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Figure 1: One Policy, Two Worlds, Many Robots. We study embodiment scaling laws by training a
single policy on ∼1,000 procedurally generated “blueprint” embodiments in simulation. Our policy
zero-shot transfers to real-world embodiments, including modified joint constraints (circled in red).

Abstract:

Developing generalist agents that can operate across diverse tasks, environments,

and physical embodiments is a grand challenge in robotics and artificial intelli-

gence. In this work, we focus on the axis of embodiment and investigate embodi-

ment scaling laws—the hypothesis that increasing the number of training embod-

iments improves generalization to unseen ones. Using robot locomotion as a test

bed, we procedurally generate a dataset of ∼1,000 varied embodiments, spanning

humanoids, quadrupeds, and hexapods, and train generalist policies capable of

handling diverse observation and action spaces on random subsets. We find that

increasing the number of training embodiments improves generalization to unseen

ones, and scaling embodiments is more effective in enabling embodiment-level

generalization than scaling data on small, fixed sets of embodiments. Notably, our

best policy, trained on the full dataset, zero-shot transfers to novel embodiments

in the real world, such as Unitree Go2 and H1. These results represent a step to-

ward general embodied intelligence, with potential relevance to adaptive control

for configurable robots, co-design of morphology and control, and beyond.

Keywords: Cross-Embodiment Learning, Robot Locomotion, Robotic Founda-

tion Models, Reinforcement Learning, Behavior Cloning
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1 Introduction

Over two millennia ago, Heraclitus remarked that no man ever steps in the same river twice. Today,

one might say that no embodied agent acts in the same body twice. In a broad sense, the human

embodiment evolves in subtle ways, e.g., through injury, aging, or tool use [1–3], which alter our

sensorimotor coordination. In robotic systems, similar variability in embodiment can arise due to

manufacturing differences, hardware upgrades, or mass deployment of heterogeneous robots. How

can we learn policies that can zero-shot transfer across a large number of distinct embodiments?

Scaling has been a key driver of progress in deep learning, which can occur along multiple dimen-

sions. Scaling dataset size and model size has improved generalization in vision [4–11] and lan-

guage [12–21]. In robotics, scaling the number of tasks [22–29] and environments [25, 27, 28, 30–

36] enable cross-task and cross-environment generalization. In this work, we explore a distinct

and underexplored dimension of scaling: robot embodiment, the physical structure of robots. We

hypothesize that scaling the number of training embodiments leads to better generalization to un-

seen embodiments, as the policies learn to capture shared control strategies across different physical

structures. We refer to this hypothesized relationship as embodiment scaling laws.

Studying this hypothesis requires addressing several open challenges. First, we need policy archi-

tectures that (i) can be conditioned on embodiment structures, (ii) handle varied observation and

action spaces, (iii) scale to a large number of distinct embodiments, and (iv) have the right induc-

tive biases to discover generalizable motion patterns for zero-shot transfer to novel embodiments.

Second, we need a large dataset comprising diverse robot morphologies. We postulate that an order

of magnitude of 103 is a reasonable starting point to study the relationship between the number of

training embodiments and generalization performance on novel ones. However, most prior work on

multi-embodiment policy training has not systematically investigated the relationship between gen-

eralization performance and the number of training embodiments at scale, likely due to the limited

size of available embodiment collections, often restricted to ∼102 in simulation [37] or ∼101 in the

real world [24, 30, 31, 38]. Consequently, the scale, degree of generalization, and specific scaling

analysis presented in this work remain largely unexplored.

To this end, we develop a framework for studying embodiment scaling laws using robot locomo-

tion as a testbed. We first use a procedural generation algorithm to create GENBOT-1K, a large-

scale dataset of ∼1,000 blueprint robot descriptions in the URDF format, including humanoids,

quadrupeds, and hexapods. To handle varied state and action spaces, we extend Unified Robot

Morphology Architecture (URMA) [39] into a wider multi-head attention architecture. We adopt

a two-stage policy learning framework [40, 41]: (i) training single-embodiment expert policies us-

ing Reinforcement Learning (RL), and (ii) distilling these experts into a single embodiment-aware

URMA policy via behavior cloning. We vary the number of embodiments used in distillation to

study the effect of embodiment scaling on embodiment-level generalization.

Overall, we present a large-scale empirical study of embodiment scaling laws across ∼1,000 robot

embodiments. We design a general reward formulation, training curriculum, and domain randomiza-

tion that enable scalable training of embodiment-specific RL experts without embodiment-specific

tuning, accumulating a total of 2 trillion simulation steps. We observe a positive correlation between

the number of training embodiments and generalization performance on held-out test embodiments.

The best policy, trained on 2 billion expert demonstration steps across the full set of training em-

bodiments, achieves zero-shot transfer to real-world robots, including the Unitree Go2 with varied

kinematic constraints and the H1 humanoid. These findings provide preliminary empirical evidence

for embodiment scaling laws and highlight their potential for enabling generalist robot agents.

2 Related Work

Cross-embodiment generalization. One goal of cross-embodiment learning is to enable control

policies to generalize across robot embodiments without retraining. Prior efforts often focus on

transferring policies between a small number of robots by aligning dynamics, learning shared em-
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beddings [42, 43], or extracting transferable skills [44, 45]. However, these methods are only able

to transfer to a single or a few target embodiments. Related work about scalable network archi-

tectures, such as graph neural networks [46, 47] or Transformers [48, 49], scale to more complex

embodiments by conditioning on embodiment-specific information, but these works mostly use un-

realistic and simplified robots that are not suitable for real-world transfer. More recent approaches

can be trained on a larger number of realistic robot embodiments, but they often rely on existing low-

level controllers [50, 51], embodiment-specific decoders [52], other action abstractions [53, 54], or

assume a fixed observation and action space [55], limiting their generalization capabilities to pre-

defined morphological structures. URMA [39] solves this issue by introducing a unified joint-level

control architecture for arbitrary robot morphologies, but is validated only on 16 robots without

studying scaling effects. Our work demonstrates broader cross-embodiment generalization than

prior works by training a single policy on ∼1,000 embodiments, achieving zero-shot transfer to

unseen embodiments in both simulation and the real world.

