. The entire pipeline was implemented using the RL-X deep reinforcement

learning framework, integrated with the MuJoCo simulation environment. The policies

were trained to generate target joint positions that enable tracking of a commanded

velocity vector v̄ ∈ [−1.0, 1.0]3, representing desired forward, lateral, and yaw velocities in

the robot’s local frame. The robot is controlled using a joint-level PD controller running at

50Hz, with fixed gains kp = 20 and kd = 0.5. The controller sets the target joint velocity

to zero and computes the target joint positions as qtarget = qnominal+Ãaa, where qnominal is

the nominal joint position, a is the action produced by the policy and Ãa = 0.3 is a scaling

factor. The observation space is composed of three categories: joint-specific, feet-specific

and general observations. Joint-specific inputs oj include joint positions q, velocities q̇ and

previous actions at−1. Feet-specific inputs of consist of binary contact states pf and the
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time since the last contact pTf for each foot. General observations og include the robot’s

linear velocity v, angular velocity É, command velocity v̄, gravity vector orientation g,
height above ground h, PD control parameters, scaling factor Ãa, total massm and physical

dimensions (length, width and height). All features are concatenated into a single obser-

vation vector o = [oj , of , og] and normalized to the range [−1, 1]. To facilitate zero-shot

sim-to-real transfer, extensive domain randomization was applied throughout training.

Parameters such as body mass, inertia, Center of Mass (CoM) location, actuator latency

and dynamics, ground friction, compliance, sensor noise, and external perturbations were

randomized to improve policy robustness under real-world variability. The whole table of

randomized parameters and their ranges is shown in Table A.2. To assess the robustness of

trained policies under challenging terrain, a simulation of a dynamically oscillating bridge

was developed based on the HUMVIB bridge. Training scenarios included both rigid and

vertically oscillating ground, with variations in oscillation amplitude and eigenfrequency,

which was realized as a part of the domain randomization.

3.2. Bridge Model

The HUMVIB bridge is modeled in MuJoCo as a single-degree-of-freedom harmonic

oscillator (Figure 3.1) that emulates the dynamics of its first vertical bending mode, as

this mode is the most readily excited by human locomotion. The start position of the

bridge surface is set to 1.05m over the ground—the peak of the oscillation—while the

equilibrium position can be adjusted downward to modify the oscillation amplitude.

This allows to keep the robots starting position at a fixed point in space to always have

the same start height over the surface. The downward disposition of the equilibrium

position represents the maximum amplitude A. To fully describe the system we need the

position in respect to the equilibrium the stiffness k and the mass of the bridge. To better

approximate the dynamics of the HUMVIB bridge, the model mass m was set to half the

actual bridge mass, resulting in a value of 6100 kg. This adjustment reflects the lower

effective mass of the real structure—not all portion of the bridge are equally involved in

the oscillatory motion—compared to an idealized harmonic oscillator. This behavior can

be more accurately described using catenary theory as a basis for the bridge’s motion

equation [48]. With these parameters, a wide set of different oscillations can be assigned

to the bridge. For a chosen frequency the stiffness is calculated via Equation 2.6.

To emulate the HUMVIB bridge the stiffness is tuned to k =963 273N/m such that the

bridge exhibits an eigenfrequency of 2Hzwith an oscillation amplitude of±0.05m. During
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Figure 3.1.: Screenshot of the bridge model in MuJoCo during testing, featuring the
Unitree Go2 walking on the oscillating surface.

training, we varied the eigenfrequency of the bridge between 0.75Hz and 7.5Hz and the

amplitude between zero and a constrained maximum value that ensures the bridge’s

acceleration remains below amax =9.81m/s2 which is derived via Equation 2.8 given the

mass and stiffness. This constraint is necessary to prevent the robot from experiencing

too much acceleration to become airborne.

3.3. Learning Distinct Gaits

The same reward terms, coefficients rc, and training curriculum as in [47] were used to

train the different gaits, while the learning progress was monitored using the wandb.com

platform. In particular, the reward structure for the default gait, as shown in Table 3.1,

was trained with minimal modifications—only those necessary to adapt to the altered

training environment. The reward function consists of tracking terms that encourage

following the commanded velocities v̄, as well as multiple penalty terms to shape the gait

behavior. All terms are scaled by individual coefficients, summed and clipped to ensure

the total reward remains non-negative. The general reward structure consists of these

components:

• Tracking velocity rewards: Encourage following the desired velocity commands

for both linear (x and y) and angular (yaw) directions.
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• Joint penalties: Penalize deviations from position limits, acceleration and torque.

• Action rate penalty: Penalizes rapid changes between consecutive actions.

• Collision penalty: Discourages collisions with the environment.

• Base height penalty: Encourages the robot’s trunk to stay close to the desired

height.

• Air time penalty: Penalizes excessive air time, encouraging foot contact with the

ground.

• Symmetry penalty: Discourages asymmetric foot placement during movement.

Term Equation Reward coefficient rc

XY velocity tracking exp(−|vxy − v̄xy|
2/0.25) 2

Yaw velocity tracking exp(−|Éyaw − v̄yaw|
2/0.25) 1

Z velocity penalty −|vz|
2 2

Pitch-roll velocity penalty −|Épitch, roll|
2 0.05

Pitch-roll position penalty −|¹pitch, roll|
2 0.2

Joint limits penalty −1̄(0.9 qmin < q < 0.9 qmax) 10

Joint accelerations penalty −|q̈|2 2.5e-7

Joint torques penalty −|Ä |2 2e-4

Action rate penalty −|ȧ|2 0.01

Base height penalty −|h− hnominal|
2 30

Collisions penalty −ncollisions 1

Air time penalty −
∑

f1(pf )(p
T
f − 0.5) 0.1

Symmetry penalty −
∑

f 1̄(p
left
f )1̄(p

right
f ) 0.5

Table 3.1.: Reward terms and coefficients that make up the reward function. This sym-
metry penalty is applied only with the default gait.

