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Abstract— Legged robots, particularly quadrupeds, excel at
navigating rough terrains, yet their performance under vertical
ground perturbations, such as those from oscillating surfaces,
remains underexplored. This study introduces a novel approach
to enhance quadruped locomotion robustness by training the
Unitree Go2 robot on an oscillating bridge—a 13.24-meter steel-
and-concrete structure with a 2 Hz eigenfrequency designed to
perturb locomotion. Using Reinforcement Learning (RL) with
the Proximal Policy Optimization (PPO) algorithm in a MuJoCo
simulation, we trained 15 distinct locomotion policies, combin-
ing five gaits (trot, pace, bound, free, default) with three training
conditions: rigid bridge and two oscillating bridge setups with
differing height regulation strategies (relative to bridge surface
or ground). Domain randomization ensured zero-shot transfer
to the real-world bridge. Our results demonstrate that policies
trained on the oscillating bridge exhibit superior stability and
adaptability compared to those trained on rigid surfaces. Our
framework enables robust gait patterns even without prior
bridge exposure. These findings highlight the potential of
simulation-based RL to improve quadruped locomotion during
dynamic ground perturbations, offering insights for designing
robots capable of traversing vibrating environments.

I. INTRODUCTION

The development of legged robots, particularly

quadrupeds, has surged in popularity due to their ability

to traverse challenging terrains such as mountainsides

[1] and obstacle-rich environments [2], [3]. While

these approaches can handle rigid uneven surfaces,

their performance under active ground perturbations—

encompassing moving obstacles, and both horizontal and

vertical ground movements—remains under-examined [4].
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Fig. 1: We train the Unitree Go2 quadruped in simulation and

zero-shot transfer the learned policies to the oscillating real-

world HUMVIB bridge to investigate the impact of vertical

ground perturbations on locomotion robustness.

Although many robot designs and controllers have been

evaluated on terrain with different stiffness levels [5] or

friction coefficients [6], [7], vertical ground movements are

rarely studied, despite their relevance to real-world scenarios

such as disaster zones, industrial sites, or hazardous fields.

This gap, which also appears in human locomotion research

[8], arises partly from the challenge of replicating such

dynamic conditions in controlled environments—leaving

a critical blind spot in our understanding of robotic

adaptability to unstable surfaces.

Traditional robotic controllers often struggle with dynamic

perturbations, as they are typically designed for predictable

or rigid terrains. While some systems manage uneven ground

or obstacles effectively [2], [3], their reliance on pre-tuned

parameters limits resilience to sudden vertical shifts. In

human studies, vertical perturbations like varying ground

stiffness significantly alter performance. Human runners

adapt instantly to these perturbations by adjusting leg me-

chanics [9], [10], but the robotic equivalent remains under-

explored. The logistical challenge of testing such scenarios

has hindered progress, underscoring the need for both inno-

vative platforms and advanced control strategies to enhance

locomotion robustness in unpredictable settings.

In recent years, Deep Reinforcement Learning (DRL) has

become a popular approach for learning agile locomotion

controllers for legged robots [4]. On-policy DRL algorithms,

such as Proximal Policy Optimization (PPO) [11], can be

scaled up through many parallel simulated physics environ-

ments and big batch sizes to learn complex and dynamic
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Fig. 2: Schematic of the Unitree Go2 quadruped crossing the

13.24-meter long HUMVIB bridge.

locomotion behaviors for any legged robot form factor [12],

[6], [13]. There are many examples of learning highly agile

and robust locomotion for quadruped robots, such as fast-

paced running and turning [7], [14], dynamic jumping on

parkour courses [15], [16], [2], [17], climbing on ladders or

over tall obstacles [18], [3], hiking on mountainous terrain

[1] and even performing handstands, backflips and other

acrobatic maneuvers [2], [19]. To transfer the learned policies

to real-world robots, a wide range of domain randomization

is necessary to bridge the sim-to-real gap [20], [12], [6],

[15]. This includes randomizing the robot’s properties, such

as mass, inertia, and actuator dynamics, as well as the envi-

ronment’s properties, such as ground friction and roughness

of the terrain. To further improve the robustness and to teach

the policy to adapt to unforeseen external disturbances, the

training has to be augmented with adversarial perturbations

that can occur at any moment in a learning episode. However,

the majority of works only consider sensor noise and pushes

on the robot’s trunk as active disturbances [12], [18], [21],

while the effects of active ground perturbations, like vertical

ground movements, on the robot’s locomotion are widely

unexplored.

Understanding how Reinforcement Learning (RL) poli-

cies shape locomotion requires examining quadruped gaits,

which are defined by the coordination of leg movements.