Robot locomotion. In recent years, Deep Reinforcement Learning (DRL) has been applied to sin-

gle embodiment robot locomotion to great success. The combination of scalable on-policy RL

algorithms, such as Proximal Policy Optimization (PPO) [56], with fast and highly parallelizable

simulators has enabled the training of powerful locomotion policies for quadruped [57–63] and hu-

manoid robots [64–68]. Techniques such as student-teacher learning [69, 70], curriculum learning

[71–73], and domain randomization [71, 74, 75] have enabled zero-shot sim-to-real transfer of these

policies. Less data-hungry methods for learning directly on real robots, utilizing model-based or off-

policy RL algorithms [76–79], and non-learning methods, such as Model Predictive Control (MPC)

[80, 81], have also been proposed for legged locomotion, but generally trade their efficiency for

worse performance with less robust gaits on challenging terrain or under strong perturbations.

Robot embodiment generation. Prior research in robot embodiment generation has pursued several

directions. One prominent direction focuses on optimizing robot designs for specific tasks, where

procedural and learning-based techniques generate embodiments tailored for enhanced performance

in tasks such as locomotion [82–84] or manipulation [85]. Closer to our objectives is the use of em-

bodiment generation to develop generalizable robot policies. Existing works have explored methods

based on simplified kinematic trees [49, 86], randomization within a fixed morphology [55], diverse

sensor configurations [54], or varied hand structures [87]. However, these approaches are generally

limited to a single robot class or topological template. In contrast, we introduce a comprehensive

procedural generation framework that spans multiple morphological classes, including quadrupeds,

hexapods, and humanoids, while varying topology, geometry, and kinematics for each of them. This

enables a large-scale systematic study of embodiment scaling in locomotion.

3 Methodology

Generalizable cross-embodiment robot learning aims to train a control policy that can control di-

verse seen and unseen robot embodiments to solve a common task. Formally, let E denote a set of

embodiments sampled from PE , where each embodiment e ∈ E is defined as a triplet e = ïG, T ,Kð,
where T specifies the joint topology (i.e., number and connectivity), G denotes link geometry (e.g.,

shape and size), and K describes additional kinematic properties (e.g., joint types and range of mo-

tion). The control problem of each embodiment e is defined by a Markov Decision Process (MDP)

Me = ïSe,Ae, Pe, Re, Hð, where Se, Ae, and Pe denote the state space, action space, and transi-

tion dynamics; Re is the reward function; and H is the episode horizon. At any particular time step

t, a policy predicts an action at ∈ Ae, conditioned on the robot state st ∈ Se and the embodiment

descriptor φ(e). In the specific case of robot locomotion, the policy is additionally conditioned on a

x-y-yaw velocity command vt ∈ R
3 with respect to the trunk frame, i.e., at ∼ π(st, φ(e), vt).

During training, we optimize the policy to maximize the expected cumulative reward across training

embodiments Etrain ¢ E with trajectories τ = {(s0, a0), . . . , (sH , aH)} sampled from Me:

π∗
train = argmax

π
Ee∈Etrain

Eτ∼π

[

H
∑

t=0

Re(st, vt, at)

]

. (1)
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Figure 2: Overview of our approach for studying embodiment scaling laws. We procedurally
generate GENBOT-1K, a dataset of ∼1000 diverse robot embodiments with structured variations in
topology, geometry, and kinematics. We train a single cross-embodiment policy using the URMA
architecture, which handles varying observation and action spaces via attention-based joint encod-
ing. We systematically vary the number of training embodiments to study how generalization scales
with embodiment quantity. The policy trained on the full training dataset transfers zero-shot to novel
simulated robots and real-world hardware with different morphologies.

The generalization performance is evaluated on a held-out set of embodiments Etest = E \ Etrain:

Jtest(π
∗
train) = Ee∈Etest

Eτ∼π∗

train

[

H
∑

t=0

Re(st, vt, at)

]

. (2)

We note that both learning and generalizing across embodiments present significant challenges. Dif-

fering observation and action spaces require policies to handle variable-sized and potentially incon-

sistent inputs and outputs. Variations in kinematic constraints, self-collision profiles, and contact

dynamics introduce embodiment-specific behaviors that complicate the optimization landscape of

policy learning. Even further, generalizing to unseen embodiments demands that the policy captures

meaningful shared control features that can be applied to novel physical embodiments.

Scaling hypothesis. We hypothesize that generalization improves with the number of training em-

bodiments, i.e., larger |Etrain| leads to higher Jtest. Intuitively, training on more diverse embodiments

encourages the policy to extract structural features that transfer to novel robots. For instance, despite

differences in leg length or joint placement, many embodiments share similar locomotion dynamics

and constraints. Discovering a scaling trend would provide empirical support for an embodiment

scaling law and offer actionable insights for building general-purpose control policies.

Empirical setup. To study the hypothesis, we fix a constant test set by randomly holding out 20% of

the generated embodiments. The remaining 80% serve as the pool for constructing training subsets

E
(i)
train ¢ Etrain at varying proportions i ∈ (0, 1]. For each subset, we train a separate policy π

(i)∗
train and

evaluate it on the fixed Etest. This setup enables a systematic analysis of generalization performance

Jtest(π
(i)∗
train ) as a function of training set size, probing for evidence of an embodiment scaling law.

Next, we describe how we generate diverse embodiments (Section 3.1), construct a policy to handle

varying observation and action spaces (Section 3.2), and train it on many embodiments (Section 3.3).

3.1 Embodiment Generation

We adopt a procedural generation pipeline to produce diverse robot embodiments spanning three

commonly used morphology classes: humanoid [39, 65, 88–92], quadruped [39, 53, 63, 71, 73, 93–

97], and hexapod [39, 98–104]. Our generated robots follow common design patterns using realistic

base components, such as link shapes, dimensions, and motor properties, but are procedurally com-

posed into novel embodiments by varying their parameters. Geometric variation is introduced by

scaling individual links and overall body size. Topological variation is achieved by changing the

number of knee joints per leg within each morphology class. We also vary joint limits to implement
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Figure 3: Empirical distributions of embodiment variations in GENBOT-1K. The statistics re-
flect geometric (a), topological (b,c), and kinematic (d) variability of embodiments in our dataset.

kinematic variations. In total, we generate 1,012 distinct robots, including 348 humanoids, 332

quadrupeds, and 332 hexapods, to form the GENBOT-1K dataset (Figure 1). Our resulting dataset

is diverse in various aspects, as reflected in post-generation statistics (Figure 3). More details about

the generation process are provided in Appendix B.

