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Abstract

Deep reinforcement learning presents a promising framework for enabling
autonomous agents to learn effective policies in uncontrolled environments
without requiring extensive domain knowledge. However, sample inefficiency has
traditionally confined its applications to simulated environments. This thesis
addresses these limitations by advancing on-robot reinforcement learning
techniques that optimize sample efficiency, enabling quadruped robots to learn
locomotion behaviors directly in real-world settings. Leveraging recent
advancements in machine learning algorithms and carefully tuned robot
controllers, the proposed approaches enable rapid learning of walking gaits across
diverse terrains, including indoor and outdoor environments known to challenge
classical model-based controllers. The work evaluates these methods through
experiments that highlight the interplay between algorithmic design, sensory
feedback, and environmental constraints. Results demonstrate the ability to
consistently achieve stable and efficient locomotion within limited training time
while addressing challenges such as noisy state estimation and terrain variability.
This research contributes to the field by providing insights into achieving practical
and adaptable quadruped locomotion, bridging the gap between simulation and
real-world deployment.
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Zusammenfassung

Tiefes verstärkendes Lernen bietet einen vielversprechenden Ansatz, um
autonome Agenten in unkontrollierten Umgebungen effektive
Verhaltensstrategien erlernen zu lassen, ohne umfangreiches Domänenwissen zu
benötigen. Allerdings war die Anwendung bisher aufgrund ineffizienten Nutzung
von Trainingsdaten hauptsächlich auf simulierte Umgebungen beschränkt. Diese
Arbeit adressiert diese Einschränkungen durch die Weiterentwicklung von
Techniken für verstärkendes Lernen, die die Dateneffizienz optimieren und es
vierbeinigen Robotern ermöglichen, direkt in realen Umgebungen
Fortbewegungsverhalten zu erlernen. Unter Verwendung aktueller Fortschritte in
maschinellen Lernalgorithmen sowie präzise abgestimmter Robotercontroller
ermöglichen die vorgeschlagenen Ansätze ein schnelles Erlernen von Gangarten
auf verschiedenen Untergründen, darunter Innen- und Außenbereiche, die als
besonders herausfordernd für klassische modellbasierte Steuerungen gelten. Die
Methoden werden in Experimenten evaluiert, die die Wechselwirkungen
zwischen algorithmischem Design, Sensorfeedback und Umgebungsbedingungen
aufzeigen. Die Ergebnisse zeigen, dass es möglich ist, innerhalb kurzer
Trainingszeit stabile und effiziente Fortbewegung zu erreichen, wobei
Herausforderungen wie ungenaue Zustandsschätzungen und
Geländeschwankungen adressiert werden. Diese Forschung liefert einen Beitrag
zum Verständnis und zur Realisierung praktischer und anpassungsfähiger
Fortbewegung quadrupeder Roboter durch tiefes verstärkendes Lernen und
schließt die Lücke zwischen Simulation und realer Anwendung.

iv



Contents

1 Introduction 1

2 Foundations 3

2.1 Universal Function Approximators . . . . . . . . . . . . . . . . . . . . 3
2.2 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Soft Actor-Critic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 CrossQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.6 State Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Related Work: Deep Reinforcement Learning for Quadruped Locomotion 21

3.1 Zero-Shot Sim-to-Real Transfer . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Central Pattern Generators . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 On-Robot Deep Reinforcement Learning . . . . . . . . . . . . . . . . . 25

4 Method 28

4.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Joint Angle Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Central Pattern Generators . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 Reward Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.5 Curriculum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Experiments 44

5.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2 Real World Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Discussion 90

6.1 Comparison of High Sample-Efficient SAC Algorithms . . . . . . . . 90

v



6.2 Comparison of Joint Target Approaches . . . . . . . . . . . . . . . . . 91
6.3 Comparison of CPG Approaches . . . . . . . . . . . . . . . . . . . . . . 93
6.4 Comparison of Joint Target and CPG Approaches . . . . . . . . . . . 95

7 Conclusion and Outlook 97

vi



Figures and Tables

List of Figures

2.1 Velocity estimation comparison using Kalman Filter and integration
of acceleration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Loss of velocity estimation via neural network . . . . . . . . . . . . . 17

2.3 Custom made 3D printed cube with AprilTag on each side mounted
on the MAB HoneyBadger 4.0. . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 CPG-based experiment with the AprilTag tracking system. . . . . . . 20

4.1 The MAB Robotics HoneyBadger 4.0 quadruped robot. . . . . . . . . 29

4.2 Optimal hyperparameter search using grid search. . . . . . . . . . . 34

4.3 Central Pattern Generator foot-height trajectory and trot gait. . . . . 37

4.4 Target velocity tracking reward function with vt = 0.5m/s. . . . . . 37

4.5 Rotation of the current velocity to the target velocity . . . . . . . . . 41

5.1 The MAB Robotics HoneyBadger 4.0 in the simulation environment. 46

5.2 Comparison of SAC, SAC UTD 20, DroQ, and CrossQ in the Forward
Locomotion experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.3 Comparison in the Forward Locomotion Experiment . . . . . . . . . 51

5.4 Gait evaluation in the Forward Locomotion Experiment . . . . . . . 52

vii



5.5 Forward velocity of the Joint Target and CPG-based approaches in
the Forward Locomotion Experiment . . . . . . . . . . . . . . . . . . . 52

5.6 Comparison of JT-NF, JT-OEF, JT-LPF, CPG-D, CPG-VF, CPG-RT in
the Maximal Velocity experiment. . . . . . . . . . . . . . . . . . . . . . 55

5.7 Gait evaluation in the Forward Locomotion with Maximal Velocity
Experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.8 Local Trunk Forward Velocity in the Forward Locomotion with
Maximal Velocity Experiment. . . . . . . . . . . . . . . . . . . . . . . . 56

5.9 Comparison in the Omnidirectional Locomotion with Random
Target Command experiment. 1/3 . . . . . . . . . . . . . . . . . . . . 59

5.10 Comparison in the Omnidirectional Locomotion with Random
Target Command experiment. 2/3 . . . . . . . . . . . . . . . . . . . . 60

5.11 Comparison in the Omnidirectional Locomotion with Random
Target Command experiment. 3/3 . . . . . . . . . . . . . . . . . . . . 61

5.12 Comparison of Omnidirectional Locomotion Experiment with PDEC.
1/3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.13 Comparison of Omnidirectional Locomotion Experiment with PDEC.
2/3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.14 Comparison of Omnidirectional Locomotion Experiment with PDEC.
3/3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.15 Evaluation run of MPC controller, Forward Locomotion in Office
Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.16 Evaluation run of SAC UTD 20 with low-pass filter, Forward
Locomotion in Office Environment . . . . . . . . . . . . . . . . . . . . 70

5.17 Evaluation run of CrossQ JT-OEF, Forward Locomotion in Office
Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.18 Evaluation run of CrossQ JT-LPF, Forward Locomotion in Office
Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.19 Evaluation run of CrossQ CPG-D, Forward Locomotion in Office
Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

viii



5.20 Evaluation run of CrossQ CPG-VF, Forward Locomotion in Office
Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.21 Training progress of the Forward Locomotion Office Experiment . . 76

5.22 Evaluation run of MPC Controller, Forward Locomotion in Outdoor
Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.23 Evaluation run of CrossQ JT-OEF, Forward Locomotion in Outdoor
Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.24 Evaluation run of CrossQ JT-LPF, Forward Locomotion in Outdoor
Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.25 Evaluation run of CrossQ CPG-D, Forward Locomotion in Outdoor
Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.26 Evaluation run of CrossQ CPG-VF, Forward Locomotion in Outdoor
Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.27 Training progress of the Forward Locomotion Outdoor Experiment 83

5.28 Training progress of the Omnidirectional Locomotion Outdoor
Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.29 Evaluation run of CrossQ CPG-D, forward moving of
Omnidirectional Locomotion in Outdoor Environment . . . . . . . . 89

5.30 Evaluation run of CrossQ CPG-D, left moving of Omnidirectional
Locomotion in Outdoor Environment . . . . . . . . . . . . . . . . . . . 89

5.31 Evaluation run of CrossQ CPG-D, right moving of Omnidirectional
Locomotion in Outdoor Environment . . . . . . . . . . . . . . . . . . . 89

ix



List of Tables

4.1 Observations Space Specifications for JT and CPG Models . . . . . . 31

4.2 Action Space Specifications for JT and CPG Models . . . . . . . . . . 31

4.3 Hyperparameter Configurations and Computational Complexity for
Different Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Filter Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.5 Forward Locomotion Velocity Reward Terms . . . . . . . . . . . . . . 40

4.6 Forward Locomotion Maximal Velocity Reward Terms . . . . . . . . 40

5.1 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Overview of locomotion control approaches, their associated filters
or extensions, and corresponding abbreviations. . . . . . . . . . . . . 45

5.3 Key metrics of the Forward Locomotion in Office Environment
experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.4 Key metrics of the Forward Locomotion in Outdoor Environment
experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.5 Key metrics of the Omnidirectional Locomotion in Outdoor
Environment experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.1 Performance of Joint Target Prediction methods in Forward
Locomotion experiments (velocity in m/s). Simulation results
show maximal achievable velocity. Real-world results use target
velocities of 0.25 m/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2 Performance of CPG-based methods in Forward Locomotion
experiments (velocity in m/s). Simulation results show maximal
achievable velocity. Real-world results use target velocities of
0.25 m/s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

x



List of Abbreviations

RL Reinforcement Learning

DRL Deep Reinforcement Learning

AS Action Space

OS Observation Space

SAC Soft Actor-Critic

UTD Update-To-Data Ratio

PDEC Progressive Directional Expansion Curriculum

NN Neural Network

IMU Inertial Measurement Unit

MPC Model Predictive Control

CPG Central Pattern Generator

CPG-D Central Pattern Generator with Constant Frequency

CPG-RT Central Pattern Generator with Residual Target

CPG-VF Central Pattern Generator with Variable Frequency

JT Joint Target

JT-NT Joint Target with No Filter

JT-OEF Joint Target with One Euro Filter

JT-LPF Joint Target with Low-Pass Filter

xi



1 Introduction

Quadruped robots hold significant potential for navigating and performing tasks
in rough and uncertain terrain, with applications spanning search and rescue
missions, remote area explorations, and industrial inspections [1, 2]. Achieving
reliable locomotion in these challenging environments requires robots to adapt to
varied surfaces and obstacles. As a result, numerous approaches have been
explored to enable robust and adaptable locomotion. These strategies generally
fall into two categories: white-box approaches, such as Model Predictive Control
(MPC) [3], which rely on predefined, interpretable models of the robot’s
dynamics, and black-box, data-driven methods, such as deep reinforcement
learning (DRL), which leverage large-scale data to learn complex behaviors [4, 5].
While MPC methods offer interpretability and some theoretical guarantees, they
often require precise models of the robot and the environment, which can be
difficult to obtain for complex tasks. In contrast, data-driven approaches like RL
offer the promise of flexibility and adaptability, making them suitable for complex
locomotion challenges such as traversing rough terrain, climbing obstacles, and
executing jumps [6, 7, 8].

RL algorithms can be trained to handle diverse locomotion tasks, adapting to
unpredictable scenarios without explicit programming [9]. However, many RL
approaches are trained in simulation due to the high sample efficiency required for
real-world training. Simulation allows extensive data collection and model tuning
without risking hardware damage [10, 11, 12], but it also introduces challenges,
as simulated environments can only approximate real-world conditions. This gap
between simulation and reality, known as the reality gap, leads to inaccuracies in
the model, which researchers attempt to mitigate through domain randomization.
Moreover, inference in RL models can be computationally demanding compared
to control-based approaches like MPC, which typically benefit from more efficient
real-time performance and come with performance guarantees.
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A compelling solution to this challenge is on-robot learning, which focuses on
training and refining RL models directly on the physical robot in real-world
environments. On-robot learning addresses the limitations of simulation by
exposing the RL models to the robot’s actual operating conditions, ensuring that
the learned policies are adapted to real-world dynamics. However, on-robot
learning is constrained by hardware limitations, such as processing power, and
requires careful time management due to the physical wear on the robot and the
expense of each real-world interaction. Given these constraints, sample efficiency
becomes critical: algorithms must achieve robust performance with minimal
training data.

Furthermore, real-time on-robot data presents additional challenges, as state
estimations from noisy and potentially unreliable sensors introduce uncertainty
into the training process. Accurate state estimation is crucial for effective
decision-making, and the reliance on sensor data requires RL algorithms to
contend with inherent inaccuracies in real-world measurements. Consequently,
advancing sample-efficient algorithms that can cope with noisy data and operate
in real-time is essential to achieving effective on-robot learning for quadruped
locomotion. This thesis investigates the development of such algorithms to enable
quadruped robots to learn adaptable and robust locomotion behaviors directly on
the robot, bringing the field closer to practical and resilient deployment in
real-world applications.
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2 Foundations

2.1 Universal Function Approximators

Deep learning, a subset of machine learning, has emerged as a powerful approach
for modeling complex patterns and representations in data. At its core are deep
neural networks, which are artificial neural networks composed of multiple layers
of interconnected nodes or neurons. These networks are capable of approximating
complex functions by learning from data and are considered universal function
approximators due to their ability to approximate any measurable function to an
arbitrary degree of accuracy, given sufficient data and computational resources
[13].

Mathematically, a neural network defines a function f(x; θ), where x represents
the input data and θ denotes the set of parameters (weights and biases) that
define the network. The learning process involves finding the optimal parameters
θ∗ that minimize a loss function L(f(x; θ), y), where y is the target output. This
optimization is typically performed using algorithms like stochastic gradient
descent and its variants.

Deep learning has proven effective across various tasks, including regression and
classification. Beyond these foundational applications, specialized architectures
have expanded deep learning’s capabilities in handling specific data types and
problems. Autoencoders, as unsupervised networks, learn compressed
representations by encoding data into a latent space and reconstructing it, which
aids in dimensionality reduction, anomaly detection, and generative modeling.
Convolutional Neural Networks (CNNs) are optimized for grid-like data, such as
images, where they learn spatial feature hierarchies, excelling in computer vision
tasks like image classification and segmentation [14, 15]. Recurrent Neural
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Networks (RNNs) and their variants, such as Long Short-Term Memory (LSTM)
networks, model sequential data by capturing information from previous inputs,
making them ideal for tasks like language modeling and time series prediction
[16]. Transformers have revolutionized natural language processing through
self-attention mechanisms, enabling models to assess the relevance of different
input parts [17]. This architecture has led to breakthroughs in language
understanding and generation, with models like BERT [18] and GPT [19] setting
new performance standards.

2.2 Reinforcement Learning

Reinforcement learning (RL) is a branch of machine learning focused on training
agents to make sequential decisions in an environment in order to maximize a
cumulative reward signal [20]. The primary goal of reinforcement learning is
to derive an optimal policy that dictates the best action an agent should take in
any given state to maximize the expected sum of future rewards. This approach
enables the agent to learn through interactions with the environment, receiving
feedback in the form of rewards, which guide the learning process [20, 21].

RL problems are often modeled as a Markov Decision Process (MDP), where the
environment is defined by a set of states S, a set of actions A, a transition function
P (s′|s, a) that describes the probability of reaching a new state s′ given the current
state s and action a, a reward function R(s, a) that specifies the reward obtained
after taking action a in state s, and a discount factor γ which determines the
importance of future rewards . The agent’s objective in this MDP framework is to
maximize the expected return, often defined as the cumulative discounted reward
over time.

One of the foundational algorithms in reinforcement learning is Q-learning,
introduced by Watkins et al. [22], which is an off-policy algorithm that seeks to
learn the optimal action-value function, Q∗(s, a). The action-value function, or
Q-function, represents the expected cumulative reward of taking a specific action
a in a given state s and subsequently following the optimal policy. In Q-learning,
the Q-value of a state-action pair is iteratively updated using the Bellman

4



equation:

Q(s, a)← Q(s, a) + α
[

R(s, a) + γmax
a′

Q(s′, a′)−Q(s, a)
]

,

where α is the learning rate, R(s, a) is the immediate reward, γ is the discount
factor, and maxa′ Q(s′, a′) represents the maximum Q-value for the next state s′.
By iteratively updating the Q-values in this way, Q-learning converges towards
an approximation of Q∗(s, a), enabling the agent to select actions that maximize
long-term rewards.

As environments and state-action spaces become more complex, traditional
Q-learning struggles due to the vast number of state-action pairs that need to be
evaluated and stored. To address this limitation, deep Q-learning (DQN)
combines Q-learning with deep neural networks, allowing the Q-function to be
approximated by a neural network rather than a table of values. In their seminal
work, Mnih et al. [23] introduced the DQN algorithm, which demonstrated
unprecedented performance by enabling an agent to learn directly from raw
pixels to achieve human-level control in Atari games. The network is trained
using a replay buffer, where past experiences (state, action, reward, next state)
are stored and randomly sampled to break correlations in the data, and a target
network that stabilizes training by periodically updating to the current
Q-network’s weights. Deep Q-learning, as popularized by DQN, has proven
effective in complex environments, setting a foundation for advanced applications
of reinforcement learning in areas as diverse as gaming [24] and real-world
control tasks.