To encourage the emergence of distinct gaits—trot, pace, bound and pronk—the existing

symmetry penalty term was adapted to penalize deviations from the characteristic stance

phases associated with each gait, as illustrated in Figure 3.2. The reward function for the

default gait applies fewer constraints, primarily encouraging at least two feet to remain
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in contact with the ground while still discouraging bound behavior. Finally, setting the

symmetry penalty to zero results in the unconstrained free gait.

RR

RL

FR

FL

Trot Pace

Time (s)

RR

RL

FR

FL

Bound

Time (s)

Pronk

Figure 3.2.: Example of characteristic footfall patterns for the trot, pace, bound and pronk

gaits that impose no penalties. The robot’s feet are labeled as front left (FL),
front right (FR), rear left (RL) and rear right (RR).

Beyond gait-specific penalty terms, the training environment plays a crucial role in shaping

the resulting locomotion behavior. For gaits trained on an oscillating bridge, two distinct

policies were developed by modifying the base height penalty term, which encourages the

robot to maintain a constant height of 0.325m—its nominal trunk height in a standing

posture—relative to the walking surface. In the equidistant bridge (eb) condition, the robot

is rewarded for maintaining a constant height relative to the oscillating bridge surface.

In contrast, the equidistant ground (eg) condition encourages the robot to maintain a

constant height relative to the fixed ground beneath, which is expected to result in a more

dampened gait. When training on a rigid, non-oscillating bridge, the height penalty has a

single interpretation—height changes relative to the ground and the bridge surface are

always equal—referred to as no oscillation (nos).

This setup yields 18 distinct policies, comprising six gaits (default, trot, pace, bound, pronk,

free), each trained with two height regulation strategies on an oscillating bridge (eb, eg)

and a baseline condition on a rigid bridge (nos).

The base height is formulated as a penalty term, which the learning algorithm seeks to
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minimize. This penalty is defined by the deviation between the nominal trunk height

hnominal = 0.325m and the vertical position of the robot’s CoM, denoted as h. In simulation

this vertical position is influenced by the bridge model and its oscillations, resulting in a

trunk coordinate CoMGo2z(t) at discrete time step t.

The three height regulation styles eb, eg and nos introduce slight variations in the com-

putation of the base height h, depending on the modeled bridge. These variations are

influenced by the initial bridge height of b0 =1.05m, the instantaneous vertical bridge

position bz(t) and physical parameters such as the gravitational constant g, the bridge’s

mass m, stiffness k and oscillation amplitude A. The new formulation of the base height

are:

heb(t) = CoMGo2z(t)− b0 − bz(t) (3.1)

heg(t) = CoMGo2z(t)− b0 +
g m

k
−

A

2
(3.2)

hnos(t) = CoMGo2z(t)− b0 (3.3)

Embedding these base height terms within the reward functions is intended to encourage

the development of distinct walking styles.

3.4. Gait Verification and Simulation Testing

The learning performance of the 18 gait styles was analyzed by reviewing the learning

returns and verifying the emergence of the desired gait patterns in simulation. To assess

gait correctness, footfall patterns were visualized for each learned policy.

In simulation, the return was evaluated using a reward function that omits the symmetry

and base height terms for comparability. It was assessed under command velocities

ranging from 0m/s to 0.7m/s in 0.05m/s increments, across both rigid and oscillating

surfaces, replicating the test conditions of the HUMVIB bridge. For a representative target

velocity—which was later used in the real world experiment—of 0.5m/s, the trajectory of

the trunk’s CoM was recorded to evaluate lateral drift, compliance with the commanded

velocity and the ability to adapt to vertical oscillations.

Additionally, the conformity of the footfall pattern with the reward function used during

training was quantified as a percentage at a commanded velocity of 0.5m/s, both on rigid

ground and on the oscillating bridge under HUMVIB settings. This measure indicates not
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only whether a gait has been successfully learned, but also to what extent, providing a

basis for assessing the similarity between different gaits.

3.5. Real-World Experiment

The real-world experiments were conducted on the HUMVIB bridge (Figure 3.3). To

induce oscillations, the bridge was manually excited at 2Hz by the experimenters until the

desired amplitude was reached, after which it was maintained at a stable level throughout

the trials. For each combination of gait and training style, the robot completed eight trials

across both the pre-oscillated and idle bridge configurations. The command velocity v̄,
manually controlled by another experimenter, was limited to a maximum of 0.5m/s in the

x-direction to maintain a consistent forward speed. The operator could additionally adjust

the y- and yaw-velocities as needed to compensate for lateral drift and keep the robot on

track. Comprehensive onboard data was recorded using ROS2 for subsequent analysis.

This included full IMU measurements, joint positions, velocities, and torques, as well as

data from the foot pressure sensors. Joint velocities and torques were used to estimate

power consumption over time, while foot pressure data were analyzed to determine which

gait–style combinations exhibited softer contact with the bridge.

Figure 3.3.: Unitree Go2 traversing the HUMVIB bridge
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3.5.1. Data processing and power estimation

The recorded sensor data was screened for anomalies and segmented into individual

bridge traversal trials using the forward walking control signal as a temporal reference.

To evaluate the interaction between the robot and the bridge structure, the mean GRFs at

the feet were computed for each trial.

For a more detailed analysis, the estimated power exerted by all four legs was calculated

per trial using:

Estimated Power =
∑

|τ | · |q̇|, (3.4)

where τ denotes the joint torques and q̇ the corresponding joint velocities. The resulting

power estimates were then averaged: first across gait types (default, trot, bound, free),

then across training styles (eb, eg, nos) and finally across setting the trials were conducted

in, either the idle or oscillating bridge.