3.2 Cross-Embodiment Policy Architecture

To train a policy that can control ∼1000 different embodiments with different state and action spaces,

we use URMA, an embodiment-aware architecture for robots with arbitrary numbers of joints [39].

URMA handles the differently sized partially observable states (observations) o of different embod-

iments by splitting them into fixed-length general observations og and varying-length joint-specific

observations oj , depending on the number of joints j(e). The embodiment descriptors φ(e) are used

to generate joint description vectors dj , which can uniquely describe every joint of the embodiment

and are made up of the fixed dynamics and kinematics properties of the joint and its underlying

motor. The joint-specific observations are processed by an attention encoder and are summed up

into the joint latent vector

z̄joints =
∑

j∈J

zj , zj =
exp (fφ(dj)/τ)

∑

Ld
exp (fφ(dj)/τ)

fψ(oj), (3)

where fφ (with latent dimension Ld) and fψ are the encoders for the joint descriptions and joint

observations, respectively, and τ is the learnable temperature parameter of the softmax. Intuitively,

the attention mechanism fuses joint observations based on their descriptions so that z̄joints has global

information about the embodiment. The encoded joint latent vector is then concatenated with the

general observations and processed by a core network to generate an action latent vector z̄action =
hθ(og, z̄joints). To handle the differently sized action spaces, URMA concatenates the action latent

vector with each encoded joint description vector in batch to decode a single action for each joint:

aj = µν(gω(dj), z̄action, zj), (4)

where gω is the action encoder for the joint descriptions, µν is the final action decoder. In our work,

we incorporate multi-head attention into URMA, enabling the policy to attend to different joint-level

features in parallel and better capture complex inter-joint dependencies (Appendix C.2).

3.3 Two-Stage Policy Learning

To scale cross-embodiment policy learning to a large number of robots, we adopt a two-stage

paradigm. First, we train embodiment-specific expert policies using standard RL. Then, we col-

lect demonstration data from these experts and train a single student policy via imitation learning,

conditioned on embodiment descriptors. This approach allows learning across ∼1000 robots while

maintaining tractable memory usage and stable training dynamics.

Expert training. We develop a unified RL locomotion training pipeline applicable to all em-

bodiments with minimal tuning. Key components include extensive domain randomization,

performance-based curriculum learning, and regularization terms that encourage stable and natu-

ral locomotion (e.g., penalizing jittering movements and excessive ground contact). All robots in

one morphology class share one set of hyperparameters for scalable training.

Training robust policies for ∼1,000 robot embodiments is computationally demanding. We use

NVIDIA Isaac Lab [105], a GPU-accelerated simulation framework, to train single-embodiment
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Figure 4: Results on embodiment scaling. We evaluate generalization performance as a function
of the number of training embodiments. (a) In-class study: policies are trained and tested within
the same morphology class (humanoid, quadruped, or hexapod). (b) Cross-class study: We train
policies on the full training set (green) and compare performance against policies trained on only
the individual classes, while all policies are evaluated on the test set containing all classes. The pro-
portion of training embodiments (i ∈ {0.05, 0.2, 0.4, 0.6, 0.8, 1.0}) is denoted in the x-axis. While
the underlying reward function is the same, the reward scales differ across classes due to inherent
differences in the embodiments (e.g., humanoids are less stable than quadrupeds) and unnormalized
reward formulations (e.g., humanoids experience larger ground contact forces).

policies across 4096 parallel environments with PPO [56]. Training all experts takes approximately

5 days on 160 NVIDIA RTX 4090/3090 GPUs, totaling over 2 trillion simulation steps. Full details

on the training process are provided in Appendix A.

Student distillation. Given expert policies {πe}e∈Etrain
, we collect a demonstration dataset by

rolling out each policy for 600 timesteps in 4,096 parallel environments, totaling 2 billion samples

across all embodiments. We then train URMA by minimizing the Mean Squared Error (MSE):

LBC = E(st,e,at)∼D

[

∥π(st, φ(e))− at∥
2
]

, (5)

where D is the expert demonstration dataset. The student policy conditions on the embodiment

descriptor φ(e), enabling it to generalize across the generated embodiments with different geometry,

topology, and kinematics. Training the model on the full demonstration dataset takes one week using

a NVIDIA H100 GPU. More details about the distillation process can be found in Appendix C.

4 Experiments

In this section, we conduct a large-scale empirical study to investigate the scaling behavior of cross-

embodiment learning. Our experiments are designed to answer the following key research questions:

Q1. How does the generalization performance of the cross-embodiment policy scale with the

number of training embodiments? (Sec. 4.1)

Q2. Can the learned policy generalize zero-shot to unseen embodiments, including real-world

robots, and handle varied kinematic constraints? (Sec. 4.2)

Q3. Does the policy network learn meaningful, structured representations of the space of robot

embodiments and morphologies through cross-embodiment training? (Sec. 4.3)

4.1 Studying Embodiment Scaling Laws

We train and evaluate our policies under multiple setups and show the results in Figure 4. We analyze

the generalization patterns through the three aspects below.

Scaling within each embodiment class. We conduct training and evaluation separately for each

morphology class (humanoid, quadruped, and hexapod) in GENBOT-1K, resulting in curves C1–C3.

For each morphology class, we observe a clear scaling trend: increasing the number of training

embodiments from 0.05 to 1.0 can double the cumulative reward. The rate of convergence varies

by class: for quadrupeds and hexapods, performance saturates around 100 training embodiments,

while for humanoids, it continues to improve steadily with more training data, likely due to greater

instability and control difficulty. This suggests that more challenging embodiments may benefit

more from larger-scale embodiment scaling.
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Figure 5: Zero-shot generalization to unseen real-world robots. Our URMA policy, trained on
817 diverse simulated embodiments, successfully transfers zero-shot to control the Unitree Go2
quadruped and Unitree H1 humanoid in the real world. a, b: The policy can perform forward and
backward locomotion on cobblestone and grass terrain with the Go2. c, d, e, f: We test the policy’s
adaptation to kinematic constraints by artificially restricted the joint limits on the right rear knee of
the Go2 by 20%. The policy effectively compensates for the limited range of motion, resulting in a
stable limping gait on gravel (d) and indoors (f), compared to the unrestricted gait (c, e). g, h: Zero-
shot transfer on the H1 works well in a lab environment, showing decent forward and backward
locomotion. i: Walking side-to-side with H1 is slower as in simulation but stable in the real world.