Common quadruped gaits include the trot (diagonal legs

move together), pace (lateral legs move in unison), bound

(front and back legs pair for a leaping motion), and more

flexible styles like free (unconstrained coordination) [22].

The interplay between gait selection and dynamic ground

conditions, such as vertical oscillations, still have to be

fully understood in robotics. Investigating these gait types

under such perturbations is crucial for assessing how robots

maintain stability and robustness, complementing the focus

of RL on policy optimization with insights into physical

locomotion dynamics.

To tackle these challenges, we introduce a novel approach

using the Unitree Go2 quadruped (Unitree, Hangzhou,

China) on a purpose-built oscillating bridge (Figure 2). As

part of the HUMVIB project (HUMan-structure interaction

and gait adaptation during locomotion on VIBrating struc-

tures), this structure, with a span of 13.24m, composed

of two steel beams, and thirteen concrete slabs, features

an eigenfrequency of approximately 2Hz, making it highly

susceptible to locomotion-induced oscillations [23], [24].

Equipped with a 2.5m wide track and sensors like force

plates and accelerometers, the bridge provides a controlled

yet dynamic testbed for vertical perturbations. By training

the robot in simulation with state-of-the-art RL techniques

and evaluating its gaits in the real-world setting, our study

bridges the gap between rigid terrain research and the de-

mands of unstable environments, aiming to enhance robotic

locomotion stability and adaptability.

II. LEARNING LOCOMOTION ON AN

OSCILLATING BRIDGE

We propose learning locomotion policies for quadruped

robots on an oscillating bridge to investigate the impact

of vertical ground perturbations on the robot’s locomotion

and achieve higher robustness of the learned policies. We

first describe the RL training setup and the modeling of the

bridge in simulation, followed by the necessary components

for learning different gaits on the bridge, and the evaluation

setup in the real world.

A. Training setup

We trained the Unitree Go2 quadruped in simulation using

the CPU-based MuJoCo physics engine [25] with 48 parallel

environments for fast data collection. Like previous works

[12], [6], [13], we used the PPO algorithm [11] to learn

different locomotion policies. We built on the DRL library

RL-X [26] to implement and integrate the algorithm with the

simulation environment. The policies were trained to control

the robot at 50Hz with target joint positions, and to walk

with a given x-y-yaw-command velocity v̄ ∈ [−1.0, 1.0]3

with respect to the robot’s trunk. To enable zero-shot transfer

of the learned policies to the real robot, we applied a wide

range of domain randomization during training, including

randomizing the robot’s mass, inertia, Center of Mass (CoM)

(CoM), actuator dynamics and delays, the ground properties,

such as friction and compliance, sensor noise, and pushes

on the robot’s trunk. To investigate the robustness of the

policies through the impact of vertical ground perturbations

with the HUMVIB bridge, we trained the robot to walk on

either a rigid or harmonically oscillating ground with varying

eigenfrequencies and amplitudes.

B. Bridge model

The HUMVIB bridge is modeled in MuJoCo as a har-

monic oscillator emulating the dynamics of the real bridge.

We fixed the surface of the bridge at 1.05m over thr ground

—the peak of the oscillation—while the equilibrium position

can be adjusted to modify the oscillation amplitude. The stiff-

ness is tuned such that the bridge exhibits an eigenfrequency

of 2Hz with an oscillation amplitude of ±0.1m, similar to

the real bridge. During training, we varied the eigenfrequency



of the bridge between 0.75Hz and 7.5Hz and the amplitude

between zero and a constrained maximum value that ensures

the bridge’s acceleration remains below 9.81m/s2 given its

mass and adjusted stiffness. This constraint is necessary to

prevent the robot from experiencing too much acceleration

to become airborne.

C. Learning different gaits

We used the same reward terms, coefficients and cur-

riculum as in [13], and denoted the learned gait style as

default. To encourage the emergence of the different trot,

pace, and bound gaits, we modified the existing symmetry

reward term to penalize deviations from the characteristic

stance phases of the respective gait. Finally, removing the

symmetry constraints results in the gait style we refer to as

free.

Beyond the gait-specific reward terms, the environments

in which the policies are learned can significantly shape the

resulting gaits. For gaits learned on the oscillating bridge,

two different policies were trained by altering the base height

reward term, which promotes the robot to maintain a constant

height of 0.325m—the trunk height in the nominal standing

position—with respect to the surface it is walking on. In

one case, the robot is rewarded to maintain a constant height

relative to the oscillating bridge surface, called equidistant

bridge (eb), while in the other, it is encouraged to maintain

a constant height relative to the ground, called equidistant

ground (eg). When training on the rigid bridge, the base

height reward term only has a single interpretation as the

robot’s height with respect to the ground, called no oscil-

lation (nos). Overall, this approach results in 15 distinct

policies, derived from the five different gaits (trot, pace,

bound, free, default), each trained under three conditions,

one on the rigid bridge and two on the oscillating bridge

with the different height regulation strategies (nos, eb, eg)

respectively.

