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Abstract— We present a single, general locomotion policy
trained on a diverse collection of 50 legged robots. By combining
an improved embodiment-aware architecture (URMAv2) with
a performance-based curriculum for extreme Embodiment
Randomization, our policy learns to control millions of mor-
phological variations. Our policy achieves zero-shot transfer to
unseen real-world humanoid and quadruped robots.

Fig. 1. We collected a diverse set of 50 legged robots. We train the
policy on all robots simultaneously using 25600 parallel environments.
The performance-based curriculum on extreme Embodiment Randomiza-
tion leads to the policy seeing gradually more challenging embodiments
throughout training.

I. INTRODUCTION

With more and more robot platforms being developed

and finding their way into research labs and real-world

applications, the current paradigm of training a control

policy tailored to a specific robot can become increasingly

inefficient [1], [2]. Robot platforms change, adapt, and evolve

over time, but many current training approaches do not

consider robot morphologies as a key factor. Their learn-

ing process is agnostic or simply unaware of the specific

characteristics and capabilities of the robot’s embodiment,

making cross-embodiment transfer difficult or even impossi-

ble. We build upon the recently introduced Unified Robot

Morphology Architecture (URMA) [3] and train a single

unified embodiment-aware policy across 50 different legged

robots with massive Embodiment Randomization (ER). This
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results in a curriculum of up to 10 million embodiments per

training run, in order to learn a robust and adaptive general

locomotion policy, that can be directly zero-shot transferred

to unseen humanoid and quadruped robots in the real world.

II. METHOD

We build upon the original URMA and scale it to the mas-

sively multi-embodiment setting (see Figure 2), which we

call Unified Robot Morphology Architecture v2 (URMAv2).

A. URMAv2 Architecture

Inputs: Following the original URMA architecture, the

inputs are split into three categories: per-joint description

vectors {dj}j∈J for the set J of all joints in a given

robot that uniquely describe a joint’s static properties (e.g.,

rotation axis, torque limits), per-joint observations {oj}j∈J

containing dynamic state information (e.g., position, veloc-

ity), and general robot observations og (e.g., trunk velocity,

gravity vector). URMAv2 includes an additional per-joint

observation to allow for task-specific joint-level conditioning.

Joint Encoder: URMAv2 keeps the same attention-based

joint encoder, which processes each joint’s description (at-

tention keys) and observation vector (attention values), and

aggregates them into the combined joint latent vector

z̄joints =
∑

j∈J

fψ(oj)
exp(fϕ(dj)/τ)∑
Ld

exp(fϕ(dj)/τ)
. (1)

where fϕ (with latent dimension Ld) and fψ are the

encoders for the joint descriptions and joint observations,

respectively, and τ is the learnable temperature parameter.

URMAv2 uses a wider Multilayer Perceptron (MLP) for fψ
(2x 256 units) for the policy network to increase its capacity

for the larger number of robots and variations.

Core Network: The joint latent vector is concatenated

with the fixed-size general observations and processed by

the core network hθ to generate the action latent vector:

z̄action = hθ(og, z̄joints). URMAv2 uses a deeper stack of 5

hidden layers to increase the model capacity. For stabiliza-

tion, WeightNorm layers are used around every Dense layer.

Action Decoder: We replace URMA’s universal decoder

with an attention-based decoding mechanism. URMAv2

computes the mean action µj for each joint via a simple

dot product between the action latent vector zaction and

the corresponding joint’s attention weights αj that were

generated in the encoder: µj = zaction · αj Also, the per-

joint standard deviations are predicted with a linear layer

συ from the same joint description encoding calculated

for the attention weights, which results in actions being
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Fig. 2. Overview of the neural network architecture for a URMAv2 policy.

sampled from: aj ∼ N (µj , συ(fϕ(dj))). This creates a

streamlined architecture that is simpler and computationally

more efficient than the original URMA decoder.

B. Embodiment Randomization

To improve the generalization across different embodi-

ments, we apply extreme ER online during training (see

Figure 1). ER differs from standard Domain Randomization

(DR) [4] in that all the generated values are seen by the

policy through the description vectors. We use DR after

the ER sampling to further modify the sampled parameters

but keep them hidden from the policy, to improve sim-to-

real transfer. Our ER includes scaling of: body part size

and position in every dimension, masses and inertias, joint

orientations, IMU position, motor torques and velocities,

position limits, PD gains, etc. We sample a new embodiment

during every episode step with a probability of 0.2% at the

highest curriculum level. This leads to up to 10 million

different embodiments per training run.

C. Performance-based Curriculum

We introduce a performance-based curriculum learning

strategy that attaches every component of the learning frame-

work to a single curriculum coefficient β ∈ [0, 1]. This

coefficient is initialized to β = 0 and is increased whenever

an episode is deemed successful, e.g., a return threshold is

reached. This significantly helps to speed up the training

process for challenging embodiments, especially humanoids,

and leads to more stable training runs.

III. EXPERIMENTS

We train URMAv2 on a set of 50 legged robots, including

15 quadrupeds, 23 humanoids, 8 bipeds and 4 hexapods (see

Figure 1). We use MuJoCo XLA (MJX) [5] and Proximal

Policy Optimization (PPO) [6] which we implement with the

RL-X library [7]. With a total of 25600 parallel environments

we collect 1.6 million samples for every policy update. We

train for a total of 5 billion environment steps.

Figure 3 shows the training performance of URMAv2

and baselines. We measure the performance by the average

curriculum coefficient β over all robots. URMAv2 outper-

forms all baselines in terms of learning speed and final

performance, showing the effectiveness of the embodiment-

aware architecture in general.
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Fig. 3. Comparison of the training performance of URMA, URMAv2,
zero-padding and multi-head baselines when training on all 50 robots (left).
Different setups of URMAv2 trained on 49 robots and zero-shot performance
evaluated on the left-out robot (right).

Figure 3 shows the zero-shot transfer performance of

URMAv2 trained on 49 robots and evaluated on the left-

out robot. URMAv2 shows strong zero-shot performance on

especially the quadruped robots. Zero-shot performance for

the humanoids is clearly lower. In simulation, the policy is

able to control all three humanoids fairly well, but under

severe perturbations it still falls occasionally.

A. Sim-to-Real Transfer

We did zero-shot sim-to-real transfer of URMAv2 trained

on 49 robots to the Unitree Go2, MAB Silver Badger and the

Booster T1. The policy is able to control both quadrupeds

well, even under severe disturbances like pulling on the legs.

The policy is able to walk forward and sidewards reliably

on the Booster T1, but struggles with turning and walking

backwards, leading to regular falls. We could not zero-shot

transfer to the Unitree H1 as the policy was not stable

enough, but we transfered to URMAv2 policy trained on all

50 robots, which was able to locomote well on the H1.

IV. CONCLUSION

We presented URMAv2, an improved embodiment-aware

architecture for learning a general locomotion policy across

a diverse set of 50 legged robots with extreme ER and

a performance-based curriculum. While URMAv2 shows

strong training performance and zero-shot transfer to unseen

quadruped and humanoid robots in simulation, sim-to-real

transfer to unseen humanoids still remains challenging.
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