Scaling across embodiment classes. We train on the full combined dataset of all three classes and

evaluate on a unified test set (C4). The resulting curve begins at a reward of 18 and rises consistently

to nearly 30, demonstrating that scaling across diverse embodiments enables broader generalization.

We further evaluate the policies trained on individual morphology classes (corresponding to C1–C3)

on the combined test set, obtaining (C5–C7). Since each of these models has only seen a single

morphology class during training, their performance on the mixed test set is limited. In contrast,

the best point on C4 achieves 2–5× higher average reward than C5–C7, demonstrating that training

across diverse morphology classes enables substantially broader generalization.

Comparison with pure data scaling. To disentangle the effects of embodiment diversity from data

quantity, we collect a dataset using only 5% of the training embodiments and vary the number of

trajectories per embodiment for distillation (C8). We find that performance quickly saturates: the

policy nearly reaches its peak at 0.2 data scale (4× data as 0.05), with negligible gains beyond that.

This highlights that, if the goal is to achieve broad embodiment-level generalization, it is ineffective

to only increase data volume on a small set of embodiments; embodiment scaling is essential.

4.2 Real-World Generalization Test

To validate real-world transfer capabilities, we conducted zero-shot deployments of our best-

performing policy, trained on the full training set of 817 simulated embodiments, on two real robots:

the Unitree Go2 quadruped and the Unitree H1 humanoid, neither of which was included in the

training set Etrain, although robots with similar kinematic structures were present.
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Figure 6: Visualization of the embodiment latent space. t-SNE projection of the action latent
vectors on the complete GENBOT-1K dataset from the URMA policy trained on the full training set.
Points are colored by morphology class. The clear clustering based on morphology class, and finer
sub-structures related to the number of knee joints or kinematic and geometric properties, suggest
that the policy learns a meaningful and structured representation of diverse embodiments, capturing
functional similarities that help during cross-embodiment learning and enable generalization.

Figure 5 shows the policy successfully generalizing to the two real robots without any fine-tuning or

modifications, using only the URDF of the respective robot to generate the embodiment descriptor

φ(e). The Go2 demonstrated robust and stable walking gaits across diverse terrains such as grass,

cobblestone, and gravel (a-c). Similarly, the H1 was able to maintain stable locomotion, tracking

the desired velocity commands while walking on flat ground with rubber mats in a lab environment

(g-i). While the transfer worked for both robots, the policy transferred worse to the H1 compared to

the Go2, highlighting the need for potentially even more diverse humanoid robots in the training set.

To probe the policy’s ability to handle kinematic variations in the real world, we artificially restricted

the joint limits of the knee joints of the Go2 to 20% of their nominal limits by restricting the PD

controller on the robot and pushing towards the limits with high gains when the joint angles exceed

the limits. Figure 5 (d, f) shows that the policy was able to transfer the adaptations it learned in

simulation as it keeps the restricted rear right leg further back and maintains a stable limping gait.

4.3 Understanding Learned Embodiment Representations

To gain insight into the internal representations learned by our policy, we performed a t-distributed

Stochastic Neighbor Embedding (t-SNE) [106] analysis on the action latent vectors z̄action produced

by URMA for each embodiment. Figure 6 shows that the learned representations naturally cluster

according to the robot morphology, clearly distinguishing humanoids, quadrupeds, and hexapods.

For all three morphologies, large clusters around the number of knee joints separate most of the

latent space, showing the impact of additional joints on the policy. Many finer sub-clusters emerge

based on different geometric and kinematic variations for a given number of knee joints. This

structured representation indicates that our policy captures meaningful embodiment-specific features

that generalize, mostly, within the morphological classes, whereas patterns across classes are less

clear. Additional visualizations using PCA [107] and UMAP [108] can be found in Appendix E.

5 Conclusion

We present preliminary empirical evidence for embodiment scaling laws through a large-scale study

on robot locomotion, using a procedurally generated dataset GENBOT-1K. Our results show that

increasing the number of training embodiments improves generalization to unseen ones, with more

challenging morphologies benefiting from continued scaling. Scaling across embodiment classes

further enhances generalization, while simply increasing data volume on a fixed set of robots yields

diminishing returns. We also demonstrate successful sim-to-real transfer of the learned cross-

embodiment policy. As robotic platforms grow more diverse, the ability to learn from and generalize

across embodiments becomes increasingly critical. We hope this work offers a step toward scalable,

general-purpose robotic agents that generalizes across tasks, environments, and embodiments.
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Limitations

While our work provides empirical evidence for embodiment scaling laws in robot learning, several

limitations remain.

First, regarding task setup, our study focuses exclusively on locomotion on flat terrain. Extend-

ing this analysis to more complex tasks, such as manipulation or visual navigation in unstructured

environments, is an interesting exploration for future work.

Second, while our procedural generation pipeline produces a wide range of embodiments varying

in topology, geometry, and kinematics, it does not exhaustively cover the design space. Several

factors, including body mass distribution, joint damping, and actuation type, are held fixed within

a morphology class. Expanding the generation space to include such parameters could yield more

robust generalization and offer further insights into the scaling behavior.

Finally, real-world experiments are limited to two physical robot platforms. While we have modi-

fied their joint limits to create more kinematic variations, and existing results already demonstrated

promising zero-shot transferability, broader validation on more diverse physical platforms, such as

modular or reconfigurable robots, would provide stronger support for the generality of our findings.

Despite these limitations, we believe our study represents an important step toward understanding

embodiment-level generalization and highlights the key role of embodiment scaling in the pursuit of

generalizable robot learning.
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Appendix

A Expert Training

A.1 Observation and Action Space

The observation space of the expert policies includes the joint angles, joint velocities, previous ac-

tions, trunk angular velocities, gravity vector and the command velocities. The observation space of

the critics includes the same observations as for the policies, but also includes privileged informa-

tion: the trunk linear velocity, trunk height over the ground, feet contact states and feet air times.