3.5.2. Frequency analysis

The Fourier Transform (FT) is a fundamental tool for analyzing periodic signals by trans-

forming them from the time domain to the frequency domain [49]. In practice, this

is achieved using the Fast Fourier Transform (FFT), which efficiently reveals dominant

frequency components [50]. The Power Spectral Density (PSD) provides a complemen-

tary view by indicating how signal power is distributed across frequencies [51]. These

frequency-domain techniques are widely used in gait analysis to quantify rhythmic struc-

ture, regularity and dynamic stability. When applied to signals such as ground reaction

forces [52, 53], vertical acceleration, or estimated joint torques and powers, they uncover

subtle differences in locomotor behavior under varying surface conditions.

To examine the periodic nature of interactions between gait, style and bridge dynamics,

time series data for estimated power and vertical IMU acceleration were extracted from real-

world trials. Simulated trunk height trajectories (z) were included to enable comparison

and validation. All signals were transformed into the frequency domain using Welch’s

method [54] to compute the PSD, which reduces noise and non-stationary effects through

segment averaging, at the expense of some frequency resolution.
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4. Results

This chapter presents the detailed results and evaluation of the learned locomotion policies

by systematically comparing their performance across multiple gaits (default, trot, pace,

bound, pronk, free), training styles (eb, eg, nos) and testing conditions (idle and oscillating

bridge), including both simulation environments and real-world experiments on the

vibrating HUMVIB bridge.

4.1. Evaluation of Gaits

4.1.1. Comparison of learning curves

As a first step, the impact of gait and style during training on the learning process was

examined.

As shown in Figure 4.1, all learning curves are steep during the initial quarter of training

and gradually flatten toward the end without reaching a clear plateau. The free and default

gaits—both imposing minimal gait-specific constraints—consistently achieve the highest

rewards. In contrast, the trot, pronk, pace and bound gaits incorporate strong penalty

terms to enforce specific footfall patterns, manifest an initial decline in reward before

gradual improvement. Initially, the learning curves for the trot, pronk, pace and bound

gaits exhibit similar behavior. However, the trot policy eventually achieves higher returns,

approaching the performance of the free and default policies. Among the four constrained

gaits, trot is both visually and reward-wise the most similar to the default gait, whereas

pronk, pace and bound are more distinct and ultimately yield lower returns.

With respect to training conditions, the nos policy performs best, benefiting from a rigid

training surface and therefore experiencing fewer destabilizing oscillations. The eb and eg

policies perform similarly to one another, although eg slightly outperforms eb.
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Figure 4.1.: Average episode return for the different gaits (left) and height regulation
styles (right) during training.

4.1.2. Velocity simulation

Next, the performance of the policies was evaluated on both rigid ground and the oscillating

bridge using the HUMVIB test conditions with varying command velocities. To ensure

a fair comparison, episode returns were computed without including the gait-specific

reward terms. As shown in Figure 4.2, a general trend of higher rewards at lower velocities

can be observed. Tests conducted on the rigid ground yielded significantly higher returns

compared to those on the oscillating bridge.

On the idle bridge, the default, trot, pronk and free gaits achieved very similar returns. The

bound gait initially performed on par with these gaits when stationary, but its performance

dropped to the level of the pace gait as velocity increased, with both remaining distinctly

lower than the others. Comparing the training conditions on idle ground reveals that

all three (nos, eg and eb) perform similarly, with nos slightly on top the others, followed

closely by eg and then eb.

On the oscillating bridge, returns were generally about 10 points lower and exhibited

greater variability across policies. The trot gait achieved the highest reward at velocities

above 0.2m/s, while pace consistently received the lowest returns. Notably, the bound

gait closed the performance gap and even surpassed the default and free gaits at certain
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Figure 4.2.: Average episode return over the command velocity on idle (top) and on the
oscillating bridge (bottom) for the different gaits (left) and training conditions
(right) of the policies during evaluation.

velocities. Several gaits showed a local minimum around 0.2m/s and a local maximum

near 0.3m/s.

Among the training styles, the nos policy consistently underperformed on the oscillating

bridge, while the eg policy achieved the highest returns, closely followed by eb. This trend

is also evident in the overall gait comparison (Figure A.1, Figure A.2), where eg generally

outperforms eb.
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4.1.3. Footfall pattern and gait analysis

To evaluate whether the desired gaits were successfully learned, the footfall patterns were

analyzed, as illustrated in Figure 4.3. Table 4.1 shows the percentage of the gait cycle

during which each nos policy maintained its characteristic stance phase on rigid ground.

RR

RL

FR

FL

Default Trot Pace

0.0 0.2 0.4 0.6 0.8 1.0

Time (s)
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Bound

0.0 0.2 0.4 0.6 0.8 1.0

Time (s)

Pronk

0.0 0.2 0.4 0.6 0.8 1.0
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Free

Figure 4.3.: Footfall pattern of the different gaits using the nos style on the idle bridge
with a target speed vx = 0.5m/s. The feet of the robot are denoted with front
left (FL), front right (FR), rear left (RL) and rear right (RR). A characteristic
gait stance phase is detected when all four feet simultaneously exhibit one
of the ideal contact combinations defined in Figure 3.2.

The default gait (100.0 %) adheres strictly to predefined contact patterns. The free

gait, while unconstrained, exhibits the highest percentage similarity to the default gait,

suggesting a natural tendency toward similar coordination even without enforced structure.

