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Abstract— We present a single, general locomotion policy
trained on a diverse collection of 50 legged robots. By combining
an improved embodiment-aware architecture (URMAv2) with
a performance-based curriculum for extreme Embodiment
Randomization, our policy learns to control millions of mor-
phological variations. Our policy achieves zero-shot transfer to
unseen real-world humanoid and quadruped robots.

Fig. 1. We collected a diverse set of 50 legged robots. We train the
policy on all robots simultaneously using 25600 parallel environments.
The performance-based curriculum on extreme Embodiment Randomiza-
tion leads to the policy seeing gradually more challenging embodiments
throughout training.

I. INTRODUCTION

With more and more robot platforms being developed
and finding their way into research labs and real-world
applications, the current paradigm of training a control
policy tailored to a specific robot can become increasingly
inefficient [1], [2]. Robot platforms change, adapt, and evolve
over time, but many current training approaches do not
consider robot morphologies as a key factor. Their learn-
ing process is agnostic or simply unaware of the specific
characteristics and capabilities of the robot’s embodiment,
making cross-embodiment transfer difficult or even impossi-
ble. We build upon the recently introduced Unified Robot
Morphology Architecture (URMA) [3] and train a single
unified embodiment-aware policy across 50 different legged
robots with massive Embodiment Randomization (ER). This
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results in a curriculum of up to 10 million embodiments per
training run, in order to learn a robust and adaptive general
locomotion policy, that can be directly zero-shot transferred
to unseen humanoid and quadruped robots in the real world.

II. METHOD

We build upon the original URMA and scale it to the mas-
sively multi-embodiment setting (see Figure 2), which we
call Unified Robot Morphology Architecture v2 (URMAV2).

A. URMAv2 Architecture

Inputs: Following the original URMA architecture, the
inputs are split into three categories: per-joint description
vectors {d;}jes for the set J of all joints in a given
robot that uniquely describe a joint’s static properties (e.g.,
rotation axis, torque limits), per-joint observations {o;};c 7
containing dynamic state information (e.g., position, veloc-
ity), and general robot observations o4 (e.g., trunk velocity,
gravity vector). URMAV2 includes an additional per-joint
observation to allow for task-specific joint-level conditioning.

Joint Encoder: URMAV2 keeps the same attention-based
joint encoder, which processes each joint’s description (at-
tention keys) and observation vector (attention values), and
aggregates them into the combined joint latent vector

. ooy XP(fo(d;)/T)
Zjoints Z flb( ])ZLd exp(f¢(dj)/'r)' D

j€eT

where f, (with latent dimension Lj) and fy, are the
encoders for the joint descriptions and joint observations,
respectively, and 7 is the learnable temperature parameter.
URMAV2 uses a wider Multilayer Perceptron (MLP) for f,,
(2x 256 units) for the policy network to increase its capacity
for the larger number of robots and variations.

Core Network: The joint latent vector is concatenated
with the fixed-size general observations and processed by
the core network hy to generate the action latent vector:
Zaction = N9 (0g, Zjoins). URMAV2 uses a deeper stack of 5
hidden layers to increase the model capacity. For stabiliza-
tion, WeightNorm layers are used around every Dense layer.

Action Decoder: We replace URMA'’s universal decoder
with an attention-based decoding mechanism. URMAv2
computes the mean action u; for each joint via a simple
dot product between the action latent vector Z,.,, and
the corresponding joint’s attention weights «; that were
generated in the encoder: (i; = Zucion - @5 Also, the per-
joint standard deviations are predicted with a linear layer
o, from the same joint description encoding calculated
for the attention weights, which results in actions being
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sampled from: a; ~ N(u;,0,(fs(d;))). This creates a
streamlined architecture that is simpler and computationally
more efficient than the original URMA decoder.

B. Embodiment Randomization

To improve the generalization across different embodi-
ments, we apply extreme ER online during training (see
Figure 1). ER differs from standard Domain Randomization
(DR) [4] in that all the generated values are seen by the
policy through the description vectors. We use DR after
the ER sampling to further modify the sampled parameters
but keep them hidden from the policy, to improve sim-to-
real transfer. Our ER includes scaling of: body part size
and position in every dimension, masses and inertias, joint
orientations, IMU position, motor torques and velocities,
position limits, PD gains, etc. We sample a new embodiment
during every episode step with a probability of 0.2% at the
highest curriculum level. This leads to up to 10 million
different embodiments per training run.

C. Performance-based Curriculum

We introduce a performance-based curriculum learning
strategy that attaches every component of the learning frame-
work to a single curriculum coefficient 5 € [0,1]. This
coefficient is initialized to S = 0 and is increased whenever
an episode is deemed successful, e.g., a return threshold is
reached. This significantly helps to speed up the training
process for challenging embodiments, especially humanoids,
and leads to more stable training runs.

III. EXPERIMENTS

We train URMAV?2 on a set of 50 legged robots, including
15 quadrupeds, 23 humanoids, 8 bipeds and 4 hexapods (see
Figure 1). We use MuJoCo XLA (MJX) [5] and Proximal
Policy Optimization (PPO) [6] which we implement with the
RL-X library [7]. With a total of 25600 parallel environments
we collect 1.6 million samples for every policy update. We
train for a total of 5 billion environment steps.

Figure 3 shows the training performance of URMAv2
and baselines. We measure the performance by the average
curriculum coefficient 8 over all robots. URMAvV2 outper-
forms all baselines in terms of learning speed and final
performance, showing the effectiveness of the embodiment-
aware architecture in general.

Overview of the neural network architecture for a URMAV2 policy.
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Fig. 3.  Comparison of the training performance of URMA, URMAvV2,
zero-padding and multi-head baselines when training on all 50 robots (left).
Different setups of URMAV? trained on 49 robots and zero-shot performance
evaluated on the left-out robot (right).

Figure 3 shows the zero-shot transfer performance of
URMAV2 trained on 49 robots and evaluated on the left-
out robot. URMAV2 shows strong zero-shot performance on
especially the quadruped robots. Zero-shot performance for
the humanoids is clearly lower. In simulation, the policy is
able to control all three humanoids fairly well, but under
severe perturbations it still falls occasionally.

A. Sim-to-Real Transfer

We did zero-shot sim-to-real transfer of URMAV2 trained
on 49 robots to the Unitree Go2, MAB Silver Badger and the
Booster T1. The policy is able to control both quadrupeds
well, even under severe disturbances like pulling on the legs.
The policy is able to walk forward and sidewards reliably
on the Booster T1, but struggles with turning and walking
backwards, leading to regular falls. We could not zero-shot
transfer to the Unitree H1 as the policy was not stable
enough, but we transfered to URMAV2 policy trained on all
50 robots, which was able to locomote well on the HI.

IV. CONCLUSION

We presented URMAV2, an improved embodiment-aware
architecture for learning a general locomotion policy across
a diverse set of 50 legged robots with extreme ER and
a performance-based curriculum. While URMAvV2 shows
strong training performance and zero-shot transfer to unseen
quadruped and humanoid robots in simulation, sim-to-real
transfer to unseen humanoids still remains challenging.
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