The policies control the robots at 50 Hz with a PD controller, where the target joint angles are

generated by scaling the action of the policy and adding it to the nominal joint configuration of the

robot: qtarget = qnominal+σ ·a. We define the nominal joint configuration as a standing pose of a robot

and use the same configuration for all robots of the same morphology class (see Appendix B.3). For

the action scaling factor σ, we use 0.3 for quadrupeds and hexapods, and 0.75 for humanoids. For

the PD controller, we use Kp = 20 and Kd = 0.5 for quadrupeds, Kp = 25 and Kd = 0.5 for

hexapods, and Kp = 60 and Kd = 2.0 for humanoids.

A.2 Domain Randomization

To enable sim-to-real transfer of the trained policies, we add strong domain randomization during

training. We use a performance-based curriculum learning approach, where the domain randomiza-

tion ranges are increased from 0 (or their mean if not zero-centered) to the final values in Table 1 over

the course of training. This curriculum approach allows the policy to learn basic locomotion first

in the simplest possible environment before adapting to wider variations. We define a curriculum

coefficient from 0 to 1, which is multiplied with the domain randomization ranges (and the reward

penalty coefficients). The coefficient of an environment is increased by 0.01 if the policy completed

the episode without falling, and the average tracking error of the target x,y velocity is below 0.4 m/s,

and the coefficient is reduced by 0.01 otherwise.

Every embodiment in GENBOT-1K uses the same domain randomization ranges. The "starting"

values (naming scheme in Table 1) are sampled uniformly at the start of every episode to randomize

the starting state of the robot. The "noise" values are sampled uniformly for every simulation step

to add noise to the observations. The values of every other parameter are sampled uniformly every

simulation step with a probability of 0.002 (on average every 500 steps / every 10 seconds). Pushes

are applied as linear velocities to the trunk of the robot.
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Table 1: Domain randomization configuration. Domain randomization values and ranges for
every randomized parameter during the expert RL training. The values in the table are the maximum
values and ranges in the curriculum when reaching the final curriculum coefficient of 1.

Parameter Value

Max action delay 1

Chance for action delay 0.05

Min & max motor strength (0.5, 1.5)

Min & max P gain factor (0.5, 1.5)

Min & max D gain factor (0.5, 1.5)

Min & max joint position offset (-0.05, 0.05)

Min & max starting orientation factor (-0.0625, 0.0625)

Min & max starting joint position factor (-0.5, 0.5)

Min & max starting joint velocity factor (-0.5, 0.5)

Min & max starting linear velocity (-0.5, 0.5)

Min & max starting angular velocity (-0.5, 0.5)

Joint position noise 0.01

Joint velocity noise 1.5

Angular velocity noise 0.2

Gravity velocity noise 0.05

Joint observation dropout chance 0.05

Min & max static friction (0.05, 2.0)

Min & max dynamic friction (0.05, 1.5)

Min & max restitution (0.0, 1.0)

Min & max added mass (-2.0, 2.0)

Min & max gravity (-8.81, 10.81)

Min & max joint friction (0.0, 0.01)

Min & max joint armature (0.0, 0.01)

Min & max pushes in x (-1.0, 1.0)

Min & max pushes in y (-1.0, 1.0)

Min & max pushes in z (-1.0, 1.0)
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A.3 Reward Function

Table 2 contains all reward terms and coefficients of the reward function for the expert training of

all robots in the GENBOT-1K dataset. Joint-based (T6-T12) and feet-based (T14-T17) reward terms

are calculated as the mean over every joint and foot, respectively, to account for the varying amounts

of joints and feet of the generated embodiments. The coefficients of all penalties are attached to the

curriculum coefficient (see Appendix A.2) and thus linearly increase from 0 to the final values in

Table 2 over the course of training. This makes the training process less sensitive to the precise

values of the coefficients.

Table 2: Reward terms for the RL training of embodiment-specific experts. All reward terms
and the corresponding coefficients that compose the reward function for the expert training. While
all the coefficients work for all embodiments, for the final experiments, we tweaked four coefficients
for the humanoid embodiments to improve the style of the gait: *1 3.0, *2 1.5, *3 43.2, *4 6e-3.

Term Equation Coefficient

T1 Xy velocity tracking exp(−|vxy − cxy|
2/0.25) 2.0 *1

T2 Yaw velocity tracking exp(−|ωyaw − cyaw|
2/0.25) 1.0 *2

T3 Z velocity penalty −|vz|
2 2.0

T4 Pitch-roll velocity penalty −|ωpitch, roll|
2 0.05

T5 Pitch-roll position penalty −|θpitch, roll|
2 5.0

T6 Joint nominal differences penalty −|q − qnominal|2 14.4 *3

T7 Joint position limits penalty −1̄(0.9qmin < q < 0.9qmax) 120.0

T8 Joint velocity limits penalty −1̄(0.9q̇min < q̇ < 0.9q̇max) 10.0

T9 Joint accelerations penalty −|q̈|2 5e-6

T10 Joint torques penalty −|τ |2 2.4e-4

T11 Action rate penalty −|at − at−1|
2 0.12

T12 Action smoothness penalty −|at − 2at−1 + at−2|
2 0.12

T13 Walking height penalty −|h− hnominal|
2 30.0

T14 Air time penalty −
∑
f1(pf )(p

T
f − 0.5) 0.1

T15 Symmetry penalty −
∑
f 1̄(p

left
f )1̄(pright

f ) 0.5

T16 Feet y distance penalty −|f actual
y distance − f target

y distance|
2 2.0

T17 Feet force penalty −|fforce|
2 8e-3 *4

T18 Self-collision penalty −1self-collision 1.0
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A.4 PPO Hyperparameters

We use the same PPO hyperparameters for the training of all expert policies, detailed in Table 3.

Searching for better hyperparameters for every embodiment might lead to increased performance

but is impractical when considering training ∼1000 embodiments. The chosen hyperparameters are

based on common practices in legged locomotion research [39, 72] and preliminary tuning on a

small subset of embodiments.

Table 3: PPO hyperparameters for expert policy training.