Further advancements in reinforcement learning have sought to address scalability
and generalization, particularly for robotics applications. Kalashnikov et al [25]
introduced QT-Opt, a scalable vision-based reinforcement learning framework,
which leverages off-policy training on large datasets to learn complex manipulation
tasks such as grasping. By utilizing over 580k grasp attempts across multiple
robots, QT-Opt achieved generalization to previously unseen objects. This work
underscores the potential of combining Q-learning methodologies with scalable
neural network architectures to tackle high-dimensional control problems.
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2.3 Soft Actor-Critic

The Soft Actor-Critic (SAC) algorithm [26, 27] 1 is a model-free, off-policy
actor-critic reinforcement learning algorithm that achieves high sample efficiency
and stable learning in continuous action spaces. Actor-critic methods, in general,
use two primary components: the actor, which represents the policy by selecting
actions, and the critic, which evaluates the chosen actions by estimating their
expected returns. The actor and critic operate concurrently, with the critic
providing feedback that helps the actor improve its policy. In SAC, both the policy
(actor) and the value functions (critic) are approximated by neural networks,
which allow the algorithm to generalize across high-dimensional or continuous
state and action spaces.

SAC extends the reinforcement learning objective by employing a maximum
entropy framework to promote exploration and robustness. In traditional
reinforcement learning, the objective is to find a policy π that maximizes the
expected cumulative reward. However, SAC augments this with an entropy term
to maximize both the expected reward and the entropy of the policy. This
entropy-enhanced objective is represented as:

JMaxEnt(π) = Eπ

[

∞
∑

t=0

γt (R(st, at) + αH(π(·|st)))

]

,

where α > 0 is a temperature parameter that balances the reward and the entropy
term H(π(·|st)) = −Eat∼π [log π(at|st)]. This maximum entropy reinforcement
learning approach encourages the agent to prefer more stochastic policies, which
increases exploration, particularly beneficial in environments with sparse or noisy
rewards.

SAC employs a method known as soft policy iteration, which alternates between
policy evaluation and policy improvement steps. In policy evaluation, the
Q-function is updated to estimate the expected return for each action while
accounting for the entropy. This is achieved by minimizing the soft Bellman
residual with respect to the Q-function, where the Q-function update equation
incorporates both reward and entropy:

Q(s, a)← Q(s, a) + α [R(s, a) + γEa′∼π (Q(s′, a′)− α log π(a′|s′))−Q(s, a)] .
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In policy improvement, the policy π is updated by minimizing the expected KL
divergence between the policy and an exponential of the soft Q-function:

Jπ(θ) = Est∼D [Eat∼πθ
[α log πθ(at|st)−Q(st, at)]] ,

where θ denotes the parameters of the policy network.

An essential component of SAC is the temperature parameter α, which adjusts the
trade-off between exploration and exploitation by controlling the weight of the
entropy term in the objective. Rather than keeping α fixed, SAC often includes an
automatic temperature tuning mechanism to adapt α dynamically, aligning the
agent’s entropy with a target entropyHtarget. The temperature update is performed
by minimizing the objective:

J(α) = Eat∼πθ
[−α (log πθ(at|st) +Htarget)] ,

where a higher α encourages more random actions, thus increasing exploration,
and a lower α focuses the agent on exploitation.

The update-to-data (UTD) ratio [27] in SAC, denoted as κ, is another key
parameter that influences the learning dynamics. The UTD ratio represents the
number of gradient updates applied to the policy and value networks for each
environment interaction step. Adjusting κ allows for improved sample efficiency
by controlling how frequently the agent learns from collected data relative to its
interaction with the environment. A higher UTD ratio improves sample efficiency
by enabling more learning per collected sample, but it can lead to instability if the
data in the replay buffer is not sufficiently diverse. Conversely, a lower UTD ratio
places more emphasis on data collection and exploration but may reduce learning
efficiency.

Beyond the original SAC, several variants have been developed to further improve
sample efficiency and stability. Dropout Q-Functions (DroQ) [28] leverages
dropout regularization within Q-function updates, reducing overestimation bias
and enhancing training stability, particularly in environments with high UTD
ratios. Another variant, Randomized Ensemble Double Q-Learning (REDQ) [29],
uses an ensemble of Q-functions to provide more accurate value estimates,
significantly boosting sample efficiency.
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Algorithm 1: Soft Actor-Critic Algorithm

Initialization :policy parameters θ, Q-function parameters φ, temperature α, target
parameters φ̄← φ

for each iteration do

for each environment step do

Observe state st
Select action at ∼ πθ(at|st)
Execute action at in the environment
Observe next state st+1 and reward rt
Store transition (st, at, rt, st+1) in replay buffer D

end

for each gradient step do

Sample mini-batch of transitions from D
Update critic parameters φ by minimizing JQ(φ)
Update policy parameters θ by minimizing Jπ(θ)
Adjust temperature α by minimizing J(α)
Update target network parameters: φ̄← τφ+ (1− τ)φ̄

end

end
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2.4 CrossQ

CrossQ [30] is a lightweight, sample-efficient algorithm designed for continuous
control tasks in reinforcement learning. It builds upon the SAC framework but
introduces several key modifications to improve sample efficiency while reducing
computational overhead. The core innovations of CrossQ are threefold: (1) the
removal of target networks, (2) the careful application of Batch Normalization
(BatchNorm) [31] in critic networks, and (3) the use of wider critic networks for
faster learning.

In traditional off-policy reinforcement learning algorithms, such as SAC, target
networks are used to stabilize learning by providing a delayed update of the critic’s
Q-value estimates. The target network is updated through Polyak averaging, which
introduces computational overhead and slows down the learning process. CrossQ
eliminates the need for target networks by leveraging alternative mechanisms
to stabilize learning. Instead of using a separate network to estimate the target
Q-values, CrossQ computes the Q-value updates directly from the critic network
itself. This simplification accelerates training while maintaining stability, which is
further enhanced by the use of BatchNorm in the critic network.

Batch Normalization, commonly used in supervised learning, has been shown
to improve the stability and convergence of neural networks [32]. However,
its application in reinforcement learning has been limited due to issues with
distribution shifts between the target and behavior policy. CrossQ overcomes these
challenges by concatenating state-action pairs from both the current and next
steps, allowing BatchNorm to normalize the combined distributions in a single
forward pass. This approach ensures that the normalization statistics are consistent,
preventing the performance degradation that can arise from distribution mismatch.

To further improve learning efficiency, CrossQ uses wider critic networks, inspired
by recent research demonstrating that wider networks are easier to optimize and
lead to better performance in deep learning [33]. The use of wider networks
allows CrossQ to extract more robust features, which accelerates the learning
process and leads to higher sample efficiency. Unlike prior methods that rely on
large ensembles or dropout for bias reduction, CrossQ achieves similar or better
performance using these simpler architectural modifications.
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2.5 Filtering

2.5.1 Low-Pass Filter

A low-pass filter (LPF) [34], also called Butterworth filter, is a signal processing
technique used to attenuate high-frequency components while allowing
low-frequency components to pass, thereby smoothing out rapid fluctuations in a
signal. The LPF is widely utilized in applications requiring noise reduction, as it
effectively suppresses undesired high-frequency noise while preserving the
essential characteristics of the signal.

In the context of digital signal processing, an LPF operates by incrementally
adjusting the current output y(t) toward the input x(t) over time, based on a
cutoff frequency fc. This cutoff frequency determines the speed of the response
and the degree of smoothing applied to the signal. The output y(t) is recursively
updated as a weighted average of the current input x(t) and the previous output
y(t−1), controlled by a smoothing factor α. Given a time interval∆t, the smoothing
factor α can be calculated as follows:

α =
1

1 + 2πfc∆t

1+2πfc∆t

This formula links the smoothing factor directly to the cutoff frequency, allowing
for effective control of the filter’s responsiveness. The LPF equation then updates
the output y(t) as:

y(t) = α · x(t) + (1− α) · y(t− 1)

By applying the LPF recursively, noise is gradually filtered from the input signal,
producing a smoother output. The simplicity and efficiency of the LPF make it
particularly suitable for real-time applications in which computational resources
are limited, and reliable noise reduction is essential.

A low-pass filter is valuable for smoothing joint angle predictions generated by a
neural network in locomotion tasks, particularly because neural network outputs
initially resemble Gaussian noise due to random weight initialization. This noise
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can lead to erratic, high-frequency fluctuations in the predicted angles, which
would destabilize the movement if directly applied. By attenuating these
high-frequency components, the low-pass filter reduces noise and stabilizes the
predictions, allowing the network to gradually learn coherent, smooth joint
trajectories essential for effective locomotion.

2.5.2 One Euro Filter

The one Euro filter (OEF), proposed by Casiez et al. [35], is a low-pass filter
specifically designed to address real-time signal smoothing challenges. The core
principle of the one Euro filter is to dynamically adjust the cutoff frequency based
on the rate of change of the input signal. By employing an adaptive cutoff frequency,
the filter effectively smooths out noise while preserving relevant high-frequency
signal changes.

A description can be seen in algorithm 2. The one Euro filter’s cutoff frequency for
a signal x(t) is controlled by two parameters: the minimum cutoff frequency fmin,
which controls the basic level of smoothing, and a frequency β that determines
the influence of the rate of change on the cutoff frequency. The filter equation can
be described as follows:

The one Euro filter adjusts its cutoff frequency based on the rate of change of the
input signal, allowing for effective noise filtering while preserving sharp transitions.
Given an input signal x(t), the filter uses the following steps:

The adaptive cutoff frequency fc allows the one Euro filter to dynamically adjust
between noise reduction and responsiveness to rapid changes, achieving a balance
that suits real-time applications.

The one Euro filter is ideal for refining joint angle predictions from a neural
network because it adapts its smoothing intensity based on the speed of changes in
the signal. Early in training, network outputs often resemble random noise, which
the one Euro filter can effectively smooth without excessively dampening rapid
movements needed for responsive joint control. This adaptive smoothing allows it
to better preserve the motion compared to a basic low-pass filter, which may overly
smooth the signal and miss critical transitions essential for stable locomotion.

11



Algorithm 2: One Euro Filter Pseudo Algorithm

Input: Input signal x(t), minimum cutoff frequency fmin, tuning parameter β, time
step ∆t

Output: Filtered signal y(t)
Initialization: Initialize y(0) = x(0), dxsmooth(0) = 0
for each time step t do

Compute the rate of change of the signal:

dx(t) =
x(t)− x(t− 1)

∆t

Smooth the derivative dx(t) using a low-pass filter to obtain a stable estimate:

dxsmooth(t) = LowPassFilter(dx(t))

Calculate the adaptive cutoff frequency fc(t):

fc(t) = fmin + β · |dxsmooth(t)|

Filter the input signal x(t) using the adaptive cutoff frequency fc(t):

y(t) = LowPassFilter(x(t), fc(t))

end

return Filtered signal y(t)
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2.6 State Estimation

In this chapter, the problem of state estimation in the context of legged robots is
explored. The discussion begins with an introduction to the problem, highlighting
the challenges it poses for reinforcement learning. Various approaches to state
estimation are then examined, including forward kinematics, IMU fusion through
Kalman filtering, learning-based methods, and marker-based tracking systems.

In this thesis, state estimation defines the combination of the sensor data to reflect
the current state of the agent, also reflecting the environment. There are two
kinds of sensor information: exteroceptive and proprioceptive. Exteroceptive is
the information that is gathered from the environment, like camera images or
LIDAR scans. Proprioceptive information is the information that is gathered from
the agent itself, like joint angles or IMU data. The state estimation is particularly
important in the context of reinforcement learning with legged robots because
this information is used to judge the current state of agent to determine the next
action. An accurate state estimation makes learning easier because the agent does
not need to deal with any uncertainties. The current state is also used to assign a
credit (reward) to the action that was taken. Therefore, if the state estimation is
wrong, the assigned reward is also wrong which can lead to a conflicting signal
and which slows down the learning process.

There are several problems, that come with the state estimation in the real world.
The twomost contributing problems are delay and noise. The delay is caused by the
time it takes to process the sensor data and the time it takes to execute the action.
The noise is caused by the sensor itself, like the camera or the IMU. The noise
can be reduced by filtering the sensor data, but this comes with the cost of delay.
Simulation data has the advantage of having the true state of the environment
with no delay and noise but does not reflect the real world. Therefore, the state
estimation is crucial for the real-world experiments. The available information of
the used MAB Robotics HoneyBadger 4.0 relies on purely proprioceptive sensor
readings of joint encoder and IMU that give precise information about joint angle
information, trunk linear acceleration and orientation relative to gravity. The linear
velocity cannot be measured directly and has to be estimated. This is especially
important because the reward is given for the achieved velocity. To estimate the
trunk linear velocity, we investigated three different approaches, that we are going
to evaluate.
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2.6.1 Forward Kinematics and Acceleration Fusion via Kalman Filter

One of the most commonly used approaches for velocity estimation is the fusion of
forward kinematics with acceleration data from the IMU [36] . In this approach,
forward kinematics is used to calculate the velocity of each hip relative to its foot.
The overall velocity of the trunk is then obtained by averaging the velocities of
the four hips. This serves as the correction step in the Kalman filter. Acceleration
data from the IMU, which serves as the measurement, is then used to update and
correct the velocity estimates. The velocity of each leg is only considered when
the leg is in contact with the ground and producing traction. The velocity and
acceleration data are fused using a linear Kalman filter [37, 38]. The primary
advantage of this method is its computational efficiency, and the high-frequency
sensor data ensures minimal delay.

Foot contact information is essential and is most reliably acquired using torque
sensors in the feet. Other methods for estimating foot contact include setting
thresholds for end-effector velocity and applied force [39, 40]. In our case, we
rely on an onboard method that utilizes planned foot contact information from the
gait planner. However, since our model learns joint angles through an end-to-end
process, the gait planner’s data is unavailable, so we assume that all legs are
in contact with the ground. This assumption leads to inaccurate linear velocity
estimation, which can indicate the direction of travel but lacks precision.

Typically, during locomotion, two legs are in contact with the ground while the
other two are in the air, moving in opposite directions. When averaging the
velocities of all four legs, the opposing velocities tend to cancel each other out,
resulting in an underestimated velocity that has a slight bias toward the true
direction of travel. Consequently, this approach significantly underestimates the
actual velocity.

In figure 2.1 the blue line represents the velocity estimation of the Kalman filter
fusion and is an example of the reliability. It is apparent that the velocity estimation
experiences the same displacement as the ground truth but is bound around the
zero velocity. This is due to the fact that in the correction step, the average foot
velocity is used, which is always approximately zero.
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Figure 2.1: Velocity estimation of Kalman filter fusion of forward kinematics and
acceleration data from the IMU, pure acceleration integration Kalman filter,
compared to ground truth.

2.6.2 Pure Acceleration Integration Kalman Filter

An alternative to the fusion of forward kinematics and acceleration data is to
use only the acceleration data from the IMU. This approach tries to not rely on
the forward kinematics, which can be inaccurate due to the lack of foot contact
information. The acceleration data is integrated using the composite trapezoidal
rule to obtain the velocity of the trunk. To be able to accurately calculate the local
velocity, the local acceleration needs to be transformed into the global frame with
the measured orientation given by the Magnetometer. Additionally, the gravity
needs to be compensated. The data is fused using a linear Kalman filter.

The measurement of the acceleration and orientation are noisy and therefore are
a source of drift which can only corrected by halting the robot and recalibrating
the filter. In figure 2.1 the orange line represents the velocity estimation of
the pure acceleration integration Kalman filter. After the initial calibration the
velocity estimation is reliable and follows the ground truth. However, the velocity
estimation drifts over time and the velocity estimation is not reliable anymore.
This is due to the fact that the acceleration data is integrated and the drift of the
acceleration data is accumulated over time.
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2.6.3 Deep-Learning-Based Velocity Estimation

In this section, we evaluate a deep-learning approach for estimating the trunk
velocity of a quadruped robot. This method leverages a neural network trained to
predict the velocity of the robot’s trunk based on input features such as joint angles
and acceleration data from an Inertial Measurement Unit (IMU). The training
process employs supervised learning using a dataset of joint angles, acceleration
data, and the corresponding ground truth trunk velocities. The primary advantage
of this approach lies in its ability to capture complex relationships between the
input features and the desired output. This capability can potentially lead to
more accurate velocity estimates compared to traditional methods. However, the
approach comes with significant limitations, including the need for a large dataset
and substantial computational resources for training. For this evaluation, a dataset
comprising 2M steps was collected in a simulated environment where an agent
was trained to walk in all directions. No noise was introduced into the dataset to
ensure clean input-output mappings. The dataset was divided into training and
validation subsets with an 80:20 ratio. The neural network architecture consists
of three fully connected layers with 256, 256, and 1 neuron, respectively, and
ReLU activation functions. The model was trained for 100 epochs using the Adam
optimizer with a learning rate of 0.001, and the mean absolute error (MAE) was
used as the loss function. The model’s accuracy on the validation set is shown in
figure 2.2. To be considered adequate, the MAE should be below 0.05. However,
this threshold was not achieved in the present experiment. One key limitation
of the current approach is the exclusion of critical features such as torque and
foot contact information. Without this data, it becomes unreliable to estimate the
velocity accurately. Velocity estimation depends heavily on determining whether
the robot’s feet are in contact with the ground, as this significantly affects the
dynamics of locomotion. Such information can be inferred if torque and joint
velocity data are included or if torque sensors are integrated into the robot’s feet.
As Agarwal etãl. [41] notes, these features play a crucial role in capturing the
dynamics of locomotion, and their absence in the dataset likely contributed to the
model’s inability to meet the expected accuracy threshold.
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Figure 2.2: Fully connected neural network loss for velocity estimation. Training
conducted for 100 epochs and shows saturation at a loss of 0.2.

2.6.4 Marker Based Tracking System

AprilTags [42] are a family of 2D fiducial markers that are widely used in robotics
and computer vision applications for precise localization and tracking. They consist
of a unique, binary-encoded ID, which aids in reliable detection under various
lighting conditions and backgrounds. AprilTags are particularly suited for tasks
requiring accurate pose estimation, as they provide a robust means of identifying
the 6-DOF (degrees of freedom) position and orientation of the marker relative to a
camera. The detection process is efficient and optimized for real-time applications.
It involves identifying the tag’s square shape in the image, decoding the binary
information, and computing the camera’s relative pose. This makes AprilTags
valuable in environments requiring fast, reliable fiducial detection, such as robotic
navigation, SLAM (Simultaneous Localization and Mapping), and augmented
reality systems.