D. Real-world setup

The real world experiments took place on the HUMVIB

bridge. To validate the presented algorithm, the structure was

equipped with six Delsys Trigno Wireless sensors (Delsys,

Natick, US) which were used as an IMU to track the bridges

acceleration in different locations. For each combination of

gait style and training setting, the robot had to complete eight

passes over the pre-oscillated and the idle bridge (Figure 1)

respectively. The command velocity v̄ was controlled by a

human operator. This ensured a constant speed of 0.5m/s
in the x-direction and the operator could adjust the y- and

yaw-velocity to keep the robot on track in the case of lateral

drift.

III. RESULTS

We first evaluated the learning dynamics of the different

gaits and training conditions. To ensure a fair comparison,

we measured the performance of the policies by calculating

the episode return without the gait-specific reward terms.

Figure 3 shows that the free and default gaits are the easiest
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Fig. 3: Top: Episode return for the different gaits (left) and

training conditions (right) during training. Bottom: Episode

return over the command velocity on the oscillating bridge

for the different gaits (left) and training conditions (right) of

the final policies during evaluation.

to learn, as they impose no or fewer restrictions on the

policy compared to the trot, pace, and bound gaits that rely

on strong gait-specific reward terms to enforce their desired

footfall patterns. We show all of the learned footfall patterns

in Figure 4. Of the three gait styles, the trot gait is visually

and reward-wise the closest to the default gait, while the pace

and bound gaits are more distinct and achieve significantly

lower returns. This indicates that these policies are worse at

tracking the command velocity and more susceptible to dis-

turbances from the training environment. When comparing

the training conditions, the nos policy performs best, as it

is trained on the rigid surface and is less disturbed by the

oscillations, while the eb and eg policy perform similarly to

each other.

Next, we evaluated the performance of the final policies

on the oscillating bridge with varying command velocities.

Figure 3 shows that the free and default gaits perform

best with smaller command velocities, where most of the

probability mass for the sampled commands is located. The

trot gait performs well at higher command velocities, and

even outperforms the free and default gaits. The pace and

bound gaits perform worse than the other gaits in most cases.

When comparing the training conditions, the nos policy

performs significantly worse on the oscillating bridge than

the eb and eg policies, highlighting the importance of training

locomotion policies with vertical ground perturbations to

achieve higher robustness in such environments.

To investigate how the different policies cope with the

oscillating bridge, we evaluated the movement of the robot’s

CoM compared to the bridge’s surface. Figure 5 shows

the x, y and z components of the CoM movement of the
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Fig. 4: Footfall pattern of the different gait styles on the rigid

bridge with a target speed vx = 0.5m/s. The feet of the robot

are denoted with front left (FL), front right (FR), rear left

(RL), and rear right (RR). In our study, we omit the pronk

gait, as we were unable to train a policy that sufficiently

learned the desired footfall pattern, due to the agent resorting

to a more stable trot-like gait during learning.

robot with a fixed velocity command vx = 0.5m/s for the

default gait style under the three training conditions. When

the bridge is oscillating with a frequency of 2.0Hz and an

amplitude ±0.1m, all policies clearly show adaptation in

their z-movement to the bridge’s oscillation with a small

phase shift of around 0.3π, due to the robot’s inertia. The nos

policy, however, struggles to keep the robot’s CoM constant,

exhibits more chaotic behavior, and struggles to walk at the

commanded velocity, progressing slower over the bridge than

the eb and eg policies. Interestingly, the eb and eg policies

show a lateral drift in the y-direction, when the bridge is not

oscillating, which is not present in the nos policy, as it was

trained in this scenario. On the oscillating bridge, the eb and

eg policies are able to move mostly straight ahead, while

now the nos policy shows a strong drift in the y-direction.

This indicates that the eb and eg policies are more robust to

the oscillating bridge but are slightly worse adapted to the

non-oscillating surface. Additionally, we provide snapshots

of the simulated gait cycles on the oscillating bridge for two

policies, bound nos and default eb, in Figure 6.

In the real-world validation experiments, the different

policies were evaluated on the HUMVIB structure, with the

exception of the pace gait. This exclusion was due to the

instability of the pace policies, increasing the risk of the

robot falling off the structure and potentially damaging itself.