Hyperparameter Value

Batch size 98304

Mini-batch size 24576

# epochs 5

Initial learning rate 0.001

Learning rate schedule Adaptive with target KL 0.01

Entropy coefficient 0.002

Discount factor 0.99

GAE λ 0.95

Clip range 0.2

Max gradient norm 1.0

Initial action standard deviation 1.0

Clip range action mean -10.0, 10.0

Policy and critic hidden layers [512, 256, 128]

Activation function ELU

# training iterations 17500 (quadruped, hexapod), 42500 (humanoid)
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B Embodiment Generation

B.1 Basic Units for Quadruped, Humanoid and Hexapod

Tables 4 and 5 provide the base values for geometry-related and kinematics-related parameters,

respectively, for representative links across quadruped, humanoid, and hexapod morphologies. For

the humanoid class, we report parameters for the trunk and the left-side lower-body links. For

quadruped and hexapod classes, we include the front-left leg. The remaining components are either

symmetric or peripheral to locomotion (e.g., arms or head for humanoids) and therefore omitted.

The base parameter values are partially inspired by the Unitree Go2 and H1 platforms, offering a

degree of realism without exact replication. This design choice is consistent with prior work such

as GenLoco [55], which abstracts physical characteristics from real robots to define a diverse yet

grounded design space. Robots instantiated with these values correspond to a 1.0× variation setting

(i.e., no geometric, kinematic, or topological scaling applied), and serve as the reference point for

applying the variation factors listed in Tables 4 and 5.

To support meaningful evaluation of generalization, these reference robots are excluded from the

training set. Every robot in the training set differs from Go2 and H1 by at least one geometric,

topological, or kinematic variation, along with additional discrepancies due to loose alignment in

parameter values (e.g., each joint in the humanoid closest to H1 differs by a few centimeters, and

the overall height differs by approximately 10 cm). This diversity encourages the learned policy to

capture broadly transferable motion patterns. As discussed in Section 4, empirical results suggest

that the policy has acquired sufficiently generalizable behaviors to support both cross-embodiment

and sim-to-real transfer, which is generally considered highly challenging.

B.2 Generation Algorithm

We construct each robot embodiment in a tree-like structure by iteratively connecting links using

joints, following the URDF specification and the basic units described in Section B.1. The construc-

tion procedure varies slightly across morphologies:

• Humanoids: The root node is the pelvis. We first append the torso and hip links, then

attach the shoulder and arm links for the upper body, followed by the thigh, calf, and foot

links for the lower body.

• Quadrupeds and hexapods: The root node is the trunk. We sequentially append the hip

links to the trunk, then connect the leg and foot links to form the complete body.

To ensure diversity in the generated embodiments, we introduce variations in geometry, topology,

and kinematics during the construction process, as detailed in Section 3. Table 6 summarizes the

variation parameters and their corresponding candidate values. While most parameters are self-

explanatory, we clarify a few specific cases:

• Number of knee joints: If a leg is configured with zero knee joints, the calf link is omitted,

and the thigh link is directly connected to the foot.

• Foot link size: For humanoids, foot links are modeled as boxes and scaled by length; for

quadrupeds and hexapods, foot links are modeled as spheres and scaled by radius.

• Joint limit variation: Joint limits are varied by uniformly scaling the nominal joint ranges

about the nominal joint position, which serves as a fixed point.

B.3 Nominal Joint Configurations

Nominal joint configurations are used to initialize robot poses during training, contribute to reward

terms that discourage deviations too far from these default joint angles, and function as offsets to the

actions of the expert and distillation policies. As such, they serve as useful regularizers for learning

realistic and efficient gaits. To support scalability across diverse morphologies, we generate nominal
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configurations by reusing unit values across the generated embodiments. The nominal joint angles

used are summarized in Table 7.

Table 4: Base geometry and mass parameters for representative link types in the embodiment
generation pipeline used in GENBOT-1K. Geometry dimensions are specified according to shape
type: Sphere (radius), Cylinder (length, radius), and Box (length, width, height).

Class Link Name Geometry Type Geometry Dimension (m) Mass (kg)

Humanoid Pelvis Sphere (0.05,) 5.390

Torso Box (0.08, 0.26, 0.18) 17.789

Hip yaw link Cylinder (0.02, 0.01) 2.244

Hip roll link Cylinder (0.01, 0.02) 2.232

Thigh Cylinder (0.2, 0.05) 4.152

Calf Cylinder (0.2, 0.05) 1.721

Foot Box (0.28, 0.03, 0.024) 0.474

Quadruped Trunk Box (0.38, 0.09, 0.11) 6.921

Hip Cylinder (0.04, 0.046) 1.152

Thigh Box (0.21, 0.025, 0.034) 1.152

Calf Cylinder (0.12, 0.013) 0.154

g Foot Sphere (0.022,) 0.040

Hexapod Trunk Box (0.8, 0.5, 0.1) 6.921

Hip Sphere (0.05,) 0.678

Thigh Cylinder (0.22, 0.03) 1.152

Calf Cylinder (0.22, 0.025) 0.154

Foot Sphere (0.03,) 0.040
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Table 5: Motor and joint properties of the generated embodiments in GENBOT-1K.

Class Joint Name Joint Limits (rad) Max. Torque (N·m) Max. Velocity (rad/s)

Humanoid Torso joint (-2.35, 2.35) 200 23

Shoulder pitch joint (-2.87, 2.87) 40 9

Shoulder roll joint (-0.34, 3.11) 40 9

Shoulder yaw joint (-1.30, 4.45) 18 20

Elbow joint (-1.25, 2.61) 18 20

Hip yaw/roll joint (-0.43, 0.43) 200 23

Hip pitch (-3.10, 2.50) 200 23

Knee joint (-0.26, 2.00) 300 14

Ankle joint (-0.87, 0.52) 40 9

Quadruped Hip pitch joint (-1.05, 1.05) 23.7 30.1

Front thigh joint (-1.57, 3.49) 23.7 30.1

Rear thigh joint (-0.52, 4.53) 23.7 30.1

Knee joint (-2.72, -0.84) 45.43 15.7

Hexapod Hip joint (-1.57, 1.57) 100 30

Thigh joint (-1.57, 1.57) 100 30

Knee joint (-1.57, 1.57) 100 30

Table 6: Variation parameters across geometry, topology, and kinematics in the embodiment
generation algorithm. The torso link randomization only applicable to the humanoid class.