This approach tries to compensate the fact that the forward kinematics does not
have foot contact information. The idea is to use a marker-based tracking system
to track the position of the robot. The webcam of the Laptop is used and pointed
towards the robot. The camera is calibrated using the camera calibration toolbox
from OpenCV [43]. The camera calibration is used to undistort the images. The
AprilTag library with the Python binding provided by Duckietown [44] is used to
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Figure 2.3: Custom made 3D printed cube with AprilTag on each side mounted on the
MAB HoneyBadger 4.0.

detect the marker. The marker is a 3D printed cube with an individual AprilTag
tagStandard41h12 on each side. The cube is mounted on the robot. The position
of the marker relative to the camera is used to calculate the position of the trunk.
To obtain the local linear velocity, at first, the position and orientation of the
marker is recognized relative to the camera. The best results are achieved by
using a Kalman filter and combing the position data with the acceleration data
from the IMU. This also means that the velocity estimation increases the frequency
from 30 Hz, which is the camera frequency to 416.67 Hz yielded by the IMU. It
is necessary that the acceleration data and position data are in the same frame.
This can be achieved by transforming the position data from the camera frame to
the local frame by using the calculated orientation from the AprilTag. Then, the
local position and local linear acceleration can be transformed into the IMU-global
frame and fused. This approach was not reliable due to the fact that the estimated
orientation from the AprilTag in certain situations had multiple solutions leading
to a false estimate. Furthermore, this wrong orientation lead to fluctuations in the
local position estimate relative to the camera which was used as the correction
step, throwing off the estimated velocity.

Therefore, a different approach was elaborated, that uses the position data in the
camera frame that was assumed to be the world frame. The acceleration data
cannot be included in this approach because this also needed to be transformed by
the estimated orientation which was not reliable. Therefore, this approach used
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a linear Kalman filter to estimate velocity by only using the position data. This
has the disadvantage that only one type of data was used and that the velocity
estimation frequency is the same as the frequency of the camera (30 Hz).

Despite its advantages, tracking a robot using AprilTags comes with several
limitations. One of the primary issues is the potential for the marker to be
occluded, either by the robot itself or by elements in the environment. This
occlusion can result in intermittent tracking or complete loss of the marker,
leading to unreliable position estimation. Additionally, false detections may occur
due to reflections or the presence of objects with similar visual patterns, which
can confuse the detection system. Another significant challenge is the delay
introduced by the camera and the computational overhead of processing the
tracking data. This delay can negatively impact real-time performance,
particularly in applications requiring precise and rapid velocity estimation.

The necessity of equipping the robot with a physical marker can also impose
constraints. Depending on the robot’s design, the marker may affect its dynamics
or restrict freedom of movement. Moreover, using a camera for tracking introduces
additional complexity to the system setup. When the camera is used as the
reference frame (i.e., assumed to be the world frame), it must be properly aligned
with the gravity vector to ensure accurate position and orientation estimation.
The distance between the camera and the robot is another constraint. As the
robot moves further away from the camera, the accuracy of the position estimation
decreases, leading to larger errors. This limitation restricts the operational range
of the tracking system, especially in larger environments.

As it can be seen in figure 2.4, it is possible to conduct experiments with this setup.
However, it turned out, that this kind of system had too much overhead and did
not meet the timing requirements. Therefore, the update frequency was reduced
to 10 Hz to account for the delay and reduced tracking rate. Additionally, the
mounted cube was damaged multiple times, rendering this approach not feasible
for long-term experiments.
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Figure 2.4: CPG-based experiment with the AprilTag tracking system. Update frequency
was reduced to 10 Hz to account for delay and reduced tracking rate. The
coordinate system visualizes the local linear velocity.
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3 Related Work: Deep Reinforcement
Learning for Quadruped Locomotion

This chapter discusses the current state of the art in quadruped locomotion,
exploring various methodologies and their advancements. The discussion begins
with an overview of different approaches to locomotion, including joint angle
prediction and central pattern generators. Furthermore, it examines methods that
are either trained in simulation and subsequently transferred to real-world
applications or learned directly on the robot. Traditional approaches to
quadruped locomotion, such as model predictive control, dynamic movement
primitives (DMPs) [45], and Whole-Body Control (WBC) [46, 47], have
demonstrated significant success in controlling quadruped robots. However, these
methods often face challenges related to adaptability and robustness in dynamic
or unstructured environments. In contrast, deep reinforcement learning has
emerged as a promising alternative, offering the potential for more flexible and
adaptive locomotion control strategies.

3.1 Zero-Shot Sim-to-Real Transfer

Recent advancements in deep reinforcement learning have established it as a
powerful and robust approach for developing autonomous control policies for
complex robotic tasks, especially in quadrupedal locomotion. Traditionally, DRL
policies are trained in simulated environments to mitigate real-world risks and
expedite development.

Initial studies by Hwangbo et al. [48] validated the feasibility of training dynamic
locomotion skills for legged robots in simulated settings, achieving policies that
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demonstrated robustness and agility. Lee et al. [7] furthered this work by
developing DRL-based policies capable of navigating rugged terrain, highlighting
DRL’s utility in tasks that require adaptability and perceptive responses.

A notable shift towards zero-shot sim-to-real transfer has emerged in recent
research. Miki et al. [49] introduced a robust perceptive locomotion controller
that integrates proprioceptive and exteroceptive data via an attention-based
recurrent encoder, enabling the robot to autonomously adapt to challenging
terrains. Field tests in natural and variable environments, including snow,
vegetation, and wet surfaces, demonstrated the controller’s ability to maintain
stability and high-speed locomotion, even completing an hour-long hike in alpine
conditions. This study effectively bridged the gap between simulation-based
training and real-world deployment, illustrating the potential of DRL-based
controllers to achieve seamless transitions across different environments.

Building on sim-to-real transfer, Rudin et al. [50] proposed an end-to-end
learning framework that integrates locomotion and local navigation, removing the
conventional segmentation of navigation tasks. By focusing on the end-state
rather than intermediate waypoints, their unified policy could simultaneously
learn multiple behaviors, such as walking, turning, and climbing, leading to
improved adaptability and efficiency in real-world environments. The system
trained entirely in simulation, successfully transferring zero-shot to natural
settings, where the robot navigated varied obstacles, including stairs and inclines.

In a related approach for agile navigation, Hoeller et al. [51] developed a
hierarchical DRL framework for the ANYmal quadruped, enabling high-speed
parkour-style maneuvers, such as jumping and climbing, at speeds up to 2 m/s.
Their system comprises perception, locomotion, and navigation modules that
estimate terrain features and dynamically select the appropriate skills for each
challenge.

Torque-based control has also emerged as a compelling alternative to traditional
position-based methods in DRL for legged locomotion. Chen et al. [52] introduced
a torque-control framework where the RL policy directly predicts joint torques at a
high frequency, avoiding the need for PD controllers. This approach enhances the
robot’s response time and stability on varied terrains, enabling it to resist external
disturbances.
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Addressing the challenges of agility and adaptability, Li et al. [53] proposed
Curricular Hindsight Reinforcement Learning (CHRL), a framework that combines
an automatic curriculum strategy with an adapted Hindsight Experience Replay
(HER) [54]. This combination allowed the controller to perform high-speed
maneuvers and quickly recover from perturbations, achieving forward speeds
of up to 3.45 m/s and spinning velocities of 3.2 rad/s. The CHRL framework
enhances sample efficiency and resilience to disturbances, making it well-suited
for varied outdoor terrain.

In the domain of extreme agility, Margolis et al. [55] presented an RL-based
controller for the MIT Mini Cheetah that sustained high-speed locomotion at
3.9 m/s on grass and 3.4 m/s on gravel and ice. The system uses an adaptive
curriculum that gradually increases velocity commands, equipping the quadruped
to navigate the dynamic complexities of high-speed running, relying on minimal
sensing inputs such as an IMU and joint encoders.

Further extending perception-driven reinforcement learning, Chen etal. [56]
presented a cross-modal learning framework for estimating terrain physical
parameters like friction and stiffness based on visual data. This approach allows
quadrupeds to anticipate and adapt to varying terrain without direct contact,
reducing energy consumption and enhancing stability on deformable or slippery
surfaces, thus advancing the potential for zero-shot transfer in challenging
environments.

Research focused on navigating extreme terrains, such as ladder climbing and
parkour, has also yielded notable advances. Vogel et al. [57] achieved zero-shot
ladder climbing using reinforcement learning and a custom end-effector, reaching
a 90% success rate across various ladder configurations. Similarly, Cheng et al.
[58] employed image-based inputs from a depth camera to train a single policy
that enabled a quadruped to perform parkour maneuvers, such as high jumps and
inclined running, in unstructured environments.

Together, these studies showcase innovative approaches to overcoming the
challenges of real-world deployment for DRL-trained controllers. By integrating
methods like hierarchical learning, torque-based control, curriculum learning,
and adaptive feedback, researchers have developed highly agile, stable, and
adaptable behaviors that are increasingly reliable in real-world settings. These
advancements show DRL’s potential as a robust solution for deploying legged
robots in dynamic, unpredictable environments.
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3.2 Central Pattern Generators

Nevertheless, DRL alone often suffers from slow learning rates and high sample
complexity, particularly when applied to tasks like legged locomotion, which
involve rich dynamics and require precise control over numerous degrees of
freedom.

To address these limitations, various architectures have been proposed that
incorporate domain knowledge into the learning process. One notable example is
the use of Central Pattern Generators (CPGs), which have been extensively
studied for their ability to generate periodic, rhythmic movements in both
animals and robots. Gay et al. [59] explored the modulation of CPGs with learned
neural network controllers to achieve adaptive locomotion. Similarly,
Sharma and Kitani [60] exploited the cyclic nature of locomotion by designing
phase-parametric policies for reinforcement learning tasks.

Incorporating predefined controllers, such as CPGs, into a learning-based
framework has been shown to improve the efficiency and robustness of learned
policies. Tan et al. [61], for example, demonstrated that combining a feedback
balance controller with a user-specified motion generator leads to more stable
locomotion behaviors. A limitation of these approaches is that the predefined
controllers are often fixed, allowing little flexibility for the learning algorithm to
adapt them.

Building on these foundations, Kasaei et al. [62] proposed a hybrid locomotion
framework that integrates a closed-loop CPG-ZMP-based walk engine with
reinforcement learning. Their system adapts walk engine parameters in real-time
through a Proximal Policy Optimization (PPO) algorithm enhanced with a
Proximal Symmetry Loss function. This innovative framework demonstrated
robust omnidirectional locomotion across diverse terrains, showcasing human-like
gait adaptability. By leveraging symmetry in the optimization process, the
approach improves sample efficiency and generalization, enabling the robot to
handle noisy environments and external perturbations effectively.

Similarly, Bellegarda and Ijspeert [63] introduced CPG-RL, a method that
incorporates CPGs into a deep reinforcement learning framework for quadruped
locomotion. This approach enables the agent to directly modulate intrinsic
oscillator parameters, such as amplitude and frequency, facilitating real-time
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adaptation to environmental changes. The framework was successfully
transferred from simulation to real-world scenarios without extensive domain
randomization or artificial noise. Demonstrating exceptional robustness, the
Unitree A1 quadruped maintained stability while carrying an additional load of
13.75 kg, equivalent to 115% of its nominal mass. Furthermore, CPG-RL allowed
for stable omnidirectional locomotion with minimal sensory input, such as foot
contact booleans, showcasing its versatility and resilience in practical
applications.

3.3 On-Robot Deep Reinforcement Learning

A common limitation of simulation-based approaches is the "reality gap," where
policies trained in simulation do not directly transfer to real-world tasks due to
differences between the simulated and physical environments. This has led to
significant interest in learning directly in real-world settings, bypassing the need
for simulation-to-reality transfer.

Addressing the challenge of minimal human intervention in real-world training,
Ha et al. [64] proposed a system focused on automation and safety, aiming to
reduce the need for human supervision. By integrating a safety-constrained
reinforcement learning framework within a multi-task setup, their approach
enabled a quadrupedal robot to autonomously learn to walk on three distinct
terrains: flat ground, a soft mattress, and a doormat with crevices. This system
involved a constrained Markov Decision Process (cMDP) that prioritized safety,
limiting roll and pitch to prevent the robot from falling. Additionally, their system
automated resets, allowing the robot to retry tasks independently and stay within
a designated training area by switching between forward and backward walking
tasks.

In the domain of real-world robotic learning, several key studies have advanced the
field by enabling robots to bypass traditional simulation training. Haarnoja et al.
[8] introduced a sample-efficient DRL algorithm based on maximum entropy
principles, applied specifically to quadrupedal locomotion on the Minitaur robot.
Their approach demonstrated that learning policies entirely in real-world settings
is feasible, highlighting the robustness of DRL in adapting to real-world conditions
without relying on simulation.
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Building on this trajectory, Wu et al. [65] presented the Dreamer algorithm, which
leverages a world model to enable robots to learn from imagined rollouts, thereby
reducing the need for extensive trial-and-error interactions in the real world.
Dreamer utilizes a learned latent model to simulate future action sequences,
allowing for a more efficient policy update process. The researchers applied
this model to various robotic platforms, including a quadruped that learned to
walk within one hour and adapt to physical perturbations within ten minutes.
Their findings demonstrated that world models, when coupled with real-world
reinforcement learning, could make on-hardware learning practical and data-
efficient, thereby bypassing the limitations of traditional simulators.

Smith et al. [66] further explored real-world deep reinforcement learning by
focusing on model-free reinforcement learning to develop a highly efficient training
process for quadrupedal locomotion. By implementing carefully optimized task
setups and algorithm parameters, they enabled a Unitree A1 quadrupedal robot
to learn effective locomotion skills within 20 minutes across diverse terrains,
including both indoor and outdoor settings such as flat ground, mulch, grass,
and a hiking trail. The system was based on a variant of the Soft Actor-Critic
algorithm, specifically the DroQ variant, which provides regularization and layer
normalization to improve sample efficiency. After testing various SAC methods,
they chose DroQ due to its superior stability and performance on real hardware.
The robot achieved a maximal forward speed of 0.44 m/s after approximately
20k update steps, leveraging joint target predictions as actions. To enhance
learning efficiency and minimize hardware strain, they restricted the action space
to a limited range around a nominal joint position. Action outputs were further
smoothed using a low-pass filter, and training was accelerated using JAX, which
allowed for just-in-time compilation and optimized execution. Velocity estimation
was achieved with a Kalman filter that fused data from an IMU and forward
kinematics. The control updates were performed at a frequency of 20 Hz, with
high proportional and derivative gains (60 Kp and 5 Kd) applied to ensure stability.
An automatic resetting mechanism was used to reposition the robot when it fell,
reducing the need for human intervention.

In a subsequent study, Smith et al. [67] developed Adaptive Policy Regularization
for Learning (APRL), a framework that dynamically modulates the robot’s action
space to enhance both training stability and sample efficiency. APRL’s
regularization strategy begins with restricted joint angles that gradually expand
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as the policy improves, balancing exploration and safety by constraining early
training actions to prevent instability. Using the DroQ variant of SAC, APRL
enables the Unitree A1 robot to refine its locomotion skills across challenging
terrains, such as inclines, foam, and thick grass, with over 80k training steps,
which takes approximately 80 minutes to collect the data. The system achieved
an increased maximum speed of 0.62 m/s and utilized an adaptive penalty
mechanism, where the dynamics model’s prediction errors informed adjustments
to the exploration bounds. APRL’s training process incorporated periodic neural
network resets to maintain the model’s plasticity and prevent overfitting to earlier
data. Real-time state estimation was supported by an Intel RealSense T265
camera mounted on the robot, which provided drift-free velocity estimates that
enhanced stability in complex terrains. The APRL framework demonstrates
significant improvements in real-world robotic DRL, enabling the robot to
continuously improve its performance in unstructured and variable environments.
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4 Method

This chapter introduces the core modifications implemented to enhance
performance in quadruped locomotion using on-robot reinforcement learning.
Two distinct approaches to locomotion are then explored: Joint Angle Prediction
(JT), as similar to the approach of Smith et al. [66, 67], and an alternative
approach based on Central Pattern Generators (CPG). These methods are
critically analyzed, with a focus on their respective advantages, limitations, and
the fundamental differences between them. The chapter also delves into the
application of on-robot reinforcement learning in the context of quadruped
locomotion, addressing the unique challenges and opportunities this approach
presents. The discussion begins with an overview of the setup for the deep
reinforcement learning algorithm, providing a foundation for understanding its
application. Finally, the reward function and curriculum utilized in the
experiments are described in detail, highlighting the individual components and
their contributions to the agent’s learning process.

In this thesis, we aim to investigate the following research questions:

• How can a robust and efficient locomotion strategy be developed for
quadruped robots?

• What methods can enable versatility in both direction and speed for
quadruped locomotion?

• How effective are Joint Angle Prediction and Central Pattern Generators in
enhancing quadruped locomotion?

• What is the performance of on-robot reinforcement learning in the context
of quadruped locomotion?
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We are going to evaluate different reward functions and curricular for two primary
tasks: (1) walking to the forward direction with a constant speed and no yaw
velocity (no turning), and (2) walking in any desired direction with a specific
velocity. Moreover, the agent must learn a robust gait capable of adapting to
various terrains and environmental conditions. To validate the effectiveness of
the proposed method, we will evaluate the agent’s performance using the MAB
Robotics HoneyBadger 4.0 platform (shown in 4.1) in an office and outdoor
environment.