The trot (74.3 %) and pace gaits (73.3 %) frequently exhibit their characteristic stance

phases described in Figure 3.2. The bound gait (35.9 %), marked by both front feet being

in the air while the rear feet are grounded—and vice versa—also emerges regularly. In

contrast, the pronk gait only displayed the phase with all feet on the ground (40.1 %); no

instance with all feet in the air (0.0 %) were observed. Although the resulting motion

labeled as pronk does not appear qualitatively worse than the others, it fails to exhibit the

intended airborne behavior. Therefore, it was excluded from further evaluation.
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Gait & Style Default (%) Trot (%) Pace (%) Bound (%) Pronkg (%) Pronka (%)

default nos 100.0 35.3 0.0 0.0 35.3 0.0

trot nos 100.0 74.3 0.0 0.0 8.6 0.0

pace nos 100.0 0.0 73.3 0.0 15.2 0.0

bound nos 64.1 0.0 0.0 35.9 48.3 0.0

pronk nos 100.0 44.7 0.0 0.0 40.1 0.0

free nos 100.0 40.1 0.0 0.0 33.7 0.0

Table 4.1.: Percentage of time the nos policies exhibited their characteristic gait phases
for each defined gait on rigid ground. The Free (%) gait check is omitted,
as it imposes no symmetry constraints. Pronkg (%) and Pronka (%) indicate
the proportion of time all feet were on the ground and all feet were in the air,
respectively.

4.1.4. Walking height

To investigate how the different policies cope with the oscillating bridge, the movement

of the robot’s CoM relative to the bridges equilibrium position was analyzed. Figure 4.4

presents the mean and standard deviation of the CoM height for all gait-style combinations

on both the idle and oscillating bridge, using a fixed forward velocity command of v̄x =
0.5m/s.

Across all gaits, the highest average CoM height was consistently maintained by the nos

style on both rigid and oscillating ground. Similarly, the largest standard deviations were

generally observed in the nos policies, with the exception of bound-nos on the idle bridge.

Despite these variations, the average CoM heights for all gait–style combinations remained

within a narrow range of 3 cm for both ground condition. When comparing the eb and

eg styles across gaits, no clear trend was identified regarding which policy adopted a

lower stance. However, on the oscillating bridge, slightly lower standard deviations were

observed in the eg policies, suggesting more stable vertical motion.
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Figure 4.4.: Average and standard deviation of the robot’s CoM height for all gait3style
combinations on the idle bridge (top) and the oscillating bridge (bottom),
using HUMVIB test conditions.
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4.2. Real-World Experiment

In the real-world validation experiments, the policies were evaluated on the HUMVIB

structure, with the exception of all pace gaits and the bound eg gait. These were excluded

due to observed instability, which posed a heightened risk of the robot falling off the

structure and potentially getting damaged. All remaining policies were successfully tested

with a minimum of eight trials. A noticeable reduction in locomotion speed was consistently

observed as the robot traversed the center of the bridge, where oscillatory motion was

most pronounced. The eb and eg policies exhibited increased stability in both vertical and

lateral CoM movement.

Interestingly, despite its comparatively poor performance in simulation, the bound gait was

able to achieve stable locomotion on the oscillating bridge during real-world testing. While

initial oscillations were manually introduced by human operators, the trot eg policy was

observed to autonomously induce bridge oscillations through their inherent locomotion

dynamics with a gait frequency of about 2Hz.

Upon reviewing the collected data, anomalies in recording durations and sudden power

spikes—often preceding unexpected robot behavior—were identified. These trials were

removed from the dataset, after which a minimum of five valid trials remained for each gait-

style-setting combination. Additionally, it was discovered that the rear-left foot pressure

sensor was defective and its values had to be estimated for consistency in the analysis.

4.2.1. Power usage

The average estimated power use in Table 4.2 was computed with Equation 3.4 for each

gait–style combination on both the pre-oscillated and idle bridge conditions. The free

and default gaits demonstrated the lowest power usage, with values closely together. The

trot gait exhibited moderate power use, while the bound gait required significantly more

power than all others.

default trot bound free eb eg nos idle pre

Power (W) 72.11 99.64 130.65 77.64 100.21 89.89 83.57 89.98 92.84

Table 4.2.: Mean estimated power averaged over gaits, styles and bridge-setting
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Among the styles, eg is in the middle and nearer to nos than to eb. Notably, the differences in

estimated power use between the idle and pre-oscillated bridge conditions were negligible

across all configurations. The complete set of results is presented in Table A.4.

4.2.2. Foot force

The interaction force between the robot and the bridge was measured as the sum of the

forces exerted by all four feet at each time step. Due to a malfunctioning rear right foot

sensor, its data were estimated using measurements from the functional rear left foot

sensor. The average forces across different gaits, styles and bridge conditions (oscillating

vs. idle) are summarized in Figure 4.5.The default and free gaits exhibited the lowest

contact forces, while the bound gait, characterized by its leaping motion, produced higher

forces. The trot gait, featuring the shortest transition phases—with more than two feet in

contact with the bridge—recorded the highest overall force values. Among the styles, nos

policies led to the largest forces, whereas eg policies showed the lowest. Forces measured

on the idle bridge were slightly reduced and exhibited less variance compared to the

oscillating bridge, although the overall differences remained small.
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Figure 4.5.: Means and standard deviations of the force readouts of the foot sensors of
the robot over gaits, styles and bridge-setting in the real world.

A detailed overview of all gait, style and bridge condition combinations is provided in

Table A.5.
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4.2.3. PSD analysis

The PSD of estimated power, IMU vertical acceleration and simulated trunk height were

computed and normalized to the highest peak above 2.2Hz, in order to reduce the influence

of the dominant 2.0Hz peak induced by the oscillating bridge (Figure 4.6). This normal-

ization enabled clearer comparisons of gait-induced frequency content across different

training styles and gaits.
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Figure 4.6.: PSD of the default eb policy on the idle bridge (top) and the oscillating bridge
(bottom). The spectra are normalized to the highest peak above 2.2Hz,
comparing the estimated power, z-axis acceleration and the simulated height.

The onboard data—estimated power and IMU vertical acceleration—showed strong align-

ment. The IMU signal exhibited a broader frequency distribution, while the simulated
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trunk height featured more distinct and isolated peaks, separated by flatter regions.