Variation Type Parameter Name Candidate Values

Topology Number of knee joints {0, 1, 2, 3}

Geometry Scaling factor for all link size {0.8, 1.0, 1.2}

Scaling factor for thigh link length {0.4, 0.8, 1.0, 1.2, 1.6}

Scaling factor for calf link length {0.4, 0.8, 1.0, 1.2, 1.6}

Scaling factor for foot link size {1.0, 2.0}

Scaling factor for torso link size {0.4, 0.8, 1.0, 1.2, 1.6}

Kinematics Scaling factor for knee joint limits {0.2, 0.6, 1.0}
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Table 7: Nominal joint configurations for generated embodiments in GENBOT-1K. These joint
angles are used to initialize robot poses, define regularization rewards, and function as offsets to the
policy actions. The values are consistent across symmetric limbs.

Class Joint Name Joint Angle (rad)

Humanoid Torso 0.0

Shoulder (Left/Right, pitch/roll/yaw) 0.0

Elbow (Left/Right) 0.0

Hip pitch (Left/Right) -0.4

Hip roll/yaw (Left/Right) 0.0

Knee (Left/Right) 0.8

Ankle (Left/Right) -0.4

Quadruped Hip (Front/Rear, Left/Right) ±0.1

Thigh (Front, Left/Right) 0.8

Thigh (Rear, Left/Right) 1.0

Knee (Front/Rear, Left/Right) -1.5

Additional knee joints (if any) 0.0

Hexapod Hip (Front/Middle/Rear, Left/Right) 0.0

Thigh (Front/Middle/Rear, Left/Right) 0.79

Knee (Front/Middle/Rear, Left/Right) 0.79

Additional knee joints (if any) 0.0
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C Cross-Embodiment Distillation

C.1 Expert Data Collection

For every embodiment, we run the expert RL policy for 600 simulation steps using 4096 parallel

environments. This results in a total of 1,985,740,800 data samples across all training embodiments.

Note that the episode length during the expert training is 1000 simulation steps (equivalent to 20

physical seconds), thus, the collected data only covers the first half of the episode. Using the full

length may provide more time-correlated data, which we did not analyze due to time constraints. The

final dataset needs around 5 TB of storage using the h5py format without additional compression.

C.2 URMA Architecture Details

The observation space of the URMA policy is split into two parts: joint-specific observations oj and

general observations og . The joint-specific observations oj include the joint angle, joint velocity,

previous action of the joint (shape: (j(e), 3)). The general observations og include the trunk linear

velocity, gravity vector, command velocities, PD gains, action scaling factor, total mass of the robot,

robot dimensions, number of joints and feet size (shape: (20,)).

The description vectors dj of the joints include the relative carthesian position of the joint in the

nominal configuration, joint rotation axis, joint nominal angle, maximum joint torque, maximum

joint velocity, joint position limits, p-gain, d-gain and action scaling factor, robot mass and dimen-

sions (shape: (j(e), 18)).

We build on the original URMA neural network architecture, as shown in Figure 7, from Bohlinger

et al. [39] with the following modifications:

• We use multi-headed attention for the encoding of the joint observations and descriptions

to increase the expressiveness of the policy. All our experiments use 3 attention heads.

• We remove the feet-specific attention encoder as not all robots in the real world have foot-

specific sensors, like pressure sensors.

• We directly use the output from the action decoder µν as the action of the policy, instead

of using an additional head to produce a standard deviation and sampling from a Gaussian

distribution, as we train the policy with imitation learning instead of RL.

• We add another encoding layer to the general observations og to project them into a higher

dimensional latent space before concatenating them with all the joint latent vectors from

the attention heads.

• We use wider feedforward layers (2× the hidden dimensions) throughout the network.

The resulting model has 2.1 million parameters. Overall, it is a compact network with strong induc-

tive biases that leverage the compositional structure of robots.

When applying the actions of the policy to the robots, we use the same PD controllers with the same

nominal joint configurations and action scaling factors as in the expert training (see Appendix A.1).

C.3 Train-Test Set Splits

We split GENBOT-1K into a training set (80%) and a test set (20%) using a deterministic pseudo-

random sampler with a fixed seed, ensuring full reproducibility. The same sampling procedure is

applied independently to each morphology class, except for quadrupeds and hexapods, which share

identical splits due to matched dataset sizes. Detailed test indices are listed in Table 8, and summary

statistics for each category are shown in Table 9.
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Table 8: Train-test splits of GENBOT-1K. Each index refers to one unique embodiment in each
embodiment class. The training set is simply the complement of the test set and thus omitted.

Class Test Set

Humanoid [0, 7, 12, 20, 31, 32, 37, 41, 46, 47, 48, 50, 51, 55, 63, 71, 72, 75, 97, 104, 111,
113, 122, 124, 128, 132, 133, 144, 149, 154, 155, 158, 161, 163, 166, 169, 170,
181, 183, 197, 204, 207, 215, 222, 226, 229, 241, 244, 248, 250, 252, 258, 260,
261, 266, 272, 276, 278, 280, 282, 286, 290, 298, 308, 312, 313, 316, 320, 327,
342]

Quadruped [0, 7, 8, 20, 31, 32, 37, 41, 46, 47, 48, 50, 51, 55, 71, 72, 75, 97, 104, 111, 113,
122, 124, 128, 132, 133, 144, 149, 154, 155, 158, 161, 163, 166, 169, 170, 181,
183, 197, 204, 207, 215, 222, 226, 229, 241, 244, 248, 250, 252, 258, 260, 261,
266, 272, 278, 280, 282, 286, 290, 298, 308, 312, 313, 316, 320, 327]

Hexapod [0, 7, 8, 20, 31, 32, 37, 41, 46, 47, 48, 50, 51, 55, 71, 72, 75, 97, 104, 111, 113,
122, 124, 128, 132, 133, 144, 149, 154, 155, 158, 161, 163, 166, 169, 170, 181,
183, 197, 204, 207, 215, 222, 226, 229, 241, 244, 248, 250, 252, 258, 260, 261,
266, 272, 278, 280, 282, 286, 290, 298, 308, 312, 313, 316, 320, 327]

Table 9: Statistics of train-test splits of GENBOT-1K. The splits have an approximately balanced
distribution over different categories.