Figure 4.1: The MAB Robotics HoneyBadger 4.0 quadruped robot.
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4.1 Setup

In this work, we explored a variety of reinforcement learning algorithms based
on Soft Actor-Critic, yet our primary focus remains on the CrossQ algorithm, as
introduced by Palenicek et al [30]. CrossQ offers notable improvements in sample
efficiency and computational performance, making it a favorable alternative to
other SAC-based approaches. These characteristics are essential for achieving
high-performance learning within the constrained time and computational limits
typical of on-robot, real-time applications.

The observation space, see table 4.1, for the agent includes approach specific
information. If the Joint Target approach is chosen, the agent is solely depended
on joint angle positions (corrected by nominal positions). We found that joint
angles of [0.1, 0.6,−1.2]T were suitable nominal positions. Additional, we restrict
the action space to ±[0.2, 0.4, 0.4] of the nominal position. This restriction ensures
that the possible configurations represent poses that lead to stable behavior. On
the other hand, if a CPG-based approaches is used, a CPG-progress variable is
included to give agent information about the state of the walking cycle.

The action space, see table 4.2, again varies depending on the selected approach
to enable adaptability in movement control strategies specific to each approach.
The neural network architecture deployed in all cases is composed of two layers,
each containing 256 neurons, which balances computational efficiency with
representational capacity for processing the observation and action spaces
effectively.

In RL, the exploration-exploitation trade-off is a well-known issue. The agent
must explore the environment sufficiently to discover an optimal policy, while
simultaneously exploiting its learned policy to maximize reward. To facilitate
efficient exploration, we incorporate techniques such as reward shaping,
curriculum learning, action space restriction, and entropy regularization. These
methods ensure that the agent explores the environment effectively while still
focusing on high-reward actions. The chosen hyperparameter for every used
algorithm can be seen in table 4.3 and the respective filter parameter for the JT
approaches in table 4.4.
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Table 4.1: Observations Space Specifications for JT and CPG Models

Joint Target Prediction (JT) Dim Central Pattern Generator (CPG) Dim

Joint Angle 12 Joint Angle 12

Joint Velocity 12 Joint Velocity 12

Predicted Joint Angle 12 Predicted Feet Position 12

Trunk Linear Acceleration 3 Trunk Linear Acceleration 3

Trunk Angular Acceleration 3 Trunk Angular Acceleration 3

Trunk Linear Velocity 3 Trunk Linear Velocity 3

Trunk Angular Velocity 3 Trunk Angular Velocity 3

Target Velocities 3 Target Velocities 3

Projected Gravity 3 Projected Gravity 3

CPG Progress 2

Total 54 56

Table 4.2: Action Space Specifications for JT and CPG Models

JT CPG-D CPG-VF CPG-RT

Joint Angle Feet Position Feet Position Feet Position

– – Frequency Joint Angle

12 12 13 24
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Table 4.3: Hyperparameter Configurations and Computational Complexity for Different
Models

Hyperparameter SAC SAC UTD 20 DroQ CrossQ

Learning Rate 0.003 0.003 0.001 0.005

Batch Size 256 256 256 128

Target Entropy − dim(A)/2 − dim(A)/2 − dim(A)/2 − dim(A)/2

Inference Frequency 20 Hz 20 Hz 20 Hz 40 Hz

Network Size 256, 256 256, 256 256, 256 256, 256

Ensemble Size 2 2 2 2

Gamma 0.99 0.99 0.99 0.99

Optimizer Adam Adam Adam Adam

Replay Ratio 1 20 20 1

Computed Updates 2 40 40 2

Table 4.4: Filter Parameters

Filter None Lowpass Filter One Euro Filter

mincutoff – 0.4 2.5

beta – – 0.1

dcutoff – – 100
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4.2 Joint Angle Prediction

One widely used technique in deep reinforcement learning-based quadruped
locomotion is Joint Angle Prediction, also known as Joint Target Prediction (JT).
This method involves an agent predicting target joint angles, which are then
implemented through a proportional-derivative (PD) controller to produce a stable
gait that can adapt to environmental and velocity conditions. The chosen PD
gains are critical in determining the agent’s ability to learn and perform effective
movements, with higher gains enabling more assertive actions to realize the target
gait. Lower gains, on the other hand, impose the physical limitations of the
robot more strictly, requiring the agent to explore configurations that avoid falls.
This exploration of stable configurations is essential, as the agent must encounter
and learn to manage potentially destabilizing states within the search space to
effectively avoid them.

While force-based control is another option, it is usually applied with control
architectures, such as model predictive or whole-body controllers, that consider
comprehensive dynamic models of the robot. In the context of RL, however, direct
torque-based control is challenging due to the initial exploration phase, where
the agent’s policy often begins as a random Gaussian distribution. This inherent
randomness leads to large, uncoordinated actions that are not only likely to cause
falls but also make it difficult for the agent to achieve stable locomotion early in
training. For this reason, we incorporate a nominal or default joint position as a
reference, which stabilizes the robot in a standing configuration from the start,
mitigating erratic movements and reducing the chance of exploration failures in
the policy space.

To further improve the agent’s control stability, we investigate different types of
signal filtering for the output actions, including no filtering, low-pass filtering, and
the one Euro filter. Signal filtering is essential to counteract the Gaussian nature
of the agent’s initial policy, which, without intervention, can lead to abrupt and
potentially harmful actuator movements. Such unsmoothed outputs risk producing
a high-frequency, vibrational gait that compromises both energy efficiency and
the mechanical integrity of the robot’s hardware.

Additionally, the adoption of CrossQ within our framework allows us to increase the
control loop frequency from 20 Hz to 40 Hz compared to prior implementations,
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Figure 4.2: Hyperparameter search using a grid search approach with learning rates
∈ [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05] and batch size ∈ [32, 64, 128, 256].
This is a 50k steps experiment using a Joint Target-One Euro Filter approach.
Marked runs (a) are shown in (b).

such as those presented by Smith et al. This increase in control frequency provides
a more responsive and stable gait, which enhances overall performance by reducing
the latency between action decisions and their physical implementation. Notably,
while the control frequency has been increased, the sample efficiency of the model
remains approximately constant, reducing the time required to gather sufficient
training samples.

Finally, hyperparameter tuning plays a vital role in optimizing the agent’s
performance, as it can be seen in figure 4.2. Parameters such as PD gains, filter
settings, and reward weights require careful adjustment to strike a balance
between stability, energy efficiency, and effective locomotion. Additionally, other
hyperparameters, including the learning rate, batch size, entropy coefficient, and
action space bounds, significantly influence the agent’s behavior and learning
efficiency.
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4.3 Central Pattern Generators

The Central Pattern Generator, or CPG, is designed to produce a stable trotting
gait for quadruped robots by predefining a general gait pattern that minimizes
the risk of falling. This predefined pattern is generated by creating a sinusoidal
signal for each leg, which is subsequently transformed into motor commands
using analytical inverse kinematics. The generated pattern only accounts for the
height of the foot, the agent is predicting a positional offset, that leads to the
advancement of the robot. The trajectory for the swing phase of each leg is defined
by a spline function, specified as follows:

f(tl) =

{

h · (−2 · t3l + 3 · t2l ), tl ∈ [0, π/2)

h · (2 · t3l − 3 · t2l + 1), tl ∈ [π/2, π)

where tl represents the normalized phase of the gait cycle, and h is the apex height
of the trajectory, set to 0.15m. This apex height, while higher than necessary for
many surfaces, has been empirically validated to provide robustness on rough
terrain with inclines of up to approximately 3 degrees. The motor command
generated by this function is sent to the robot’s actuators and executed using the
same PD controller employed in the joint angle prediction method. Figure 4.3a
and 4.3b demonstrate the feet trajectories over time. To facilitate coordination
and gait timing, the observation space of the agent is extended with a CPG phase
variable [l1, l2] ∈ [0, 1], tracking the current phase within the gait cycle. While
the CPG provides a stable foundational gait pattern, the reinforcement learning
agent is responsible for fine-tuning this pattern, enabling the quadruped to adapt
dynamically to different terrains and environmental conditions. We explore three
CPG operational modes within this study:

• A fixed, predefined gait frequency.

• A variable frequency, adjustable by the agent to match changing requirements.

• A fixed frequency combined with residual learning for fine-grained control.

In each mode, the action space is constrained to ensure safe and realistic foot
movements. Specifically, the foot offset predictions [xi, yi, zi] are limited to ranges
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of [−0.15, 0.15] for xi and yi, and [−0.1, 0.1] for zi. This constraint prevents
excessive or destabilizing foot placements. The final position of the foot is
calculated as the sum of the predicted offset and the current CPG trajectory,
defined by p = poffset + pcpg. In the adjustable frequency mode, the policy
additionally predicts the CPG frequency within a range of [1.0, 4.0], allowing the
agent to modify the gait speed as needed.

In the residual learning mode, the action space includes both the joint position
offsets and the raw joint angles [xi, yi, zi, φhi

, φti , φci ], where joint angle bounds are
set to [φhi

, φti , φci ] ∈ ±[0.1, 0.2, 0.2]. This extension permits multiple integration
methods for combining residuals with the CPG-based control strategy, including:

1. A combination of torque outputs from two PD controllers, where the resulting
torque τ = (τcpg+τresidual)/2 averages the CPG and residual components. Here,
the residuals are adjusted by the nominal joint position, which provides
damping and ensures that the action space remains within safe limits. This
configuration is primarily used in simulations.

2. A similar approach applied to joint angles, where φ = (φcpg+φresidual)/2, used
in real-robot experiments. Since the robot’s internal control loop operates
at 10 kHz, this method leverages the high-frequency internal controller for
torque outputs while using a 100 Hz control rate for sending joint angle
commands.

3. A summation of the joint angle solution from the CPG and offset approach
with the predicted residuals, defined as φ = φcpg + φresidual. This method
requires careful boundary management to ensure that the resulting joint
angles stay within the defined action space.

This CPG-based approach offers the significant advantage that the agent does not
need to learn a stable gait pattern from scratch. Instead, the CPG provides a reliable
and adaptable baseline for the agent to refine. The RL agent can focus its learning
efforts on optimizing the gait for varying terrains and dynamic environments,
rather than constructing a gait pattern from the ground up. By contrast, in joint
angle prediction without CPG assistance, the agent must develop the entire gait
pattern independently, a process that is often inefficient and lacks generalization
across different velocities and headings. This lack of generalization requires the
agent to learn specific gaits for each direction, increasing both the complexity and
time required for effective locomotion.
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Figure 4.3: Central Pattern Generator foot-height trajectory and trot gait.
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Figure 4.4: Target velocity tracking reward function with vt = 0.5m/s.
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4.4 Reward Functions

4.4.1 Forward Locomotion Velocity Reward

The velocity tracking reward employed in this study is derived from the reward
function introduced by Smith et al. [66], with modifications designed to enhance
the agent’s performance in stabilizing and optimizing forward locomotion. The
primary objective of this reward structure is to encourage the agent to reach a
specified forward target velocity, corresponding to the robot’s local positive x-axis,
while minimizing or eliminating movement in the lateral (local y-axis) direction.
This objective simplifies the control demands by focusing on forward motion,
allowing the agent to refine its gait along a single axis. Although the reward
function does not explicitly penalize lateral velocity, it encourages an efficient,
forward-focused gait as the most effective way for the agent to maximize reward.
For experimental contexts prioritizing faster convergence, an additional penalty
on lateral velocity could be incorporated to explicitly discourage any off-axis
movement, effectively reducing the exploratory space in the lateral direction.

The reward function contains multiple terms and can be seen in table 4.5. At
its core, a velocity tracking component rewards the agent for achieving a target
velocity in the x-axis direction. As it can be seen in figure 4.4a, this term is linearly
scaled within a bounded range centered around the target velocity, providing
the agent with a signal that guides its actions toward the desired speed. Such a
design aids in promoting smooth convergence, as it defines a clear gradient of
reward values that guide the agent’s gait refinement process. In addition to the
forward velocity tracking term, the reward function incorporates penalties that
deter actions potentially destabilizing or energy-inefficient. Specifically, a yaw
velocity penalty discourages excessive angular rotation, incentivizing the agent
to maintain a straight trajectory. A penalty on high torque usage encourages the
agent to lift its legs rather than dragging them, promoting a gait pattern that
reduces ground impact and minimizes mechanical wear on the robot’s feet. This
torque constraint also discourages the agent from exerting excessive force, which
further promotes energy efficiency and prevents erratic, high-energy movements.

The reward function further penalizes excessive pitch and roll motions in the trunk
to discourage exploratory actions that lead to significant trunk rotation, which
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can destabilize the robot. By penalizing trunk rotations, the reward structure
promotes a stable and balanced posture. Maintaining a stable trunk orientation
also reduces the likelihood of sudden loss of balance, implicitly decreasing the risk
of falls.

4.4.2 Omnidirectional Locomotion Velocity Reward

The Omnidirectional Locomotion Velocity Reward is an extension of the Forward
Locomotion Velocity Reward. This reward incentivizes the agent to move in a
specified direction with a desired velocity. While the one-dimensional reward
focuses solely on forward velocity along the x-axis, it does not explicitly account
for lateral velocities along the y-axis. However, the agent inherently learns to
minimize lateral movement over time, as such deviations negatively impact the
reward. The primary objective of this reward is to replicate the functionality of
the one-dimensional reward while extending its applicability to multidirectional
locomotion.

To achieve this, two approaches were developed:

1. A two-dimensional counterpart to the one-dimensional reward. This
approach involves rotating the current velocity by the target direction to
align along the same direction, followed by calculating the reward based on
Forward Locomotion Velocity Reward. This method does not explicitly
address velocities that are perpendicular to the target direction.

2. A joint reward formulation that simultaneously tracks and evaluates velocities
in both the x- and y-directions, thereby providing a unified incentive for
multidirectional movement.

In figure 4.5, Python code for the rotation of the current velocity, as mentioned
in approach 1, is presented. Additionally, a Lateral Locomotion Penalty, given by
rlat_penalty = −|vt,y|, can be applied to discourage any lateral movements relative
to the target direction.

Alternatively, as described in approach 2, the reward can be defined as

r(vx, vy) = min

(

max

(

1−
∥vxy − vd,xy∥

0.5
, 0

)

, 1

)
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Table 4.5: Forward Locomotion Velocity Reward Terms

Reward Weight Explanation

Velocity Tracking











1, for vx ∈ [vt, 2vt]

0, for vx ∈ (−∞,−vt] ∪ [4vt,∞)

1− |vx−vt|
2vt

, otherwise

1 Track a target velocity vt.
See 4.4a.

Yaw Penalty ω2

z -0.1 Penalize high yaw rate ωz.

Roll and Pitch Penalty θ2pitch + θ2roll -10 Prevent excessive rolling or
pitching.

Energy Penalty ∥τ∥2 -0.0003 Penalize energy
consumption based on
control input τ .

Total Reward rv(s, a) + ry(s, a)
+rp(s, a) + rt(s, a)

10 Combination of all sub-
rewards.

Non-negative Reward max(R(s, a), 0) 1 Ensure that the reward
remains non-negative.

Table 4.6: Forward Locomotion Maximal Velocity Reward Terms

Reward Term Formula Weight Explanation

Target Velocity Reward vx − |vy| 2 Incentivizes to increase x-
velocity and decrease y-
velocity.

Yaw Penalty |ωz| -0.1 Penalize high yaw rate ωz.

Pitch and Roll Penalty θ2pitch + θ2roll -10 Prevent excessive rolling or
pitching.

Total Reward rv(s, a) + ry(s, a)
+rp(s, a) + rt(s, a)

10 Combination of all sub-
rewards.

Non-negative Reward max(R(s, a), 0) 1 Ensure that the reward
remains non-negative.
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The latter reward function is used in the experiments to evaluate the performance
of the agent in a two-dimensional velocity tracking task. The reward shaping can
be seen in 4.4b with an exemplary target velocity vt = [0.5, 0.5].

Figure 4.5: Rotation of the current velocity to the target velocity. Used to reward
movement in the target direction and neglect velocity in the perpendicular
direction.
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4.5 Curriculum

The ability of humans and animals to learn complex behaviors is greatly enhanced
when training examples are presented in a structured and meaningful sequence,
progressing from simple tomore challenging concepts. This principle, formalized in
machine learning as curriculum learning [68], provides a framework for improving
the efficiency and effectiveness of training processes by gradually increasing the
complexity of tasks. Curriculum learning has been shown to not only accelerate
the convergence of training but also to influence the quality of solutions obtained,
particularly in the context of non-convex optimization problems encountered in
deep learning. By guiding the learning process through an organized sequence of
tasks, curriculum learning enables models to achieve better generalization and
more robust solutions.

In RL, curriculum learning has proven especially useful for tackling complex tasks
that may be too challenging for an agent to learn directly. By decomposing these
tasks into smaller, more manageable sub-tasks, the agent is able to progressively
acquire the skills required for more intricate behaviors. In the context of quadruped
locomotion, a curriculum can be employed to first train the agent to walk in a
straight line on flat terrain before introducing more complex scenarios, such
as navigating uneven surfaces, inclines, or obstacles. This gradual increase in
task difficulty allows the agent to develop a stable and efficient gait that can
adapt to diverse environmental conditions, improving its overall robustness and
generalization capabilities.