In both the estimated power and IMU signals, bridge oscillation introduced a clear peak

at 2.0Hz along with harmonic components. This effect was more pronounced in the IMU

data than in the estimated power, though the overall spectral shape remained similar to

that of the idle bridge condition.

Across all gait-style combinations (Figure A.3 to A.13), no systematic shift of gait-related

frequency peaks toward the bridge’s natural frequency was observed.

For most gait-style combinations on the idle bridge, two main frequency peaks were visible:

one between 2.0Hz and 3.5Hz, and another at its second harmonic, indicating consistent

gait-related rhythmic patterns in the absence of perturbations.
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5. Discussion

This chapter critically discusses the training and evaluation outcomes of various locomotion

policies, highlighting how gait selection, training styles, and environmental conditions

influence learning efficiency, robustness and real-world performance. It also proposes a new

gait-style aimed at enhancing stability, while evaluating the effectiveness of metrics such

as energy efficiency, force distribution, and gait robustness under oscillatory conditions.

5.1. Gait Learnability and Training Biases

During the learning phase, the free gait was the easiest for the RL agents to learn, consis-

tently achieving the highest rewards. This outcome is expected, as the free gait imposes no

constraints on footfall patterns, in contrast to the biologically inspired gaits that require

strict temporal coordination. The lower performance of the bound and pronk policies is

expected, as these gaits typically involve extended foot contact phases that deviate from

the ideal footfall pattern (Figure 3.2)—penalized by the reward function—and inherently

offer less stability than the trot and default gaits. Lower rewards implicate that these

policies are less effective at tracking commanded velocities and are more susceptible to

environmental disturbances encountered during training. The initial drop followed by a

rapid improvement in the learning curve of the trot policy suggests that its gait-specific

constraints are initially challenging but can be efficiently overcome during training.

Higher rewards observed for the nos policies can be attributed to the less disruptive nature

of the rigid training surface. This also highlights that including training on oscillating

ground—as done with the eb and eg styles—is a meaningful extension when learning

policies for more challenging environments.

It is worth noting that each of the 18 policies evaluated in this study was trained with a

single random seed, which limits statistical robustness. This limitation may also contribute

to the failure of the pronk policy to reproduce its characteristic stride phase during training.
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5.2. Policy Performance in Simulation

The evaluation across a range of command velocities on both rigid ground and the

oscillating bridge revealed that gaits trained on oscillating terrain can perform on par

with those trained on rigid ground; however, the opposite does not hold. Policies trained

exclusively on rigid ground exhibited markedly reduced performance under oscillatory

conditions. This highlights the importance of training locomotion policies with vertical

ground perturbations to achieve robustness in dynamic environments.

On rigid terrain, increased command velocity correlated with lower episode returns. While

a similar trend is observed on the oscillating bridge, several gaits exhibit distinct local

peaks and troughs in performance, indicating interactions between gait dynamics and the

bridge’s oscillatory motion. Although the chosen gait significantly influences the resulting

gait frequency, the robot’s morphology—particularly leg length—also plays a critical role

in determining feasible step lengths [55]. As a result, gait frequencies at given velocities

are expected to lie within a similar range across all policies. The observed fluctuations

in performance likely arise from constructive and destructive interaction of the robot’s

gait frequency and the bridge’s oscillation. For instance, the trot policies exhibit a step

frequency of approximately 2Hz at a command velocity of 0.35m/s.

Analysis of footfall patterns plays a key role in verifying whether the desired gait behaviors

have been learned. Comparing short sequences of actual footfall data (Figure 4.3) with

idealized references (Figure 3.2) allows for immediate visual assessment of gait quality.

This is further quantified in Table 4.1, where the learned patterns for trot, pace and bound

are shown to be highly distinct, with no overlap.

Interestingly, while both default and free gaits would theoretically allow for the emergence

of trot and pace, only trot behavior emerged consistently, indicating it may be the most

natural or easiest for the policy to converge on. The exclusivity of default and bound

is clearly reflected in their opposing reward structures: when the bound policy is in

compliance with its own criteria, it directly violates those of the default policy and vice

versa. Moreover, the absence of bound behavior in the free gait policies suggests that

the reward structure used in the default gait could be simplified. Instead of explicitly

discouraging bound, it may suffice to enforce a constraint requiring at least two legs to

remain in contact with the ground. Or it could be extended by an additional penalty on

pace behavior to further accelerate convergence.

The distinction between ground and aerial phases was essential for evaluating the pronk

gait, as no instance of all feet being simultaneously in the air was observed, neither within
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the footfall pattern time frame nor during testing in simulation. Consequently, the pronk

gait was omitted from further evaluation due to the failure to induce the desired behavior.

It is possible that a different or more strongly weighted penalty term could successfully

induce this gait.

The trot and pace gaits both exhibit their characteristic stance phases exceeding 70% of

the gait cycle, which may contribute to reduced dynamic stability under varying terrain

conditions.

A broader analysis of gait classification results, presented in Table A.3, shows that while

testing policies on oscillating ground, they are more likely to deviate from their intended

footfall patterns. This was especially observed in those trained using the nos style. Policies

trained on oscillating terrain demonstrate greater consistency in preserving their learned

gait patterns, even under challenging conditions. This finding supports the conclusion

that training on oscillating ground enhances gait robustness.

An evaluation of the CoM height reveals that gaits trained on oscillating terrain adopt a

lower posture on average, which likely aids in compensating for vertical oscillations. This

consistently observed adaptation suggests that learning with a reduced nominal trunk

height could improve policy performance when training new gaits for bridge environments.

On oscillating ground, both eb and eg styles not only adopt a lower stance but also

better maintain their posture, as indicated by lower standard deviations in CoM height—

particularly in the case of the eg policies.