Class Total Number Train Set (80%) Test Set (20%)

Humanoid 348 278 70
Quadruped 332 265 67
Hexapod 332 265 67
Total 1012 808 204

C.4 Training Details

We designed an efficient training pipeline that balances disk I/O, CPU preprocessing, GPU utiliza-

tion, and RAM usage. Instead of loading every minibatch directly from disk, we first load a fixed

number of data slices, each containing a small subset of steps from multiple robot embodiments,

into an in-memory buffer. Each slice consists of 100 trajectories with 128 steps per trajectory. Once

the buffer is filled, minibatches are sampled uniformly at random, without replacement, until every

sample has been seen a fixed number of times. This strategy reduces disk access overhead, improves

memory locality, and maintains sample diversity throughout training, though it may introduce local

overfitting and biased gradient estimates.

Because data from different robots have varied observation and action spaces, we load them sepa-

rately and use gradient accumulation to reduce bias in the gradient estimation. Specifically, gradients

are accumulated across multiple minibatches before each optimizer step, helping to balance contri-

butions across robot embodiments. While effective, this approach still suffers from local gradient

bias. A more principled solution would involve zero-padding to form large, uniform batches across

robots, but implementing this would require architectural and pipeline-level changes, which we did

not pursue due to time constraints. In theory, this could lead to smoother optimization and potentially

better final performance.

To ensure numerical stability, we apply gradient clipping with a maximum norm of 5. We use the

AdamW optimizer [109] with β1=0.9, β2=0.999, and a cosine-annealed weight decay schedule that

decays from 3×10−4 to 0 over the course of training [110]. The key hyperparameters for distillation

are summarized in Table 10.

Our pipeline requires 128 GB of RAM to maintain the in-memory buffer. Due to the small size of

the URMA policy, training can be efficiently performed on a single GPU (e.g., NVIDIA RTX 4090

or H100). We did not observe significant gains in convergence from increasing batch size, possibly
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Figure 7: URMA with multi-head attention. We extend the original URMA module [39] with
multiple attention heads, each aggregating information from joint observations using distinct atten-
tion distributions. This design enables the model to capture multi-modal dependencies and improves
its capacity to scale across diverse embodiments.

Table 10: Hyperparameters of the distillation pipeline.

Hyperparameter Value

# training samples per embodiment 500 × 4096
Validation set size 100 × 4096
Batch size 64
Gradient accumulation steps 8
Gradient clipping threshold 5
Data slice size 100 × 128
Max slices in buffer 1024
Buffer repeat factor 3
Optimizer AdamW [109]
AdamW betas (0.9, 0.999)
Weight decay schedule 3× 10−4 → 0 (cosine)
Learning rate schedule Cosine annealing [110]
# epochs 80

due to the structured nature and potential bottlenecks in the model architecture. Further investigation

into the scaling behavior of the training dynamics is left for future work.

D Additional Details on Real-World Deployment

D.1 Hardware Setup

We evaluated our distilled URMA policy zero-shot on two real-world platforms: the Unitree Go2

quadruped and the Unitree H1 humanoid. For each robot, we used its URDF to produce the em-

bodiment description vectors dj . Before deployment, the policy was converted to the ONNX format

to load it in JAX and guarantee maximum inference speed. The policy inference ran on a Ubuntu

22.04 laptop (Ryzen 9 CPU), interfaced to the robot over a dedicated Ethernet connection. We ran

the control loop at the same 50 Hz and with the same PD gains as in simulation, and sent the target

joint angles to the robot’s internal controller. We limited the commanded x-y-yaw velocity to 0.8 m/s

for the Go2 and 0.5 m/s for the H1, to ensure the robot’s stability and safety during the experiments.
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D.2 Implementing Joint Limit Variations

To probe robustness under kinematic constraints, we impose an artificial knee-joint range limited

to 20 % of its nominal span. In simulation, one can enforce such limits by directly clamping joint

angles within the physics engine; in hardware, however, neither the robot’s encoders nor its embed-

ded PD controller can be modified. Consequently, we introduce a software-level joint-limit layer

into the control loop in order to restrict the target joint angle for affected knee joints to the new

limits. At each control step, the policy’s commanded knee angle is constrained to the prescribed

±20 % bounds. Instead, we implemented a software-based solution that restricts the target joint

angle for affected knee joints to the new limits. To counteract any excursions driven by external

disturbances, we implement an active rejection mechanism: whenever the measured knee angle vi-

olates the software limits, we (1) project the commanded target onto the nearest permissible bound

and (2) elevate the proportional and derivative gains to Kp = 60 and Kd = 1, respectively, until

the joint re-enters the safe region. This procedure enforces a soft joint-limit constraint exclusively

in software—without altering hardware or contravening physical laws—while delivering high-gain

corrective action against environmental perturbations.

E Additional Latent Space Analysis

In addition to the t-SNE analysis, we also apply Principal Component Analysis (PCA) [107] and

Uniform Manifold Approximation and Projection (UMAP) [108] on the action latent vectors z̄action

in Figure 8. Both PCA and UMAP projections reveal clear grouping according to the morphology

class, with humanoid, quadruped, and hexapod embeddings forming distinct clusters. Compared

to the t-SNE analysis, clusters about the topological, geometric, and kinematic variations are less

pronounced and appear to be more cramped.

Furthermore, we show in Figure 9 the t-SNE analysis of the learned joint description latent space

fφ(dj) for all joints from all embodiments in the GENBOT-1K dataset. Although the three mor-

phologies still define the rough structure of this latent space, the learned embeddings for the joint

descriptions seem to be much more entangled across the three morphology classes.
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Hexapod Humanoid Quadruped

Figure 8: Additional visualizations of the learned embodiment embeddings. PCA (a.) and
UMAP (b.) of the embodiment latent space (i.e., every point represents one robot, aggregated from
all of its joint description vectors).

Hexapod Humanoid Quadruped

Figure 9: Additional visualizations of the learned joint description embeddings. t-SNE visual-
ization of the joint description latent space of all joints from all embodiments in the GENBOT-1K
dataset (i.e., every point represents one joint of a robot).
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