When extending locomotion to include movement in arbitrary directions and
achieving a desired yaw velocity, a curriculum becomes even more critical. The
complexity of these tasks requires a structured approach to ensure that the agent
can build on foundational locomotion skills while incorporating the additional
demands of directional control and orientation. To address these challenges, we
compare a curricular approach tailored to guide the agent through progressively
more complex scenarios to a randomly sampled target direction approach.
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4.5.1 Progressive Directional Expansion Curriculum

The curriculum employed in this study is termed the "Progressive Directional
Expansion Curriculum" to emphasize its structured approach to incrementally
increasing the range of locomotion directions explored by the agent. This
curriculum is designed to systematically guide the quadruped robot from simple
backward locomotion, exploiting its natural tendencies, to achieving stable
movement in all directions on the planar x-y axis. The framework models the
range of possible movement directions as a circle, divided into two half-circles
representing leftward and rightward directions. Each half-circle is further
partitioned into five bins, corresponding to smaller directional increments. The
curriculum starts with the robot learning to move backward and then
progressively incorporates additional bins adjacent to the already-learned regions,
expanding the range of directions in which the robot can reliably move.

Performance tracking is central to this curriculum. The robot’s ability to achieve
target velocities is evaluated for each bin based on several criteria: achieving
at least 95% of the target velocity, maintaining low lateral movement (< 0.05),
and minimizing angular velocity (< 0.05). These metrics are averaged over 400
steps, equivalent to half an episode in the environment, to determine whether the
robot has mastered the current bin. If the criteria are met, the bin is considered
learned, and the curriculum progresses by introducing the next adjacent bin for
training. This process continues until the full circle of movement directions is
covered, signifying the robot’s ability to navigate in any direction.

Sampling new movement directions follows a structured approach to balance
exploration and consolidation of learned behaviors. A 2/5 probability is assigned
to selecting the next left bin, 2/5 to the next right bin, and 1/5 to randomly
sampling from previously learned bins. Within the chosen bin, the direction is
sampled uniformly, ensuring gradual and consistent expansion of the movement
range.

During the initial stage of the curriculum, the robot’s maximum velocity is limited
to half of the overall target velocity. This restriction is designed to prioritize the
learning of directional movement patterns while avoiding the additional complexity
of high-speed locomotion. Once the robot has successfully navigated the full circle
of directions, the velocity constraint is removed, allowing the agent to focus on
improving speed and efficiency.
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5 Experiments

In this chapter we are going to present the experiments that we conducted to
evaluate the performance of our proposed approach. The experiments are twofold,
simulation and experiments on the real system itself. We will use simulation data
to evaluate the performance of the approach because we can observe the true
state of the environment. For the real world experiments we use the onboard state
estimation that is a Kalman filter fusion of forward kinematics and acceleration
data from the IMU. As described in section 2.6 the measured state does not align
with the real state and vastly underestimates the current velocity. Therefore, the
performance of the robot is evaluated by analyzing the recorded video footage.

5.1 Simulation

The simulation environment that we used for training the robot is based onMuJoCo
[69]. We used the MAB Robotics HoneyBadger 4.0 quadruped robot model (see
figure 5.1) for training the robot. The experiments were conducted with the
parameters that are displayed in table 5.1.

Sim. Freq. Act. Delay Dom. Rand. Obs. Noi. Par. Env. Terrain

200 Hz |t+ 0.03|, t ∼ N (0, 0.052) None None False Flat

Table 5.1: Simulation Parameters used in the experiments. Abbreviations: Sim. Freq.
(Simulation Frequency), Act. Delay (Action Delay), Dom. Rand. (Domain
Randomization), Obs. Noise (Observation Noise), Par. Env. (Parallel
Environment).
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The experiments conducted in this study are divided into two primary categories:
Forward and Multidirectional Locomotion experiments. The experiments are
initially conducted in a simulated environment to allow for controlled evaluations
and comparisons, and subsequently on a physical quadruped robot to validate
real-world performance. Simulation is particularly valuable as it provides a reliable
source of velocity measurements, enabling precise performance assessment.

The Forward Locomotion experiments focus on evaluating the robot’s ability to
move efficiently in a straight line along the x-axis. These experiments are further
subdivided into two objectives. In one set, the goal is to achieve and maintain
a specified target velocity of 0.5 m/s, assessing the agent’s ability to track and
stabilize around a predefined speed. In the other, the objective is to determine the
maximum achievable forward velocity, providing insights into the potential speed
limits of the learned locomotion policies. These experiments allow for a detailed
comparison of the presented control methods and their capability to generate
stable and efficient forward motion.

The Multidirectional Locomotion experiments, on the other hand, evaluate the
agent’s ability to move in arbitrary directions on the x-y plane. The aim is to
assess the versatility of the locomotion strategies by testing whether the robot can
achieve specified velocities in both the x- and y-directions. These experiments also
examine the ability to integrate and balance directional control and orientation,
crucial for navigating complex environments.

Approach Filter/Extension Abbreviation

Joint Target Prediction No Filter JT-NF

Joint Target Prediction Low-Pass Filter JT-LPF

Joint Target Prediction One Euro Filter JT-OEF

Central Pattern Generator Default CPG-D

Central Pattern Generator Variable Frequency CPG-VF

Central Pattern Generator Residual Target CPG-RT

Table 5.2: Overview of locomotion control approaches, their associated filters or
extensions, and corresponding abbreviations.

45



The approaches that are displayed in table 5.2, introduced in the methodology,
are evaluated in these experiments.

All experiments begin with a warm-up phase of 1000 steps to prefill the replay
buffer, ensuring that the initial learning process is not hindered by a lack of
experience data. In the Forward Locomotion experiments, training is conducted
over 50k steps with a target velocity of 0.5 m/s, with the target of conducting
20k steps in real-world experiments corresponding to approximately 9 minutes of
wall time. For Multidirectional Locomotion, training runs for 50k steps, equating
to about 21 minutes of real time. These time estimates exclude any potential
overhead, such as manually resetting the robot or the time required for just-in-time
compilation of the learning loop.

To ensure statistical reliability and minimize the impact of outliers, in simulation,
each experiment is repeated 10 times. By conducting these experiments in both
simulation and real-world settings, this study provides a comprehensive analysis of
the locomotion strategies, ensuring their robustness and applicability in practical
scenarios.

Figure 5.1: The MAB Robotics HoneyBadger 4.0 in the simulation environment.
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5.1.1 SAC Algorithm Comparison in Forward Locomotion

This experiment compares different Soft-Actor Critic based algorithms. State-of-
the-art algorithm include SAC with a higher update-to-date ratio of 20 update
steps, DroQ which implements Dropout layers to support generalization by using
regularization. CrossQ is based on batch normalization and crosses out much of
the introduced complexity by removing target network and uses a UTD rate of 1.
This experiment was conducted in the setting of Joint Angle prediction with no
filter applied. The goal of this experiment is to evaluate the performance of the
different algorithms and choose a class to continue with. This experiment utilizes
the Forward Locomotion Velocity Reward Function and the Forward Locomotion
with Target Velocity command function. The target velocity is set to 0.5 m/s. The
results are shown in figure 5.2. One of the considerations is the computational
complexity of the algorithms, see table 4.3. Due to the increased computation
time needed, SAC UTD 20 and DroQ are used with a reduced frequency of 20 Hz.
On the other hand, CrossQ runs in real-time with a frequency of 40 Hz, during the
training process. This results in a faster data collection which helps to collect the
necessary data faster. The plot 5.2 shows the training by wall time by using the
frequency of each algorithm. Each episode is limited to 20 seconds. This means
that CrossQ executes 800 steps per episode, while the other algorithms execute
400 steps per episode. Additionally, the maximal possible return approximately
doubles when using CrossQ compared to the other algorithms. The simulation
results do not account for the time needed to reset the robot and only track training
time. CrossQ completes the training within approximately 21 minutes, whereas
the other algorithms require about 42 minutes. Furthermore, CrossQ learns to
walk with the required target velocity after approximately 2 minutes. The next
best-performing algorithm, DroQ, requires about 7 minutes to reach the target
velocity. On average, they achieve a velocity of around 0.6m/s. This behavior is
necessary to consistently obtain the highest reward, as the velocity exhibits slight
variations during the gait cycle. All the algorithms naturally observe that lateral
motions do not aid in reaching the goal. Additionally, CrossQ exhibits a lower
average termination rate of about 14 falls. Similarly, DroQ performs second best
but still has an average termination rate of about 32 falls. Notably, DroQ achieves
better performance regarding the yaw and torque penalties, although these have
only a slight impact on the overall return. SAC and SAC UTD 20 also reach the
target velocity but fail to match the velocities achieved by the other algorithms.
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Figure 5.2: Comparison of SAC, SAC UTD 20, DroQ, and CrossQ in the Forward
Locomotion experiment. Performance is evaluated over 10 runs, displaying
the mean and min/max performance, with time plotted on the x-axis.
Theoretical wall time of CrossQwithin 21minutes, compared to the 41minutes
required by the other algorithms.
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5.1.2 Forward Locomotion with Target Velocity

This experiment evaluates the performance of various approaches in the Forward
Locomotion with Target Velocity scenario, designed to assess their ability to achieve
and maintain a desired forward velocity. The results can be seen in figuer 5.3. The
target velocity is set at 0.5m/s, a value chosen as it represents a moderate speed,
not the maximum achievable velocity. This setup allows for a comparison with
the approach of Smith et al., where a maximum velocity of 0.62m/s was achieved
under similar conditions. The total training limit for this experiment is set to
50k steps, with fewer steps being desirable to reduce training time. Achieving
convergence within 20k steps is considered an optimal outcome.

The general performance of the Joint Target and Central Pattern Generator
approaches shows distinct characteristics. JT-based methods exhibit higher
walking speeds but are prone to more terminations due to falls, whereas CPG
approaches demonstrate greater stability throughout the learning process. The
JT-based methods require slightly more training steps to achieve comparable
velocities. Overall, both categories of approaches achieve the target velocity
within the desired limits.

The JT approaches, specifically JT-NF, JT-OEF, and JT-LPF, converge to the desired
velocity at different rates. JT-NF and JT-OEF reach convergence within
approximately 5k steps, while JT-LPF takes around 10k steps. However, JT-NF
exhibits the highest number of terminations, with an average of 13 falls during
training. JT-OEF and JT-LPF exhibit greater stability, averaging approximately 7
terminations each. These observations suggest that JT approaches are capable of
rapid learning but require careful management of stability during training.

The CPG approaches demonstrate a more stable and consistent learning process.
Among them, CPG-VF achieves the highest velocity and fastest learning speed,
converging to the target within 5k steps. CPG-D, on the other hand, achieves
slightly lower velocities and requires approximately 10k steps to converge. The
CPG-RT approach takes the longest among the CPG methods, exceeding 10k steps
to reach the target velocity. Despite these differences, all CPG approaches avoid
terminations entirely during training, showing their robustness. Furthermore, the
CPG approaches effectively balance velocity tracking and penalty minimization,
resulting efficient learning process.
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The gait evaluation (see figure 5.4) provides further insights into the behavior
of the two categories. The JT-based approaches produce asymmetrical gaits with
distinct frequency characteristics. JT-NF results in smaller, higher-frequency steps
at approximately 6Hz, emphasizing the use of the front legs. In contrast, JT-LPF
generates larger, lower-frequency steps at around 2.5Hz, achieving a trot gait
where the rear and front legs are synchronized. JT-OEF displays a blend of these
behaviors, producing a trot gait with a frequency of 4Hz.

The CPG approaches exhibit the predefined trot gait encoded by the Central
Pattern Generator. CPG-D operates at a frequency of 2Hz, while CPG-VF adapts
to increase the frequency slightly to 2.5Hz, optimizing for higher velocities. The
CPG-RT approach maintains the same frequency as CPG-D but introduces a slight
overlap in timings, differentiating it from the default behavior of CPG-D.

In figure 5.5, the forward velocity over a one-second period is shown after
training completion. JT-LPF and CPG-VF demonstrate a consistent safety margin,
maintaining velocities near the target without significant drops. In contrast, other
approaches exhibit occasional velocity drops below the target. These drops are
short-lived and minor, except for CPG-D, which shows more pronounced velocity
dips, and CPG-RT, which experiences longer durations below the target velocity.

The approach of Smith et at. takes about 10k update steps to achieve this velocity.
Although a different robot platform was used, the results of the algorithm
comparison show a similar performance. Nevertheless, our approach is able to
exhibit similar performance within 5k update steps and a higher update
frequency.
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Figure 5.3: Comparison in the Forward Locomotion Experiment, with 10 runs per
approach. The values represent the mean of the average episode values
across runs, and the shaded area shows the range between the maximum
and minimum values.
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Figure 5.4: Gait evaluation in the Forward Locomotion Experiment. Data was collected
after training completion using deterministic sampling from the policy. The
figure illustrates the contact points of the feet with the ground over a one-
second duration.
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Figure 5.5: Forward velocity of the Joint Target andCPG-based approaches in the Forward
Locomotion Experiment. Velocities below vx < 0.5m/s are highlighted.
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5.1.3 Forward Locomotion with Maximal Velocity

This experiment aims to determine the maximum achievable velocity along the
forward direction. By designing a custom reward function that incentivizes higher
velocities, the agent is guided toward optimizing forward motion while minimizing
lateral movement. The terms of the reward function are outlined in table 4.6, and
the performance results are shown in figure 5.6. Penalizing lateral movement
provides the agent with an explicit signal discouraging sideward motion, which
aids exploration by focusing efforts on optimizing forward velocity. Without these
constraints, the agent naturally avoids lateral movement, as it does not contribute
to improving performance, but penalization actively enforces this behavior and
improves training efficiency. This effect can be observed by comparing the lateral
velocity in figure 5.3, where the restriction led to reduced exploration and fewer
unintentional lateral movements.

The experiment involved training each approach for 50k steps, with all agents
exhibiting saturating performance over time. The JT-NF approach achieved the
highest maximum velocity at 2.20m/s, with an average velocity of 1.90m/s. Next,
JT-OEF has a final velocity of 1.3m/s and JT-LPF the lowest velocity of 1.15m/s.
The other Joint Target-based approaches followed, exceeding an average velocity
of 1.1m/s. In contrast, the CPG-based approaches achieved both lower maximum
and average velocities. Among these, the CPG-VF approach achieved an average
velocity of 0.75m/s, benefiting from higher frequency modulation. The CPG-D
and CPG-RT approaches performed similarly, with average velocities of 0.55m/s.

The differences in velocity performance among the Joint Target approaches can
be attributed to the responsiveness of their respective filters. The JT-NF approach,
without any filtering, shows the highest responsiveness, which allows it to achieve
the highest velocity. However, this responsiveness typically comes at the cost of
stability, as evidenced in the Forward Locomotion with Target Velocity experiment
(see section 5.1.2). The JT-OEF approach strikes a balance between responsiveness
and output smoothing, making it a middle ground between the extremes of no
filtering (JT-NF) and low-pass filtering (JT-LPF).

The number of terminations is a critical factor in evaluating the stability of the
approaches. The CPG-based methods demonstrate exceptional resilience, with no
premature terminations observed throughout the training process. Among the
Joint Target approaches, JT-LPF has the highest number of terminations, averaging
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around 30, with one extreme case reaching 81 terminations. In contrast, JT-NF and
JT-OEF show lower termination rates, averaging approximately 9 falls each. These
results highlight the trade-offs between stability and responsiveness inherent in
the filter choices for the Joint Target approaches.

The gait evaluation (see figures 5.7 and 5.8) provides further insights into the
dynamics of the approaches. The JT-NF approach maintains a trot gait, increasing
its step frequency to approximately 4Hz, which contributes to its higher velocity.
The JT-OEF and JT-LPF approaches refine their gaits further, successfully
transitioning to a gallop. The increased step frequency and more dynamic motion
allow these approaches to achieve higher velocities with greater efficiency.

The CPG-based approaches, in contrast, retain the predefined trot gait generated
by the Central Pattern Generator. The CPG-D approach operates at a frequency of
2Hz, while CPG-VF adapts to a slightly higher frequency of 2.5Hz, optimizing for
increased velocity. The CPG-RT approach maintains a forced frequency of 2Hz,
similar to CPG-D, but introduces a slight overlap in timings, which differentiates
its gait pattern. These results underscore the constrained adaptability of the
CPG-based approaches, which focus on stability at the expense of higher velocities.
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Figure 5.6: Comparison of JT-NF, JT-OEF, JT-LPF, CPG-D, CPG-VF, CPG-RT in the Maximal
Velocity experiment. This Forward Locomotion experiment evaluates the
ability of each approach to achieve the highest possible velocity.
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Figure 5.7: Gait evaluation in the Forward Locomotion with Maximal Velocity Experiment.
The figure illustrates the contact points of the feet with the ground over a
one-second duration.

0 0.25 0.5 0.75 1
0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

V
el
o
ci
ty

(m
/s
)

JT-NF

0 0.25 0.5 0.75 1

JT-OEF

0 0.25 0.5 0.75 1

JT-LPF

0 0.25 0.5 0.75 1

Times (s)

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

V
el
o
ci
ty

(m
/s
)

CPG-D

0 0.25 0.5 0.75 1

Times (s)

CPG-VF

0 0.25 0.5 0.75 1

Times (s)

CPG-RT

Figure 5.8: Local Trunk Forward Velocity in the Forward Locomotion with Maximal
Velocity Experiment.
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5.1.4 Omnidirectional Locomotion with Random Target Command

This experiment focuses on teaching the agent to move in all possible horizontal
directions, making the task significantly more challenging than the Forward
Locomotion experiment. Unlike the forward-only scenario, this task requires
conditioning the agent on a task vector that specifies the target direction, greatly
increasing complexity. The agent must learn to navigate effectively while
minimizing yaw velocity. The command function, which uniformly samples
directions from a unit circle, ensures random exploration across all directions,
while the Omnidirectional Locomotion Velocity Reward incentivizes movement
toward the target direction and discourages lateral and yaw deviations. The
experiments are conducted for 50k steps with a target velocity of 0.5m/s, and
evaluation runs are performed every 1000 training steps using the deterministic
policy. During evaluation, the agent is tested in four major directions—forward,
backward, left, and right—at both the full target velocity (0.5m/s) and half
target velocity (0.25m/s).