5.3. Evaluation of Real-World Experiments

Due to the absence of precise velocity measurements and the limited accuracy of the avail-

able IMU data, a reliable estimation of the robot’s velocity was not feasible. Consequently,

no computation of the cost of transport was performed. In terms of energy efficiency,

average power consumption analysis shows that the default and free gaits are the most

economical. Policies trained with the nos style emerge as the most energy efficient overall.

This may be due to their relatively higher base height—which reduces joint torques—and

the lack of effort spent compensating for oscillations. Notably, the difference in energy

expenditure between idle and oscillating terrain is minimal, suggesting that the oscillatory

energy input either has little effect on forward locomotion or is passively absorbed and

utilized through the system’s inherent joint stiffness—effectively canceling out its impact.
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The lower average forces observed for default and free gaits indicate a more efficient and

gentler interaction with the ground, potentially contributing to improved stability and

reduced mechanical wear. The higher force peaks associated with the trot gait likely result

from its rapid alternation pattern, which increases instantaneous loading and may elevate

the risk of slippage or impact-related disturbances. Lower-posture styles such as eg appear

to promote a more even distribution of force across steps, reducing peak stresses and

possibly enhancing long-term durability of the robot’s structure and sensors. The lack of

change in average forces between the oscillating and idle bridge conditions suggests that

the locomotion strategies are resilient to low-frequency vertical disturbances. However, the

standard deviation under oscillation hints at occasional high-force interactions, potentially

triggered by resonances or phase alignment between the robot and the moving bridge.

Based on the evidence, the most promising gait and training style for further exploration

is the default eg gait. It proves to be the most robust against disturbances, as it frequently

uses three feet on the ground, providing enhanced stability compared to pace and trot.

Additionally, it offers effective height regulation, soft foot contacts and a balanced power

consumption. These findings are particularly compelling given that the default gait has

already been used to train robust policies. In contrast, pace is typically used by long-legged

animals for fast movement on even terrain, while bound is specialized for sprinting.

The PSD of gait-style combinations tested on the idle bridge, the simulated height data

typically provides a good estimate of the gait frequency. However, on the oscillating bridge,

the dominant spectral peak at 2.0Hz and its harmonics overwhelm the signal, making it

difficult to distinguish gait-related frequencies. As a result, simulated height becomes less

reliable for spectral analysis under oscillatory conditions.

In contrast, the PSD of the estimated power proves more robust than those of vertical

acceleration and simulated height. It preserves the general spectral shape observed on

the idle bridge while still reflecting the influence of the bridge’s oscillation, allowing for a

more nuanced interpretation of gait dynamics. Thus, estimated power is best suited for

further investigation across varying bridge conditions.

The presence of a spectral peak between 2.0Hz and 3.5Hz in the estimated power can be

attributed to the gait frequency. A second peak is often located at the second harmonic

of this frequency and corresponds to the rate at which the synchronous legs contact

the ground. Harmonics, in general, reflect non-linearities and distortions in locomotion

dynamics, which can arise from gait asymmetries or environmental interactions. However,

in quadruped locomotion, the relative strength of the second harmonic can also serve as

an indicator of gait quality: a pronounced harmonic suggests a more synchronized and

regular gait cycle. This arises because two by about Ã phase-shifted stride frequencies
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interfere to dampen the gait frequency and produce a signal with twice the original

frequency. This effectively highlights the coordination of limb pairs.
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6. Conclusion

This study demonstrates that locomotion policies trained in simulation on an oscillating

surface significantly outperform those trained on rigid terrain when deployed on the

Unitree Go2 quadruped traversing the HUMVIB bridge. Using RL with the PPO algorithm,

we trained 18 distinct policies across six gaits and three training conditions. Exposure to

vertical ground perturbations during training improved both stability and adaptability, as

validated through zero-shot transfer to real-world experiments.

High rewards achieved during training primarily reflect the compatibility of specific gaits

with the reward function. In contrast, performance differences across height regulation

styles and training environments highlight the difficulty of walking on oscillating ground

without practicing on it beforehand, underscoring the importance of targeted exposure

during training for robust generalization. Analyzing footfall patterns provided insight into

gait acquisition, while simulation height analysis revealed that lower postures learned

under unstable conditions promoted vertical stability. Estimates of foot force and power

usage offered a broader understanding of the biomechanical trade-offs associated with

different gaits and styles. Finally, frequency-domain analyses uncovered periodic features

that are preserved from simulation to physical execution.

These insights suggest that an ideal future policy might be a more restrictive default gait,

incorporating elements from the eg style—such as a lower trunk posture—and deployed

selectively in response to detected ground oscillations using onboard IMU data. Such

adaptive switching could enhance both robustness and energy efficiency.

6.1. Outlook

While the results show promising transferability, further optimization is needed for an

exhaustive comparison of gait styles. Learning each gait—including the newly proposed
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default—across multiple seeds and evaluating them both in simulation and on the real

robot would help quantify their consistency and robustness. Exploring learning without

any explicit height regulation on both stable and unstable terrain may also reveal whether

posture adjustments emerge naturally from task dynamics. Additionally, simulating

different bridge frequencies—particularly those close to the natural gait frequencies of

each gait—may uncover resonance effects or gait-specific vulnerabilities that remained

hidden when testing was limited to the bridge’s primary eigenfrequency of 2.0Hz.

Most policies performed well within their respective training domains, but current black-

box learning approaches do not generalize perfectly to unfamiliar settings. Integrating

white-box models, incorporating physiological principles such as muscle properties [56]

or sensor-mechanical couplings, could help overcome this limitation. Hybrid modeling

may explain the remarkable versatility of animals traversing dynamic and uncertain

environments by leveraging the inherent adaptability of neural control systems [57].