All other policies could be evaluated and showed a decrease

in movement speed while passing over the middle section of

the structure, where the oscillation were highest. The eb an
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Fig. 5: Movement of the robot’s CoM with a target speed

vx = 0.5m/s for the default gait pattern under three

conditions: no oscillation (nos), equidistant bridge (eb), and

equidistant ground (eg). Subfigures on the first column show

x, y, and z directions of robot’s CoM on an idle bridge,

while the subfigures on the second column show the same

quantities, but on an oscillating bridge.

eg policies showed a more stable performance with regard

to vertical and lateral movements of the CoM. Interestingly,

although the bound gait performed poor in simulation, it was

capable of stable locomotion on the oscillating bridge in the

real world, hinting at inherent robustness and transferability

of the gait to the real system. While the bridge was pre-

oscillated by human operators, the trot policies were able

to excite the structure, since their step frequency of around

4.0Hz fell close to the 2nd harmonic of the structure.

To assess the interaction between the robot and the bridge,

we measured the mean forces in the feet of the robot.

When oscillating of the bridge, the nos policies showed the

highest forces, while the eb policies recorded the lowest

ones (Figure 7), indicating the learned adaptation to the

oscillations of the real bridge when trained with the simulated

model. Considering the gait styles, trot and default recorded

similar forces, while the free policies produced more force,

with bound topping the scale (Figure 7), due to its inherent

leaping motion.



Fig. 6: Snapshots of simulated gait cycles on the oscillating bridge for bound nos (left) and default eb (right). Each set is

arranged left to right, row-wise, spanning one full oscillation cycle of the bridge.
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Fig. 7: Means and standard deviations of the force readouts

of the foot sensors of the robot on the oscillating HUMVIB

bridge in the real world.

IV. DISCUSSION

During the learning phase, the free gait was the easiest to

learn for the RL agents. This is expected, since it imposes no

restrictions on the footfall patterns compared to the gait styles

found in quadrupeds in nature. Also, the worse performance

of the bound and pace policies is expected, since they include

relatively longer contact times, which were penalized by the

learner, and are inherently less stable compared to the trot

and default gaits. While this study evaluated the performance

of 15 different policies in the given scenario, each policy was

only trained with one seed, limiting the statistical power. This

could also be part of the reason, why the pronk policy re-

versed to a trot behavior during training. Further optimization

of the policies is required to provide a exhaustive comparison

of the different gait styles. Since currently the real-world

bridge can only exhibit an eigenfrequency of 2.0Hz or be

rigid, further frequencies could not be tested in our study.

When looking at the different height regulation strategies, the

nos policies superiority during learning is a product of the

simpler training environment, as the robot is not disturbed by

oscillations of the bridge. The performance differences of the

policies with respect to the CoM movement in simulation can

also be explained by their relative training scenarios. Since

the eb and eg policies trained on oscillating surfaces, they

had a harder time to adapt to the rigid bridge. However, the

oscillation seems to impose so much of a disturbance that the

drift of the nos policy becomes excessive to a point where

it would fall off the bridge after less than 10 s.
While most policies cope well with the setting they

used for learning, we can observe that the current black-

box modelling approach does not generalize perfectly to

situations that have not been learned. A mixed black-box

and white-box model approach could be used to overcome

this limitation. White-box models are structural models that

implement physiological details about the sensorimotor sys-

tem (e.g., neural circutries, muscle properties [27], sensor-

mechanical couplings [28]). This combination of structure

models and learning may help to better understand the

versatility of humans and animals who are able to traverse

over moving grounds benefitting of the underlying neural

controller dynamics [29].

Future work will extend our research to explore the

combination of ground perturbations with moving obstacles,

as well as the integration of high-level planning systems to

navigate complex multi-layered terrains with dynamic and

adversarial perturbations.

Lastly, while no quadrupedal animals have been tested

on the HUMVIB bridge yet, future research is planned to

understand the biological coping strategies in this scenario,

covering the full picture of quadrupedal gaits during vertical

ground oscillations [30].

V. CONCLUSION

This study demonstrates that locomotion policies trained

in simulation on an oscillating surface significantly outper-

form those developed on rigid terrain when tested on the

Unitree Go2 quadruped navigating the HUMVIB bridge. By

employing RL with the PPO algorithm across 15 distinct

policies—spanning five gaits and three training conditions—

we found that exposure to vertical ground perturbations

during training enhances stability and adaptability, a result

validated through zero-shot transfer to the physical bridge.

Notably, this work marks the first effort to both simulate and

experimentally evaluate a robot’s response to such dynamic



bridge-induced disturbances, revealing robust gait patterns

that withstand real-world instabilities without prior exposure

to the testbed. Our findings underscore the advantage of

incorporating dynamic perturbations into simulation environ-

ments, advancing the understanding of quadruped locomo-

tion under challenging conditions and paving the way for

designing more robust robots capable of operating effectively

in dynamic and unpredictable environments.
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