The evaluation results are presented in plots 5.9, 5.10, and 5.11 for each direction,
divided into three categories: the velocity along the target direction, referred to
as the desired velocity, the velocity perpendicular to the target direction, referred
to as the lateral velocity, and the yaw velocity. For the lateral and yaw velocity
plots, the target is 0m/s and 0 rad/s, respectively. These plots provide a detailed
performance comparison, allowing the evaluation of both directional accuracy and
stability for each approach. The mean absolute error (MAE) between the target
and actual velocities is used as a key performance metric: "Velocity Desired MAE"
quantifies errors in the target direction, while "Velocity Lateral MAE" captures
deviations in the perpendicular direction.

The evaluation encompasses both JT and CPG-approaches, with results
highlighting significant differences in performance. The first metric examined is
the number of terminations, where Joint-Target approaches perform poorly,
averaging approximately 30 terminations. In contrast, all CPG approaches show
no terminations, underscoring their superior stability during training. Among the
Joint-Target approaches, none achieve meaningful velocity in any direction.
Instead, they appear to converge on a standing behavior, failing to make progress
toward learning directional locomotion. This suggests that the Joint-Target
approaches require more time to learn how to move in multiple directions,
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making a curriculum-based approach compelling for step-by-step learning.

In terms of velocity performance, the CPG approaches significantly outperform
the Joint-Target methods. CPG-VF achieves the best overall results, reaching the
target velocity in forward and backward directions and demonstrating effective
modulation of step frequency for different directions. The CPG-D approach follows
a similar trend, achieving consistent and stable movement across all directions,
with slightly reduced performance compared to CPG-VF. The CPG-RT approach
also demonstrates directional locomotion, with slightly reduced effectiveness
compared to CPG-VF and CPG-D. However, it exhibits an uneven performance, with
better results in forward and backward directions compared to lateral directions.
Movements to the left are moderately controlled, but movements to the right show
inconsistencies, indicating challenges in adapting to all directions uniformly.

The yaw velocity plots further illustrate these differences. CPG-VF effectively
constrains yaw velocity within a range of approximately−0.2 to 0.2, demonstrating
stable and controlled turning behavior. In contrast, CPG-D and CPG-RT exhibit
wider yaw velocity ranges, reflecting less precise control.

The "Half" plots, which evaluate the agents at half the target velocity (0.25m/s),
reveal the ability of each approach to interpolate between velocities. The CPG
approaches successfully adjust their velocities across all directions, consistently
achieving the desired target. Joint-Target approaches, however, struggle to reach
the target velocity, failing to demonstrate reliable control. These results further
emphasize the effectiveness of the CPG methods in achieving robust
omnidirectional locomotion.
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Figure 5.9: Comparison in the Omnidirectional Locomotion with Random Target
Command experiment.
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Figure 5.10: The evaluation includes deterministic policy runs conducted every 1000
training steps. These runs test performance across various directions,
including forward, backward, left, and right, at both full and half target
velocities.
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Figure 5.11: The results illustrate the velocity achieved in the desired direction, lateral
velocity in the perpendicular direction, and yaw velocity.

61



5.1.5 Omnidirectional Locomotion with Progressive Directional Expansion
Curriculum

This experiment builds upon the previous Omnidirectional Locomotion with
Random Target Command by incorporating a structured curriculum, termed the
Progressive Directional Expansion Curriculum, to enhance learning efficiency and
performance. The goal remains consistent: to enable the agent to navigate freely
in all horizontal directions while adhering to specific target velocities. By
systematically expanding the agent’s range of explored directions, the curriculum
seeks to address the inherent challenges of learning omnidirectional locomotion,
as outlined in the dedicated curriculum section 4.5.1. Unlike the Random Target
sampling in the prior experiment, this approach introduces a progression-based
methodology designed to mitigate the limitations of purely stochastic exploration.

A key addition to this experiment is the Curriculum Progress plot, which visually
represents the agent’s learning trajectory across different directional bins. This plot
tracks how much of the directional circle, divided into two half-circles and further
partitioned into bins, has been successfully learned. It provides a clear indication
of how the curriculum facilitates balanced and systematic learning compared to
the Random Target approach. The primary advantage of this curriculum lies in
its ability to ensure adequate training in each direction, preventing neglect of
specific areas and achieving a baseline performance threshold in all directions
before advancing.

One major limitation of the Random Target approach is its inefficiency in uniformly
training the agent across all directions. Without a structured curriculum, certain
directions, such as lateral or diagonal movements, may remain undertrained or
exhibit suboptimal performance. The curriculum addresses this by systematically
introducing new directions only after meeting specific performance criteria in the
current bins, thereby fostering gradual skill acquisition and minimizing training
redundancy.

The analysis focuses exclusively on Central Pattern Generator-based methods, as
learning omnidirectional locomotion from scratch remains a significant challenge
for Joint Target approaches. In general, the agent lacks sufficient generalization
capabilities to mirror motions for opposite directions, necessitating independent
learning for each direction. This learning process is time-intensive, making CPG-
based methods advantageous. With a predefined gait encoded in the pattern
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generator, the neural network is freed to focus on refining control and transforming
the encoded gait into precise, task-specific velocities.

In comparing the performance of CPG-based approaches, it is notable that neither
approach resulted in falls during training, demonstrating their inherent stability.
Among the evaluated methods, CPG-VF achieved the best overall performance, as
observed in the previous experiment. The curriculum further enhanced its
capabilities, particularly in lateral movements, where it exhibited marked
improvements in leftward and rightward walking. Similarly, CPG-D and CPG-RT
also showed improvements over their Random Target function counterparts, with
better adherence to lateral and yaw velocity constraints, demonstrating the
curriculum’s effectiveness in refining these behaviors.

While CPG-VF achieved the highest velocity across all directions, CPG-D and
CPG-RT displayed more consistent improvements under the curriculum.
Specifically, CPG-D showed balanced performance with slightly better leftward
motion compared to rightward, while CPG-RT demonstrated improved control in
forward and backward movements. Despite its advancements, CPG-RT retained
some directional inconsistencies, particularly in lateral directions, suggesting that
further refinements may be necessary for uniform performance.

The yaw velocity plots reveal a general improvement across all CPG approaches
under the curriculum. CPG-VF maintained a tight control range of approximately
−0.2 to 0.2, while CPG-D and CPG-RT exhibited reduced variability compared to
their Random Target counterparts. These findings underscore the curriculum’s
role in enhancing not only directional accuracy but also stability in yaw control.

Although the curriculum improved the agents overall performance compared to
the Random Target approach, none of the approaches achieved the target velocity
of 0.5m/s in all directions. This is evident from the Velocity Desired MAE, which
remains at 0.05m/s, reflecting the persistent challenge of achieving perfect velocity
tracking in omnidirectional locomotion tasks.
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Figure 5.12: Comparison in the Omnidirectional Locomotion with Progressive Directional
Expansion Curriculum Experimen (PDEC) with Omnidirectional Locomotion
with Random Target (RanT).
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Figure 5.13: The evaluation includes deterministic policy runs conducted every 1000
training steps. These runs test performance across various directions,
including forward, backward, left, and right, at both full and half target
velocities.
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Figure 5.14: The results illustrate the velocity achieved in the desired direction, lateral
velocity in the perpendicular direction, and yaw velocity.
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5.2 Real World Experiments

Real-world experiments are critical to validate the findings from simulation and
assess the applicability of the trained policies under physical constraints. While
simulation provides a controlled environment with precise state estimation,
efficient exploration, and rapid iteration, transferring these results to the real
robot introduces numerous challenges. In simulation, agents often demonstrate
excellent sample efficiency, learning effective behaviors within a constrained
number of steps. However, reality poses a markedly different scenario, with
inherent noise, uncertainties, and wear introducing complexities that can impede
the learning process. These factors show the need to evaluate the training process
on the physical robot to ensure their robustness and reliability.

In simulation, agents were trained for Forward Locomotion with Target Velocity,
Omnidirectional Locomotion with Random Target Command, and
curriculum-based approaches such as Omnidirectional Locomotion with
Progressive Directional Expansion Curriculum. These experiments explored the
agent’s ability to move stably in predefined directions, navigate across all
directions, and incrementally expand its behavioral repertoire. The real-world
experiments aimed to translate these findings by evaluating the agent’s ability to
perform Forward Locomotion and Omnidirectional Locomotion in two distinct
environments: the smooth and constrained office environment and the more
complex outdoor environment featuring uneven cobblestones and environmental
variability. These experiments bridge the gap between simulation and physical
systems by testing the agent’s adaptability to different levels of terrain complexity
and friction coefficients.

The challenges of real-world experiments extend beyond the physical constraints
of the robot itself. Noise in sensor measurements, such as inaccurate state
estimation, can degrade the observation and reward signals used during training.
Wear and tear on hardware components, such as the robot’s feet, introduce
additional uncertainty over time, while fluctuations in battery levels affect
actuator responsiveness. The outdoor environment adds further complications,
such as wind disturbances and a three degree terrain inclination. Safety measures
were employed to protect the robot, including automatic disengagement of
training when orientation thresholds were exceeded or joint limits were violated.
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In such cases, the P-gains were set to zero, and the D-gains gains were set to three
to minimize the impact forces.

Internal velocity estimation, a critical factor for training, was found to
systematically underestimate the robot’s actual velocity, introducing inaccuracies
in both observation and reward signals. This limitation made curriculum-based
learning approaches infeasible, as the transition criteria between curriculum
levels depend on accurate performance assessment. Consequently, real-world
experiments were limited to testing Forward Locomotion and Omnidirectional
Locomotion without the curriculum.

Real-world experiments excluded two approaches—Joint Target Prediction without
filtering (JT-NF) and Central Pattern Generator with Residual Targets (CPG-RT),
due to poor performance during real-world testing. These approaches exhibited
over 100 falls within the first 20k steps, leading to excessive hardware wear and
safety risks. Testing focused on more robust approaches to ensure meaningful
evaluation without risking significant damage to the robot.

The Forward Locomotion experiments were conducted in both the office and
outdoor environments to evaluate performance across terrains of varying
complexity. Omnidirectional locomotion experiments were conducted exclusively
outdoors, as the limited space in the office environment restricted the agent’s
ability to explore multiple directions effectively. This decision ensured a
comprehensive evaluation of the agent’s capacity to navigate complex,
unstructured environments.

The experiments were conducted using the MAB Robotics HoneyBadger 4.0 robot,
depicted in figure 4.1 [70], connected via Wi-Fi to a MacBook Pro 2023 equipped
with an M3 Pro processor (12-core CPU and 18-core GPU) and 18 GB of unified
RAM. The computations were accelerated using RL-X [71] and JAX [72] with
jax-metal version 0.1.0. Communication was implemented using ROS 2 Humble
[73] with RoboStack [74], and a custom remote interface, developed in React
and utilizing WebSockets, enabled real-time system monitoring and asynchronous
control from various devices. These tools and methods facilitated efficient
experimentation while maintaining robust communication between the robot and
the control system.
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5.2.1 Forward Locomotion in Office Environment

This experiment evaluates the real-world applicability of the findings from the
Forward Locomotion with Target Velocity experiment conducted in simulation.
The primary goal is to train the robot to walk forward with a target velocity of
0.25m/s, using the same reward and command functions as in simulation. The
experiments are conducted for 20k steps to assess how quickly and effectively the
approaches can learn to achieve stable locomotion. The experimental setup was
constrained by the physical limitations of the office environment. The available
space was restricted, requiring frequent manual relocation of the robot, which
significantly increased the overall experimental runtime. Additionally, the floor
surface in the office was smooth, which reduced the robot’s struggle to lift its legs
during motion but introduced other challenges related to stability. For the CrossQ-
based methods, Joint Target Prediction approaches utilizing either a one Euro filter
or a low-pass filter were evaluated. However, the Joint Target Prediction approach
without any filtering was excluded due to its instability and high risk of damaging
the robot, as it led to frequent falls during preliminary tests. Similarly, the Central
Pattern Generator with residual targets was omitted because it caused over 100
terminations within the first 10k steps, rendering it unsuitable for real-world
evaluation. A significant challenge during these experiments was the inaccuracy
of the robot’s state estimation. The internal velocity estimation substantially
underestimated the actual velocity, leading to an observation signal that differed
markedly from the real-world dynamics. Consequently, the perceived velocity
only showed slight improvements during training, even as the robot’s actual
performance improved. This discrepancy caused the cumulative reward to be

Figure 5.15: Evaluation run of internal MPC controller showing a stable trot gait.
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dominated by episode length rather than velocity tracking, making it difficult to
evaluate the effectiveness of different approaches purely based on reward metrics.
Figure 5.15 illustrates a run of the internal MPC controller, demonstrating its
use of a trot gait for forward locomotion. The controller effectively navigates the
uneven terrain without falling or generating any significant yaw velocity.

SAC UTD 20 JT-LPF The experiment with SAC UTD 20 and low-pass filter took
more than 40 minutes to complete. There are two reasons for this: this experiment
was done with a reduced frequency of 20 Hz and therefore it took more time to
collect the same amount of steps. Secondly, the Number of Terminations ended up
to be 43, which is comparably a high number. One reason for this is that the safety
measures were prematurely triggered a number of times. The strategy of the agent
was to heavily jump with the front legs. This resulted in a harsh movement and
the robot was not able to grip the ground properly. The robot was not able to learn
a proper gait and the velocity was not improving over time. Also, the evaluation
run showed (depicted in figure 5.16) that the agent was not able to walk in a
straight line. Despite the jumping while learning, it shows signs of a trot gait and
has connected the front left and rear right leg multiple times but is brushing the
ground while the other legs are used for stabilization. Resulting in a very low
forward velocity, travelling about half a meter in 40 seconds. Additionally, it has
very low control over yaw and lateral velocity.

Figure 5.16: Evaluation run of SAC UTD 20 with low-pass filter, staying on the spot for the
duration of 10 seconds.
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CrossQ JT-OEF This experiment needed 25 minutes to conclude the required
samples. Within the first three minutes, the agent was able to make little steps
while keeping balance. This led to more exploration and consecutive falling. After
4.5 minutes, the agent was able to take bigger consecutive steps without falling
directly at a low speed. This was followed by increasing the steps and lifting the
leg from the floor to optimize the needed torque. At the same time the agent
picked up that the velocity can be reduced to prevent falling down. Additionally,
it also learned at this stage that a trot gait gives good balance while improving
velocity. Moreover, the agent has already learned a higher walking speed than the
given target velocity. After 6 minutes it is still increasing the velocity until it peaks
at about 12:30 minutes. The agent develops a strategy of falling backwards when
it is threatened to terminate. After this, the agent tries to improve robustness
and yaw velocity restriction. In the end, it also learns to recover from falls by
catching itself, but this only works when the agent tips in a shallow angle and one
of its front feet are placed in the front of the robot. The evaluation run (see figure
5.17) showed that the agent capable of performing a stable trot gait and is able
to reach up to 0.85 m/s for short distances of 1 m. This is due to the fact, that
the agent is then falling to the back to prevent falling. For longer distances, the
agent is able to reach a velocity of about 0.65 m/s. The agent struggles to walk in a
completely straight line and occasionally changes its direction but learns a trot gait
that lifts the leg. Despite the fact that the agent was trained for the target velocity
of 0.25 m/s, it has exceeded this velocity. This is due to the fact that the internal
velocity estimation is bounded, but the agent picks up that a higher velocity results
in a higher reward and therefore intuitively aims for higher velocities even though

Figure 5.17: Evaluation run of CrossQ JT-OEF showing a trot gait and achieving a velocity
of 0.65 m/s and 0.85 m/s for short distances.
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these higher velocities only lead to minor reward increases. Then the learned
policy was tested in simulation, it was possible to achieve velocities up to 1.5m/s.

CrossQ JT-LP The experiment was completed in approximately 20 minutes,
during which the agent exhibited a maximum velocity of less than 0.4m/s.
Initially, for the first two minutes, the agent displayed no forward movement.
During this time, it performed very small, rapid steps that provided negligible
progress. These steps were slightly larger than jittering movements but still
resulted in minimal forward progress. The application of a low-pass filter to the
action outputs aimed to suppress jittering and excessively small movements, yet
the agent exploited the residual movement allowance to generate these tiny steps.

Around the five-minute mark, the agent began to demonstrate more assertive
movements, combining small vibrating motions with occasional large, inconsistent
steps. These larger steps introduced a jerky forward progression, with frequent
foot dragging on the ground. To stabilize itself against forward imbalance, the
agent often adopted a rapid backward-leaning motion, which sometimes led to
larger, sporadic steps.

From the eleventh minute onward, the agent transitioned to a gait dominated
by medium forward jumps, engaging all four legs simultaneously. This strategy
improved speed and alignment, allowing the agent to sustain faster movement. In
simulation, the policy was able to reach a velocity of 0.65m/s.

The evaluation run following training, depicted in figure 5.18, showcased the
resulting gait. The agent adopted a common strategy of executing medium

Figure 5.18: Evaluation run of CrossQ JT-LPF achieving a velocity of 0.4 m/s.
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forward jumps with synchronized front and rear legs. While this gait
demonstrated improved coordination compared to earlier phases of training, the
achieved velocities remained modest, highlighting the constraints imposed by
real-world dynamics and the filtering approach.