Alternative evaluation strategies, such as analyzing the PSD of simulated power usage

instead of trunk height, could provide deeper insights into the mechanical implications of

gait and height control strategies, offering better predictive power for sim-to-real transfer.

Future directions could include the combination of vertical perturbations with moving or

adversarial obstacles, as well as the integration of high-level planning systems capable

of navigating complex, multilayered terrain. Finally, although no biological quadrupeds

have yet been tested on the HUMVIB bridge, future studies should aim to explore their

strategies under vertical oscillations to complement robotic findings with biologically

grounded insights [58].

Taking these next steps will deepen our understanding of gait-specific adaptation, sim-to-

real transfer, and policy generalization for developing robots that are not only trainable

but also robustly deployable in dynamic and unpredictable real-world environments.
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A. Appendix

The following plots and tables present extended results for those gait, style and oscillatory

conditions that were only partially shown in the main text, where selected examples or

averages were displayed.
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Hyperparameter Value

Total timesteps 1000000000

Batch size 130560 ( 48 envs * 2720 steps)

Mini-batch size 32640

Nr. epochs 5

Initial and final learning rate 0.0004, 0.0

Entropy coefficient 0.0

Discount factor 0.99

GAE ¼ 0.9

Clip range 0.1

Max gradient norm 5.0

Initial action standard deviation 1.0

Clip range action standard deviation 1e-8, 2.0

Clip range action mean -10.0, 10.0 (before applying Ãa)

Table A.1.: The PPO hyperparameters used for training.
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Parameter Range Description

Control Noise (HardDomainControl)

motor strength [0.5, 1.5] Global motor strength scaling

p gain factor [0.5, 1.5] Proportional gain factor

d gain factor [0.5, 1.5] Derivative gain factor

asymmetric factor [0.95, 1.05] Joint-wise multiplicative asymmetry

position offset [−0.05, 0.05] Joint-wise position offset (rad)

Physical Parameters (HardDomainMuJoCoModel)

friction (tangential) [0.001, 2.0] Surface tangential friction

friction (torsional, ground) [0.00001, 0.01] Ground torsional friction

friction (torsional, feet) [0.00001, 0.04] Feet torsional friction

friction (rolling, ground) [0.00001, 0.0002] Ground rolling friction

friction (rolling, feet) [0.00001, 0.02] Feet rolling friction

contact damping [30, 130] Contact damping

contact stiffness [500, 1500] Contact stiffness

gravity [8.81, 10.81] Gravity (m/s2)

added trunk mass [−2.0, 2.0] Additional trunk mass (kg)

trunk COM displacement [−0.01, 0.01] Trunk CoM offset (m)

foot size [0.020, 0.024] Foot size (m)

joint damping [0.0, 2.0] Joint damping coefficient

joint armature [0.008, 0.05] Joint armature

joint stiffness [0.0, 2.0] Joint stiffness

joint friction loss [0.0, 1.0] Joint friction loss

External Perturbations (HardDomainPerturbation)

push velocity (x) [−1.0, 1.0] Push velocity in x-direction (m/s)

push velocity (y) [−1.0, 1.0] Push velocity in y-direction (m/s)

push velocity (z) [−1.0, 1.0] Push velocity in z-direction (m/s)

Table A.2.: Domain randomization parameters and ranges
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Figure A.1.: Episode return over the command velocity on idle bridge for all gait-style
combinations.
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Figure A.2.: Episode return over the command velocity on oscillating bridge, using
HUMVIB settings, for all gait-style combinations.
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Gait Style Set Default (%) Trot (%) Pace (%) Bound (%) Pronkg (%) Pronka (%)

default eb pre 100.0 29.9 2.6 0.0 41.9 0.0

default eb idle 100.0 31.3 0.0 0.0 43.7 0.0

default eg pre 100.0 32.9 0.2 0.0 46.9 0.0

default eg idle 100.0 22.8 0.0 0.0 44.1 0.0

default nos pre 91.6 38.3 2.2 3.6 34.1 2.2

default nos idle 100.0 35.3 0.0 0.0 35.3 0.0

trot eb pre 99.2 73.7 0.0 0.6 15.8 0.0

trot eb idle 100.0 70.1 0.0 0.0 15.0 0.0

trot eg pre 99.4 77.6 0.0 0.4 14.0 0.0

trot eg idle 100.0 75.6 0.0 0.0 13.0 0.0

trot nos pre 100.0 74.5 0.0 0.0 17.6 0.0

trot nos idle 100.0 74.3 0.0 0.0 8.6 0.0

pace eb pre 99.2 0.0 56.3 0.4 29.1 0.0

pace eb idle 100.0 0.0 57.9 0.0 26.3 0.0

pace eg pre 100.0 0.4 48.7 0.0 17.6 0.0

pace eg idle 100.0 0.0 60.3 0.0 12.8 0.0

pace nos pre 97.4 1.0 74.3 1.0 19.0 1.0

pace nos idle 100.0 0.0 73.3 0.0 15.2 0.0

bound eb pre 67.3 0.8 0.0 32.1 48.1 0.0

bound eb idle 74.1 1.0 0.0 25.9 47.5 0.0

bound eg pre 89.2 1.2 0.0 10.4 42.1 0.0

bound eg idle 90.0 0.0 0.0 10.0 55.1 0.0

bound nos pre 47.9 0.0 0.0 52.1 47.9 0.0

bound nos idle 64.1 0.0 0.0 35.9 48.3 0.0

pronk eb pre 96.4 19.8 3.0 0.0 48.7 0.0

pronk eb idle 100.0 5.8 0.0 0.0 35.3 0.0

pronk eg pre 99.6 29.5 0.8 0.0 28.9 0.0

pronk eg idle 100.0 33.1 0.0 0.0 31.7 0.0

pronk nos pre 95.6 42.7 1.0 1.4 34.7 0.8

pronk nos idle 100.0 44.7 0.0 0.0 40.1 0.0

free eb pre 99.4 31.7 0.2 0.6 43.5 0.0

free eb idle 100.0 41.7 0.0 0.0 44.5 0.0

free eg pre 99.4 31.3 0.4 0.6 40.9 0.0

free eg idle 100.0 14.4 0.0 0.0 43.1 0.0

free nos pre 96.0 41.5 0.8 0.8 42.7 0.4

free nos idle 100.0 40.1 0.0 0.0 33.7 0.0

Table A.3.: Gait detection percentages across all policies on oscillating and idle bridge.
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Gait Style Set Count Mean power (W) Std Min Max

