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Abstract— The field of legged robotics is still missing a single
learning framework that can control different embodiments—
such as quadruped, humanoids, and hexapods—simultaneously
and transfer, zero or few-shot, to unseen robot embodiments.
To close this gap, we introduce URMA, the Unified Robot
Morphology Architecture. Our framework brings the end-to-
end Multi-Task Reinforcement Learning approach to the realm
of legged robots, enabling the learned policy to control any
type of robot morphology. We show that URMA can learn
a locomotion policy on multiple embodiments that can be
transferred to unseen robots in simulation and the real world.

Fig. 1: Top – We train a single locomotion policy for multiple

robot embodiments in simulation. Bottom – We can transfer

and deploy the policy on three real-world platforms by

randomizing the embodiments and environment dynamics

during training.

I. INTRODUCTION

Deep Reinforcement Learning (DRL) has enabled legged

robots to achieve remarkable locomotion capabilities.

Quadruped robots, in particular, have demonstrated highly

agile movements, including running at high speeds, jumping

obstacles, navigating rough terrain, performing handstands,

and even completing parkour courses [1], [2], [3], [4], [5],

[6]. A key long-term goal is the development of foundation

models for locomotion, enabling zero-shot deployment on
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any arbitrary robot platform. Achieving this requires adapting

the underlying learning architecture to handle diverse tasks

and morphologies. Current Multi-Task Reinforcement Learn-

ing (MTRL) methods often handle varying observation and

action spaces by padding inputs with zeros [7] or employing

separate neural network heads for each task [8]. Early

work on controlling different morphologies leveraged Graph

Neural Networks (GNNs) to represent the morphological

and kinematic structure of robots [9], [10], [11]. Although

these methods can control various robots, they struggle to

generalize to a wide range of embodiments. More recently,

Transformer-based architectures have been introduced to

address this limitation, using the attention mechanism to

aggregate information from varying numbers of joints [12],

[13]. However, these methods still lack true generality, as

they are often restricted to a predefined set of morphologies.

II. MORPHOLOGY-AWARE LEARNING

We propose the Unified Robot Morphology Architecture

(URMA), a complete morphology-aware architecture, that

does not require defining the possible morphologies before-

hand and can adapt to arbitrary joint configurations with

the same network. Figure 2 presents a schematic overview

of URMA. To handle observations of any morphology,

URMA first splits the observation vector o into robot-specific

and general observations og , where the former can be of

varying size, and the latter has a fixed dimensionality. For

locomotion, we subdivide the robot-specific observations into

joint and feet-specific observations. In the following text,

we describe everything w.r.t. the joint-specific observations,

but the same applies to the feet-specific ones as well. Every

joint of a robot is composed of joint-specific observations

oj and a description vector dj . These description vectors are

made up of fixed dynamics and kinematics properties of the

joint that can uniquely describe the joint, in our case: joint

limits, maximum velocity and torque, relative joint position

and rotation axis in a nominal configuration, PD gains, etc.

The description vectors and joint-specific observations are

encoded separately by the Multilayer Perceptrons (MLPs) fφ
and fψ and are then passed through a simple attention head,

with a learnable temperature Ä and a minimum temperature

ϵ, to get a single latent vector

z̄joints =
∑

j∈J

zj , zj =

exp

(

fφ(dj)

Ä + ϵ

)

∑

j∈J exp

(

fφ(dj)

Ä + ϵ

)fψ(oj), (1)

that contains the information of the joint-specific observa-

tions of all joints. With the help of the attention mechanism,
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Fig. 2: Overview: Unified Robot Morphology Architecture.

the network can learn to separate the relevant joint infor-

mation and precisely route it into the specific dimensions

of the latent vector by reducing the temperature τ of the

softmax close to zero. The joint latent vector z̄joints is then

concatenated with the feet latent vector z̄feet and the general

observations og and passed to the policies core MLP hθ

to get the action latent vector z̄action = hθ(og, z̄joints, z̄feet). To

obtain the final action for the robot, we use our universal

morphology decoder, which takes the general action latent

vector and pairs it with the set of encoded specific joint

descriptions and the single joint latent vectors to produce the

mean and standard deviation of the actions for every joint,

from which the final action is sampled as

aj ∼ N (µν(d
a
j , z̄action, zj), συ(d

a
j )), daj = gω(dj). (2)

III. RESULTS

To evaluate the training efficiency of MTRL in our setting,

we train URMA and the multi-head and a zero-padding

baselines on all 16 robots in the training set simultaneously

(100 million steps per robot) and compare the average return

to the single-robot training setting, where a separate policy

is trained for every robot. Figure 3 confirms the advantage

in learning efficiency of MTRL over single-task learning,

as URMA and the multi-head baseline learn significantly

faster than training only on a single robot at a time. URMA

reaches the highest average return at the end. Next, we

evaluate the zero-shot transfer on the Unitree A1, a robot

whose embodiment is similar to other quadrupeds in the

training set. Figure 3 shows the evaluation for the A1 during

a training process with the other 15 robots and highlights

that both URMA and the multi-head baseline can transfer

perfectly well to the A1 while never having seen it during

training. To investigate an out-of-distribution embodiment,

we use the same setup as for the A1 and evaluate zero-shot
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Fig. 3: Top left – Average return of the three architectures

during training on all 16 robots compared to the single-robot

training setting. Top right – Zero-shot transfer to the Unitree

A1 while training on the other 15 robots. Bottom left –

Zero-shot transfer to the MAB Robotics Silver Badger while

training on the other 15 robots and fine-tuning on only the

Silver Badger afterward. Bottom right – Zero-shot evaluation

on all 16 robots while removing the feet observations.

on the MAB Robotics Silver Badger robot, which has an

additional spine joint in the trunk and lacks feet observations,

and then fine-tune the policies for 20 million steps only on

the Silver Badger itself. The results show that URMA can

handle the additional joint and the missing feet observations

better than the baselines and is the only method capable of

achieving a good gait at the end of training. To further assess

the adaptability of our approach, we evaluate the zero-shot

performance in the setting where observations are dropped

out, which can easily happen in real-world scenarios due

to sensor failures. We train the architectures on all robots

with all observations and evaluate them on all robots while

completely dropping the feet observations. Figure 3 confirms

the results from the previous experiment and shows that

URMA can handle missing observations better than the

baselines. Finally, we deploy the same URMA policy on

the real Unitree A1, MAB Honey Badger, and MAB Silver

Badger quadruped robots. Figure 1 shows the robots walking

with the learned policy on pavement, grass, and plastic turf

terrain with slight inclinations. While the Unitree A1 and the

MAB Silver Badger are in the training set, the network is

not trained on the MAB Honey Badger. Despite the Honey

Badger’s gait not being as good as the other two robots, it

can still locomote robustly on the terrain we tested, proving

the generalization capabilities of our architecture and training

scheme.
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