CrossQ CPG-D The training process for this experiment lasted approximately
30 minutes, with a total of 38 terminations recorded. These terminations were
primarily caused by the safety measures, which frequently triggered before the
robot could fall. This early intervention were partially caused by the swing height
being set to 0.2m with an additional possible z-offset of up to 0.1m. These
parameters were configured to accommodate very rough terrain and maintained
consistently across all runs for comparability. While this setup ensured the safety of
the robot, reducing these parameters could potentially lead to better performance.

During the initial phase of training, the agent focused on exploring the boundaries
of the safety measures and optimizing the trunk’s tilting angle to prevent premature
termination. This was followed by the agent quickly learning to take forward
steps. Throughout the training process, the agent consistently tested the limits
of the safety parameters, seeking to refine its gait and achieve efficient forward
movement. Concurrently, it developed the ability to maintain a level trunk despite
the elevated swing height, demonstrating robust compensation strategies.

The evaluation run, illustrated in figure 5.19, revealed that this approach was
capable of walking forward with a consistent speed without falling. However,
yaw velocity remained an unresolved issue, indicating room for improvement in

Figure 5.19: Evaluation run of CrossQ CPG-D achieving a velocity of 0.3 m/s.
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directional stability. The evaluation run measured a maximum velocity of 0.3m/s,
while the agent achieved approximately 0.6m/s in simulation.

CrossQ CPG-VF It took about 45 minutes to complete. Safety measures were
triggered prematurely, partly due to the agent’s control over its gait frequency.
This flexibility resulted in an initially unstable learning phase, as the agent had
to identify the boundaries of the safety constraints. Adjusting the swing height
parameter could potentially improve stability.

In the first 20 minutes, the agent primarily focused on learning how to avoid
activating the safety measures. By the 25-minute mark, it was able to move
forward slowly, though frequent falls still occurred. Following this, the agent
began exploring faster walking patterns. Around 32 minutes, it reduced the
number of falls, increased its speed, and adjusted its gait frequency.

The agent initially discovered that a very high frequency provided more stability.
Over time, it learned to walk faster at a lower frequency but would revert to a higher
frequency in situations with a high risk of falling. By the end of the evaluation
(see figure 5.20), the agent had learned to walk consistently without falling.
The evaluation runs also showed good yaw control throughout. The evaluation
achieved a velocity of approximately 0.3 m/s, both in real and simulated runs.

Figure 5.20: Evaluation run of CrossQ CPG-VF achieving a velocity of 0.3 m/s.
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Conclusion The Forward Locomotion in Office Environment experiment revealed
the challenges associated with real-world testing in constrained indoor
environments, including limited space and smooth, low-friction surfaces. The
comparison of the key metrics can be found in table 5.3 and a more detailed view
of the training process is given by figure 5.21. These factors necessitated frequent
manual intervention to relocate the robot, prolonging the experimental duration.
Among the tested approaches, CrossQ JT-LPF exhibited modest performance,
achieving forward velocities of less than 0.4m/s. The agent adopted an
inconsistent gait, characterized by small, rapid steps and occasional forward
dashes, but struggled to achieve sustained or stable movement. CrossQ JT-OEF, on
the other hand, demonstrated the most dynamic performance, achieving a peak
velocity of 0.85m/s during evaluation runs, albeit with occasional backward falls
and slight deviations from a straight trajectory. This approach showcased the
potential for on-robot learning despite the limitations of manual resets and
inaccurate state estimation. For the CPG-based methods, CrossQ CPG-D showed
the most robust behavior, achieving consistent forward movement and
maintaining a level trunk throughout the evaluation. However, its maximum
velocity of 0.3m/s fell short of expectations. CrossQ CPG-VF demonstrated
stability but relied heavily on high-frequency movements during training, leading
to a slower progression and a final velocity comparable to that of CrossQ CPG-D.

Approach Eval. Speed (m/s) Yaw Control Nr. Falls Duration (min)

SAC UTD 20 JT-LPF 0.0125 poor 43 40

CrossQ JT-OEF 0.85 medium 15 25

CrossQ JT-LP 0.4 medium 16 20

CrossQ CPG-D 0.3 good 38 30

CrossQ CPG-VF 0.3 very good 52 45

Table 5.3: Comparison of the Forward Locomotion in Office Environment experiment.
Velocity and yaw control are based on the agent’s performance during the
evaluation run. Yaw control: Very Good (<10◦), Good (10◦ − 30

◦), Medium

(30◦ − 60
◦), and Poor (> 60

◦). The number of falls and duration indicate the
agent’s learning progress and stability.
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Figure 5.21: Training progress of the Forward Locomotion in the office environment. Due
to thewrong velocity estimation, the velocity tracking reward is an insufficient
indicator of the performance.
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5.2.2 Forward Locomotion in Outdoor Environment

This experiment extends the findings from the Forward Locomotion with Target
Velocity simulation experiment and the Forward Locomotion in Office
Environment real-world experiment to a more challenging outdoor setting. The
primary objective remains consistent: training the robot to walk forward with a
target velocity of 0.25m/s using the same reward and command functions as
employed in simulation. The experiments are conducted for 20k steps, aiming to
evaluate how effectively the approaches can learn stable locomotion under more
demanding real-world conditions.

The outdoor environment posed additional challenges compared to the office
setting. The surface consisted of uneven cobblestones with varying friction levels
and a slight inclination, introducing more complex dynamics for the robot to adapt
to. However, the increased training area reduced the need for frequent manual
relocation of the robot, thereby accelerating the overall training process.

Joint Target Prediction approaches using either a one Euro filter or a low-pass filter
were tested. As in the office environment experiments, the Joint Target Prediction
approach without filtering and CPG with residual targets were excluded due to
instability and high risk of damage, as it led to over 100 terminations within the
first 10k steps in earlier tests, making it unsuitable for real-world deployment.

A key challenge in these experiments was the inaccuracy of the internal state
estimation system. The velocity estimation consistently underestimated the
robot’s actual velocity, leading to observation signals that poorly reflected the

Figure 5.22: Evaluation run of MPC controller.
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real-world dynamics. As a result, perceived velocity showed only marginal
improvements during training, despite actual performance gains. Consequently,
the cumulative reward was dominated by episode length rather than velocity
tracking, complicating the evaluation of approach effectiveness based solely on
reward metrics.

In figure 5.22 a run of the internal MPC controller can be seen as it is using a trot
gait to walk forward. It is able to negotiate the uneven terrain without falling over
and exerting any yaw velocity.

CrossQ JT-OEF The training for this experiment concluded in under 19 minutes,
including manual resets and 19 total falls. After approximately 1 minute and 30
seconds of training, the agent initiated its first forward steps. By the 2:30-minute
mark, it had developed a balancing mechanism by deliberately falling backward
to avoid tipping forward, an adaptive strategy in response to the uneven terrain.

The training took place on challenging terrain characterized by varying surface
heights and high friction. These conditions required the agent to continually adapt
its movement, resulting in frequent falls as it learned to balance and traverse
the surface effectively. The uneven ground introduced significant disturbances,
demanding continuous adjustments in the agent’s gait and balance strategies.

Throughout the training, the agent focused on exploring strategies to improve
walking speed and stability. Despite the challenging environment, it demonstrated
progressive improvements in both aspects. By the end of the training process (see
figure 5.23), the agent had developed a distinctive gait pattern. This gait involved

Figure 5.23: Evaluation run of CrossQ JT-OEF achieving a velocity of 0.25 m/s.
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alternating steps with the front legs or simultaneously pushing with both front
legs while pulling with both rear legs. This combination of gaits allowed the agent
to maintain balance and navigate the terrain efficiently.

In the evaluation phase, the agent achieved a walking speed of approximately
0.25m/s. The evaluation run showcased the learned gait, highlighting the agent’s
ability to adapt to the challenging terrain conditions while maintaining consistent
forward locomotion.

CrossQ JT-LPF The training session for this experiment was completed in about
14 minutes and with 13 terminations. After roughly 5 minutes and 30 seconds,
the agent began to take its first steps. During early exploration, it adopted a
balancing technique where it periodically allowed itself to fall backward, which
proved effective in preventing forward tumbles.

This training aimed to enhance the agent’s walking speed on terrain with high
friction and irregular surface heights. The constantly changing ground levels
demanded frequent adaptive responses from the agent, leading to a continual
adjustment of its gait to maintain balance.

As training progressed, the agent developed a distinctive gait optimized for stability
on the challenging terrain. By the end (see figure 5.24), it had settled into a rhythm
of small, controlled jumps, coordinating all four legs together while occasionally
allowing itself to fall backward. This pattern provided a stable forward movement
by countering the uneven surface and high friction with calculated adjustments.

Figure 5.24: Evaluation run of CrossQ JT-LPF achieving a velocity of 0.23 m/s.
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In the evaluation phase, the agent achieved a steady walking speed of around
0.23m/s. This pace reflects its approach of prioritizing balance over speed, as it
carefully adjusted to the terrain demands while preserving stability.

CrossQ CPG-D The training session was completed in roughly 17 minutes, during
which the agent experienced a total of 39 terminations, including from overly
sensitive safety measures. Within the first minute, the agent managed to take its
initial steps. Early in the session, it learned to avoid triggering unnecessary safety
measures and began working on balancing its trunk to prevent excessive tipping
while advancing forward.

After approximately 8 minutes, the agent demonstrated the ability to recover
from falls by using its limbs to stabilize itself. However, the agent faced ongoing
challenges with steeper sections of the terrain, often leading it to fall backward or
even move in reverse as it attempted to navigate these areas.

In the evaluation phase, the agent achieved a walking speed of approximately
0.33m/s. It maintained a level trunk position throughout its movement,
demonstrating that the agent successfully overcame the uneven terrain,
leveraging the robustness of the CPG to navigate the challenging environment
effectively. The evaluation gait, as illustrated in figure 5.25, highlights the
generated pattern of CPG.

CrossQ CPG-VF The training concluded in around 19 minutes, during which
the agent encountered a total of 81 terminations, including the ones from false-

Figure 5.25: Evaluation of CrossQ CPG-D achieving a velocity of 0.33 m/s.
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positive triggers of safety measures. The variable frequency of its movement proved
challenging at the start, making it difficult for the agent to avoid these unintended
terminations. Initially, much of the agent’s learning involved adapting to avoid
triggering these safety constraints, a skill it only fully developed by the end of the
session.

After roughly 5 minutes of training, the agent began to move forward more
consistently, though it still encountered challenges with safety measure activation
and tipping over. The agent also struggled to overcome steeper terrain sections,
often falling backward or even reversing direction when the slope proved too
challenging.

Despite the difficulties, the agent learned to adapt its movement frequency during
training to its advantage, alternating between slower movements when stable and
faster movements when at risk of falling. However, in the evaluation run, that
can be seen in figure 5.26, the agent adopted a different strategy, relying solely
on high-frequency movements, which led it to rotate in place rather than moving
forward.

This outcome contrasts with the results observed in the Forward Locomotion in
Office Environment experiment. In that scenario, the same approach demonstrated
a good walking ability, achieving consistent forward locomotion. This discrepancy
highlights the increased complexity and instability posed by outdoor environments,
which introduced uneven terrain and additional challenges that hindered effective
gait application during evaluation.

Figure 5.26: Evaluation run of CrossQ CPG-VF remaining on the spot.
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Conclusion The Forward Locomotion in Outdoor Environment experiment
highlights the increased complexity of real-world outdoor conditions, such as
uneven cobblestone terrain, high friction, and inclinations. A summary of the
primary metrics is provided in table 5.4, while figure 5.27 offers a detailed
visualization of the training progression. Compared to the Forward Locomotion in
Office Environment experiment, these factors posed significant challenges for all
tested approaches.

The CrossQ JT-LPF approach achieved modest forward velocities, prioritizing
balance over speed, while CrossQ JT-OEF demonstrated a more dynamic gait with
higher speeds but frequent falls during training. Among the CPG-based methods,
CrossQ CPG-D showed the best performance, maintaining a stable trunk and
achieving the highest forward velocity, effectively adapting to the uneven terrain.
In contrast, CrossQ CPG-VF struggled during evaluation, relying on high-frequency
movements that caused it to rotate in place rather than progress forward.

Overall, the results highlight the challenges of transferring learned behaviors to
demanding outdoor environments and the need for enhanced adaptability in
real-world conditions.

Approach Eval. Speed (m/s) Yaw Control Nr. Falls Duration (min)

CrossQ JT-OEF 0.25 good 19 19

CrossQ JT-LP 0.23 medium 13 14

CrossQ CPG-D 0.33 very good 39 17

CrossQ CPG-VF N/A poor 81 19

Table 5.4: Comparison of the Forward Locomotion in Outdoor Environment experiment.
Velocity and yaw control are evaluated based on the agent’s performance
during the evaluation run. Yaw control categorizes the robot’s ability to
maintain directional stability: Very Good indicates minimal deviations (<10◦),
Good allows moderate drift (10◦ − 30

◦), Medium reflects noticeable drift
(30◦ − 60

◦), and Poor shows significant instability (> 60
◦). N/A applies when

yaw control is not evaluated. The number of falls and duration indicate the
agent’s learning progress and stability.
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Figure 5.27: Training progress of Forward Locomotion in the Outdoor Environment.
Due to the incorrect velocity estimation, the velocity tracking reward is an
insufficient indicator of the performance.
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5.2.3 Omnidirectional Locomotion in Outdoor Environment

This experiment evaluates the real-world applicability of the findings from the
Omnidirectional Locomotion with Random Target Command simulation
experiment. The primary objective was to train the robot to navigate in
two-dimensional space with random target directions, using the same reward
terms described in 4.4 and the Omnidirectional Locomotion with Random Target
Command. The experiments were conducted for 50k steps to assess the agent’s
ability to adapt to challenging outdoor conditions while achieving stable
movement in both x- and y-directions.

The experimental setup introduced additional complexity compared to the Forward
Locomotion experiments. The uneven cobblestone terrain, combined with varying
friction levels and inclinations, created significant challenges for maintaining
balance and executing precise movements. While curriculum-based learning
could have accelerated training by introducing progressively harder tasks, it was
not feasible due to the inaccuracy of the internal state estimation system. This
inaccuracy prevented the computation of reliable performance metrics, which are
essential for transitioning between curriculum stages.

For the CrossQ-based methods, both Joint Target Prediction and CPG-based
approaches were considered. Among the JT-based methods, the one Euro filter
was selected as the most promising approach to validate the hypothesis that it
could achieve directional movement under real-world conditions. JT-based
approaches, such as those using a low-pass filter, struggled to produce directional
movement and failed to achieve meaningful progress, consistent with simulation
observations detailed in 5.1.4. Similarly, CPG-based approaches such as CPG-VF
and CPG-RT were omitted due to frequent terminations caused by safety
measures during preliminary testing. Consequently, only CrossQ JT-OEF and
CPG-D were evaluated in this experiment.

The challenges of this experiment were exacerbated by the limitations of the robot’s
internal state estimation, which consistently underestimated actual velocities.
This discrepancy made it difficult to evaluate the agent’s performance based on
cumulative rewards, as perceived velocity improvements were minimal despite
genuine progress. The high termination rates observed during training further
complicated the learning process, highlighting the need for enhanced stability
and adaptability in real-world settings.
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The results of the training process are presented in figure 5.28. The findings
underscore the difficulties of transferring learned behaviors from simulation to
complex real-world environments while highlighting the potential of robust
methodologies to adapt to challenging conditions.

CrossQ JT-OEF The CrossQ JT-OEF experiment took 25 minutes to collect 50k
steps. During this time, the agent was unable to achieve movement in any direction
and did not respond to directional conditioning signals. Throughout the training
process, the agent remained in one place, jittering some of its limbs without
making significant progress. This behavior indicated a lack of focus on any specific
direction, leading the agent to adopt a mean movement strategy, which effectively
resulted in standing still.

This outcome mirrors the behavior observed in simulation experiments, where the
agent similarly failed to achieve directional movement under random directional
commands. The Progressive Directional Expansion Curriculum, as described in
the introduction, was not implemented in the real-world trials due to inaccuracies
in the state estimation system, which prevented the computation of performance
metrics required to advance curriculum stages. However, in simulation, this
curriculum significantly improved the agent’s performance by introducing
structured progression, suggesting that its application could potentially have
mitigated the limitations observed in this experiment.

CrossQ CPG-D The CrossQ CPG-D experiment required 33 minutes to complete
50k training steps. Initially, the agent frequently triggered the safety mechanisms
due to instability, resulting in 43 terminations over the course of the training.
These terminations occurred primarily in the early stages, highlighting the
challenges posed by the uneven terrain and the agent’s need to learn
self-stabilization strategies.

As training progressed, the agent demonstrated significant improvement,
eventually learning to avoid triggering the safety mechanisms by adapting its
movements to the environmental conditions. The agent developed the capability
to recover from unstable situations and effectively navigate less steep areas of the
terrain. However, it struggled to maintain stability and performance on steeper
inclinations. Movement speed was noticeably slower when moving sideways
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compared to forward locomotion, indicating limitations in lateral adaptability.
Although the agent learned to move backward during training, it refrained from
doing so during the evaluation phase, suggesting a potential gap in behavior
generalization.

In the evaluation runs, the agent successfully executed forward, left, and right
movements (which can be seen in figures 5.29 to 5.31), albeit with some degree
of yaw rotation, resulting in trajectories that were not perfectly straight. The
maximum forward velocity achieved was approximately 0.2m/s, while the
maximum sideways velocity reached around 0.15m/s. These results reflect the
limitations of the current approach in achieving high speeds, particularly in
lateral directions. A curriculum, such as the Omnidirectional Locomotion with
Progressive Directional Expansion Curriculum, could have potentially improved
performance by structuring the learning process and gradually introducing
directional complexity. This approach might have mitigated the challenges
observed during training, especially in stabilizing the agent’s lateral movements
and addressing the inconsistencies in trajectory control.