default eb pre 7 81.39 2.44 77.04 84.36

default eb idle 9 79.06 1.34 76.69 80.59

default eg pre 8 76.55 1.99 73.38 78.52

default eg idle 6 78.88 1.27 77.37 80.47

default nos pre 10 63.53 0.62 62.73 64.70

default nos idle 10 60.35 0.85 59.36 61.58

trot eb pre 10 118.35 1.34 116.58 121.25

trot eb idle 10 118.83 2.46 115.54 122.51

trot eg pre 10 98.34 1.69 95.55 99.96

trot eg idle 10 98.34 1.24 96.43 100.01

trot nos pre 10 84.30 1.81 81.80 87.50

trot nos idle 10 79.70 0.75 78.88 80.84

bound eb pre 9 119.86 2.23 116.62 123.20

bound eb idle 10 113.74 1.13 111.93 115.76

bound nos pre 9 144.93 4.00 139.24 150.67

bound nos idle 5 158.19 2.49 155.18 161.58

free eb pre 8 81.18 1.48 78.61 83.59

free eb idle 12 83.08 1.37 81.01 85.59

free eg pre 10 90.46 2.18 86.95 95.57

free eg idle 10 89.72 1.02 88.36 91.23

free nos pre 10 61.24 0.51 60.42 62.09

free nos idle 10 59.81 0.59 58.69 60.58

Table A.4.: Complete statistics of power usage, standard deviation (Std) for each gait,
style, and setting (Set)
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Gait Style Set Count Mean force (N) Std

default eb pre 56866 101.69 37.92

default eb idle 73225 102.60 32.25

default eg pre 53293 100.77 42.56

default eg idle 46100 102.91 36.49

default nos pre 84410 120.37 52.55

default nos idle 84636 117.49 38.43

trot eb pre 83817 124.52 75.22

trot eb idle 82886 116.59 65.87

trot eg pre 87251 126.03 61.29

trot eg idle 90771 129.09 60.88

trot nos pre 87826 123.73 55.99

trot nos idle 89483 126.13 46.80

bound eb pre 68816 116.88 63.24

bound eb idle 77213 112.69 55.63

bound nos pre 69202 126.53 77.43

bound nos idle 33533 118.19 67.12

free eb pre 61147 118.94 53.15

free eb idle 92633 119.42 42.91

free eg pre 77700 101.33 38.08

free eg idle 77519 97.44 32.61

free nos pre 86040 124.58 52.88

free nos idle 87544 125.08 45.78

Table A.5.: Complete statistics of average combined foot force, standard deviation (Std)
for each gait, style, and setting (Set)
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Figure A.3.: PSD of the default eb policy on the idle bridge (top) and the oscillating bridge
(bottom). The power spectra are normalized to the highest peak above 2.2Hz,
comparing the estimated power, z-axis acceleration and the simulated height.
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Figure A.4.: PSD of the default eg policy on the idle bridge (top) and the oscillating bridge
(bottom). The power spectra are normalized to the highest peak above 2.2Hz,
comparing the estimated power, z-axis acceleration and the simulated height.
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Figure A.5.: PSD of the default nos policy on the idle bridge (top) and the oscillating
bridge (bottom). The power spectra are normalized to the highest peak
above 2.2Hz, comparing the estimated power, z-axis acceleration and the
simulated height.
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Figure A.6.: PSD of the trot eb policy on the idle bridge (top) and the oscillating bridge
(bottom). The power spectra are normalized to the highest peak above 2.2Hz,
comparing the estimated power, z-axis acceleration and the simulated height.
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Figure A.7.: PSD of the trot eg policy on the idle bridge (top) and the oscillating bridge
(bottom). The power spectra are normalized to the highest peak above 2.2Hz,
comparing the estimated power, z-axis acceleration and the simulated height.
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Figure A.8.: PSD of the trot nos policy on the idle bridge (top) and the oscillating bridge
(bottom). The power spectra are normalized to the highest peak above 2.2Hz,
comparing the estimated power, z-axis acceleration and the simulated height.
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Figure A.9.: PSD of the bound eb policy on the idle bridge (top) and the oscillating bridge
(bottom). The power spectra are normalized to the highest peak above 2.2Hz,
comparing the estimated power, z-axis acceleration and the simulated height.
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Figure A.10.: PSD of the bound nos policy on the idle bridge (top) and the oscillating
bridge (bottom). The power spectra are normalized to the highest peak
above 2.2Hz, comparing the estimated power, z-axis acceleration and the
simulated height.
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Figure A.11.: PSD of the free eb policy on the idle bridge (top) and the oscillating bridge
(bottom). The power spectra are normalized to the highest peak above
2.2Hz, comparing the estimated power, z-axis acceleration and the simu-
lated height.
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Figure A.12.: PSD of the free eg policy on the idle bridge (top) and the oscillating bridge
(bottom). The power spectra are normalized to the highest peak above
2.2Hz, comparing the estimated power, z-axis acceleration and the simu-
lated height.
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Figure A.13.: PSD of the free nos policy on the idle bridge (top) and the oscillating bridge
(bottom). The power spectra are normalized to the highest peak above
2.2Hz, comparing the estimated power, z-axis acceleration and the simu-
lated height.
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