Conclusion The Omnidirectional Locomotion in Outdoor Environment
experiment emphasized the challenges of adapting learned behaviors to
real-world conditions, including uneven terrain, variable friction, and inclinations.
These factors significantly increased the complexity of achieving stable
omnidirectional locomotion compared to the Forward Locomotion experiments.
Key performance metrics are outlined in table 5.5, with a comprehensive
depiction of the training dynamics illustrated in figure 5.28. The CrossQ JT-OEF
approach failed to achieve any meaningful directional movement, resorting
instead to stationary behavior. This outcome underscores the limitations of Joint
Target approaches in complex real-world scenarios without structured training
strategies, such as the Progressive Directional Expansion Curriculum. The CrossQ
CPG-D approach demonstrated the best performance but still showed considerable
room for improvement. After overcoming early instability, which resulted in 43
terminations, the agent adapted to the outdoor environment, achieving forward,
left, and right movements during evaluation. However, trajectories were not
perfectly straight, and backward movement, learned during training, was not
observed in evaluation, reflecting limitations in behavior generalization.
Maximum velocities reached 0.2m/s forward and 0.15m/s laterally, falling short
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of desired performance levels. Overall, while CPG-D showed promise in handling
real-world challenges, the results highlight the need for enhanced training
methodologies, improved state estimation, and structured curricula to enable
robust and consistent omnidirectional locomotion in complex environments.

Approach F. Spd. (m/s) L. Spd. (m/s) Yaw Ctl. Nr. Falls Durat. (min)

CrossQ JT-OEF N/A N/A N/A 6 25

CrossQ CPG-D 0.2 0.15 poor 43 33

Table 5.5: Comparison of the Omnidirectional Locomotion in Outdoor Environment
experiment. F. Spd. and L. Spd. denote forward and lateral speeds, respectively.
Durat. is the duration of the training until all of the samples are collected.
Velocity and yaw control are evaluated based on the agent’s performance
during the evaluation run. Yaw Ctl. indicates the quality of yaw control and
categorizes the robot’s ability to maintain directional stability: Very Good

indicates minimal deviations (<10◦), Good allows moderate drift (10◦ − 30
◦),

Medium reflects noticeable drift (30◦ − 60
◦), and Poor shows significant

instability (> 60
◦). N/A applies when yaw control is not evaluated. The number

of falls and duration indicate the agent’s learning progress and stability.
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Figure 5.28: Performance of the JT-OEF and CPG-D for Omnidirectional Locomotion in the
outdoor environment. The incorrect velocity estimation makes the velocity
tracking reward an unreliable indicator of the approaches’ performance.
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Figure 5.29: Evaluation run of CrossQ CPG-D, moving forward with a velocity of 0.2 m/s.

Figure 5.30: Evaluation run of CrossQ with CPG-D achieving a velocity of 0.15 m/s to the
left.

Figure 5.31: Evaluation run of CrossQ with CPG-D achieving a velocity of 0.15 m/s to the
right.
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6 Discussion

This thesis evaluates the performance of on-robot learning approaches for
quadruped locomotion, emphasizing sample efficiency, robustness, and
adaptability in both simulated and real-world environments. The discussion is
organized into a comparison of reinforcement learning algorithms, joint target
prediction methods, and Central Pattern Generators, culminating in an analysis of
their relative strengths and limitations.

6.1 Comparison of High Sample-Efficient SAC Algorithms

Various high sample-efficient reinforcement learning algorithms, including SAC,
SAC UTD 20, DroQ, and CrossQ, were compared in simulation, to determine the
most effective algorithm for on-robot learning. CrossQ outperformed the other
methods, achieving the target velocity within 2 minutes and completing training
in 21 minutes due to its higher operating frequency of 40Hz, which enabled faster
data collection. CrossQ also exhibited greater stability with an average termination
rate of 14 falls, compared to DroQ’s 32 falls.

The computational efficiency of CrossQ not only enhanced the learning process
but also made it feasible to conduct training on a MacBook equipped with an
integrated GPU, rather than requiring a laptop with a dedicated GPU. This reduced
hardware dependency further highlights CrossQ’s potential for practical on-robot
learning scenarios, where accessibility and portability are critical factors.
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6.2 Comparison of Joint Target Approaches

Joint Target Prediction methods were evaluated using no filter (NF), one Euro
filter (OEF), and low-pass filter (LPF). Table 6.1 summarizes the results across
simulation, office, and outdoor environments.

JT Approaches Simulation Office Outdoor

No Filter (NF) 2.2 N/A N/A

One Euro Filter (OEF) 1.3 0.85 0.25

Low-Pass Filter (LPF) 1.15 0.4 0.23

Table 6.1: Performance of Joint Target Prediction methods in Forward Locomotion
experiments (velocity in m/s). Simulation results show maximal achievable
velocity. Real-world results use target velocities of 0.25 m/s.

In simulation, all methods achieved the target velocity of 0.5m/s within 20k
steps, but differences became apparent in maximal velocity experiments. The
NF approach achieved the highest velocity (2.2m/s) but at the cost of significant
instability and jittering in early training phases. In contrast, OEF and LPF achieved
similar maximal velocities (1.3m/s and 1.15m/s, respectively), but OEF converged
to its velocity much faster, stabilizing within 20k steps, whereas LPF required
significantly more steps to approach this performance.

The choice of filter plays a crucial role in balancing stability and responsiveness
during joint angle predictions. The OEF operates as an adaptive smoothing
mechanism that dynamically adjusts its filtering properties based on the rate of
change of the input signal. This dynamic adjustment allows the OEF to preserve
rapid changes when necessary while suppressing high-frequency noise, making it
particularly suitable for tasks requiring both stability and responsiveness. In
contrast, the LPF applies a fixed smoothing factor to the entire signal, heavily
attenuating high-frequency components regardless of their relevance to the
control task. While this approach effectively reduces noise, it can hinder the
robot’s ability to respond to abrupt changes, leading to slower convergence and
less dynamic locomotion. The NF approach entirely avoids smoothing, passing the
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raw signal directly to the controller. While this maximizes responsiveness and
enables fast adaptations, it also amplifies noise and jittering, particularly during
early training phases when the policy is still exploring the state-action space. This
often results in erratic joint movements and high termination rates, as observed in
preliminary experiments.

In the real-world Forward Locomotion in Office Environment experiment, OEF
outperformed LPF, achieving 0.85m/s compared to 0.4m/s. The OEF method also
demonstrated the ability to learn a stable trot gait, showcasing its adaptability to
the low-friction surface. By restricting jitter while permitting rapid adjustments,
the OEF approach enabled smoother and faster locomotion than LPF, which overly
constrained the robot’s movement, resulting in slower velocities and less dynamic
gaits. The NF method, despite being one of the best-performing approaches in
simulation, was excluded from real-world tests due to its high termination rates
and erratic performance during preliminary evaluations. This discrepancy could
be attributed to inaccurate state estimation, but it is also likely influenced by the
nature of the training process. The NF approach exhibited significant jittering
and instability during early training phases until a notion of a gait was developed.
While this progression allowed the NF method to achieve unparalleled performance
in simulation, its reliance on overcoming these early issues and its high degree of
freedom in movement led to very unstable performance in the real world, making
convergence either infeasible or excessively demanding.

When comparing these results to the baseline SAC UTD 20 algorithm, it becomes
apparent that SAC UTD 20 was unable to perform effectively on the given system.
This failure could be attributed to the limitations of the state estimation system,
which introduced inaccuracies in velocity feedback, making learning more
challenging. Additionally, the significant performance of JT-OEF (0.85m/s)
highlights the benefits of using the CrossQ algorithm as its seems that it is
inherently more capable of handling complex locomotion tasks. The integration of
the one Euro filter and the higher control frequency of 40 Hz further supported
these improvements.

Compared to prior work by Smith et al. [67], our approach demonstrated more
efficiency and adaptability. Smith et al.’s method, which operated on the Unitree
A1 robot with automatic resetting, required 80k steps and 80 minutes to achieve
a maximum velocity of 0.65m/s. In contrast, our CrossQ-OEF method achieved
0.85m/s within 20k steps (approximately 20 minutes), without relying on
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automatic resetting or sophisticated techniques like Adaptive Policy
Regularization (APRL) or network resetting. This performance increase, achieved
despite the use of noisy velocity estimation and the absence of foot contact
sensors, highlights the effectiveness of the OEF filter in enabling rapid and stable
learning.

The Forward Locomotion in Outdoor Environment experiment posed additional
challenges due to uneven terrain and increased surface friction. OEF reached
0.25m/s, while LPF achieved 0.23m/s. These reduced velocities, compared to
the office environment, are likely due to the increased difficulty of lifting feet
off high-friction surfaces, which requires more precise and forceful movements.
The robot’s lack of exteroceptive feedback further exacerbated these difficulties,
leading to frequent foot dragging and collisions with uneven terrain. Despite
these challenges, OEF maintained a slight advantage over LPF, demonstrating its
robustness across different terrains.

6.3 Comparison of CPG Approaches

The evaluation of Central Pattern Generator-based approaches included constant
frequency, variable frequency, and residual target configurations, with their results
summarized in table 6.2.

CPG Approaches Simulation Office Outdoor

CPG-D 0.55 0.3 0.3

CPG-VF 0.75 0.3 0

CPG-RT 0.55 N/A N/A

Table 6.2: Performance of CPG-based methods in Forward Locomotion experiments
(velocity in m/s). Simulation results show maximal achievable velocity. Real-
world results use target velocities of 0.25 m/s.

In simulation, CPG-based methods demonstrated rapid learning, converging within
5k–10k steps for the target velocity experiment. Their robustness was reflected
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by achieving zero terminations throughout the simulation experiments, showing
their stability under controlled conditions. The maximal velocity tests revealed
that CPG-VF achieved the highest velocity of 0.75m/s, followed by CPG-D and
CPG-RT, both at 0.55m/s. However, the predefined gait configurations limited
further velocity improvements, as the agent’s flexibility in adapting the gait was
restricted.

In the Forward Locomotion in Office Environment experiment, both CPG-D and
CPG-VF achieved 0.3m/s, exceeding the desired target velocity of 0.25m/s.
Despite their success, their performance was significantly hindered by premature
safety triggers, which caused frequent terminations. The CPG-apporaches were
configured with parameters suitable for rough terrain, including a high swing
height and additional z-offsets, to ensure compatibility across diverse
environments. Adjusting these parameters for smoother indoor conditions could
improve trunk stability and reduce the number of terminations, thereby
enhancing overall learning efficiency and reducing wall-clock training time.

CPG-RT, like JT-NT, presented an approach with significant initial freedom, making
it challenging to pick up the notion of a gait during early training phases. While
this high degree of flexibility allows for potentially powerful adaptations once
a gait is established, it also increases the difficulty of learning and stability in
environments with high uncertainty. In simulation, CPG-RT performed comparably
or better to other CPG configurations, achieving a maximal velocity of 0.55m/s.
However, in real-world scenarios, these advantages turned into disadvantages due
to increased environmental uncertainty and noisy state estimations. Moreover,
the performance gap between simulation and reality could also be attributed to
variations in the residual target implementation. In simulation, the residual target
was applied with torque-based adjustments, whereas in real-world experiments,
a joint angle-based approach was used to ensure compatibility with the robot’s
hardware constraints. This change, while necessary, likely influenced the dynamics
of the learned gait and its stability, further contributing to the challenges faced by
CPG-RT in real-world environments.

In the Forward Locomotion in Outdoor Environment experiment, CPG-D
maintained its velocity of 0.3m/s, demonstrating consistent performance across
varied terrains. In contrast, CPG-VF exhibited difficulties during evaluation,
focusing primarily on maintaining stability rather than forward motion.
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For the Omnidirectional Locomotion experiments, CPG-VF was excluded due to its
high termination rates and the associated risk to the robot’s safety, similar to the
exclusion of CPG-RT. CPG-D, while struggling initially with safety mechanisms,
eventually adapted to multiple directions. However, its evaluation phase revealed
limitations in generalization, as it refused to move backward while successfully
executing movements in the forward, left, and right directions. These observations
suggest that a Progressive Directional Expansion Curriculum could address such
challenges by incrementally increasing task complexity, thereby enabling more
effective generalization to dynamic, multi-directional tasks.

6.4 Comparison of Joint Target and CPG Approaches

The experiments highlighted distinct advantages and limitations of JT and CPG
approaches, each excelling in specific environments and tasks.

JT approaches demonstrated superior adaptability and higher velocities in smooth
indoor environments. For instance, JT-OEF achieved an impressive velocity of
0.85m/s in the office setting, outperforming CPG methods. This performance can
be attributed to the greater flexibility of JT methods, which allow the agent to
dynamically adjust its movements without adhering to predefined gait patterns.
However, this adaptability came at the cost of increased terminations during the
exploratory phases of training. These terminations often required manual resets,
posing a risk to the robot’s hardware and significantly extending wall-clock training
times.

On the other hand, CPG approaches excelled in robustness, particularly in
unstructured outdoor terrains. The predefined patterns inherent to CPG methods
reduced the complexity of the learning problem by providing a reliable
framework for step generation. This allowed the agent to focus on higher-level
locomotion tasks rather than learning how to generate individual steps. In
outdoor experiments, CPG-D maintained a steady velocity of 0.3m/s,
outperforming JT methods, which struggled with the increased friction and
uneven terrain. Moreover, CPG terminations were primarily triggered by safety
mechanisms rather than falls, enabling training to resume automatically without
requiring human intervention.
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One notable limitation of JT methods was their reliance on noisy proprioceptive
feedback, which significantly hindered performance on challenging terrains.
Without additional sensory inputs, such as foot contact sensors or visual data, the
agent lacks the capability to accurately perceive and adapt to varying terrain
conditions. Consequently, the agent tends to lift its legs as little as possible, often
resulting in collisions with cobblestones or dragging feet over the surface. This
behavior highlights the challenge of finding a single viable policy that can address
all such scenarios simultaneously, rather than dynamically adapting to the specific
demands of the terrain. Incorporating additional sensors could enable the agent
to better evaluate the terrain and adjust its strategy accordingly, improving both
efficiency and stability.

CPG methods, while robust, were constrained by their predefined gait structures,
which limited their ability to achieve higher velocities. Although allowing the
agent to dynamically adjust the frequency, as tested with the CPG-VF configuration,
was hypothesized to enhance performance, it did not lead to any significant
improvement. Instead, the increased flexibility introduced additional instability,
highlighting the challenges of balancing adaptability and robustness.

In conclusion, the findings suggest that JT and CPG approaches have
complementary strengths. JT methods are better suited for environments where
adaptability and velocity are critical, while CPG methods excel in robustness and
structured environments. A potential fusion of these approaches, such as the
CPG-RT configuration, aimed to leverage the benefits of both by using CPG
patterns as a foundation while allowing for dynamic adjustments. However, in
practice, CPG-RT proved too challenging to train effectively in the real world and
had to be discarded due to its inability to converge to a viable walking policy. This
highlights the inherent difficulty of combining the complexity of JT learning with
the structured nature of CPGs.
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7 Conclusion and Outlook

This thesis investigated on-robot deep reinforcement learning methods for
quadruped locomotion, focusing on enhancing the sample efficiency, robustness,
and adaptability required for effective on-robot learning. By evaluating and
comparing several approaches, including advanced soft actor-critic algorithms
and central pattern generator frameworks, this research has contributed to
improving quadruped locomotion performance and adaptability, especially in
challenging and unstructured environments.

CrossQ was investigated in the context of on-robot learning, combined with a one
Euro filter and an increased control frequency of 40 Hz, leading to remarkable
performance gains. This combination enabled the quadruped robot to reach
walking speeds of up to 0.85m/s within less than 20 minutes of training,
demonstrating a stable trot gait. Additionally, the design of the reward function
was optimized to facilitate more efficient exploration, incorporating torque, pitch,
and roll information to enhance the agent’s stability and forward progression.
The results showed that this reward structure, in conjunction with the improved
filtering and control strategy, produced a reliable gait in a minimal amount of
training time, confirming CrossQ’s value in real-world applications.

Another contribution is the exploration of CPG-based approaches, an area
previously underutilized in on-robot reinforcement learning for quadruped
control. Among the tested CPG configurations, the approach with a constant
frequency emerged as the most promising, demonstrating faster learning and
greater robustness than the joint target prediction methods. This CPG
configuration provided smooth, rhythmic locomotion patterns that allowed the
robot to quickly adapt to directional commands. The experiments confirmed that
CPG-based control methods could achieve coordinated multi-directional walking,
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a notable step forward for on-robot learning applications where resilience to
unstable ground conditions and rapid learning is crucial.

Looking forward, this research identifies several areas where future
advancements could further enhance quadruped locomotion performance and
adaptability. Improved state estimation, through techniques like visual SLAM
(ViSLAM) [75] or foot contact-based velocity estimation, would be a key next
step. ViSLAM could provide a robust external velocity reference, while foot
contact sensing would refine the robot’s proprioceptive velocity estimation. This
foot contact information would also help optimize gait adjustments by detecting
foot slippage or dragging, thereby minimizing footwear and increasing
locomotion efficiency. A potential avenue for this sensory feedback is AnySkin
[76], a technology that could offer seamless integration of foot contact data into
the robot’s control algorithms.

Additionally, integrating visual information from onboard cameras to perceive the
terrain could further improve the quadruped’s adaptability on uneven surfaces.
This external sensory data would enable the robot to anticipate obstacles or sudden
height changes, facilitating smoother and more stable walking across complex
terrains. By combining visual perception, enhanced state estimation, and CPG-
based control, future work could push the boundaries of on-robot learning for
quadruped locomotion, setting new standards for robotic agility and autonomy in
real-world settings.
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