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Abstract

Deep reinforcement learning presents a promising framework for enabling
autonomous agents to learn effective policies in uncontrolled environments
without requiring extensive domain knowledge. However, sample inefficiency has
traditionally confined its applications to simulated environments. This thesis
addresses these limitations by advancing on-robot reinforcement learning
techniques that optimize sample efficiency, enabling quadruped robots to learn
locomotion behaviors directly in real-world settings. Leveraging recent
advancements in machine learning algorithms and carefully tuned robot
controllers, the proposed approaches enable rapid learning of walking gaits across
diverse terrains, including indoor and outdoor environments known to challenge
classical model-based controllers. The work evaluates these methods through
experiments that highlight the interplay between algorithmic design, sensory
feedback, and environmental constraints. Results demonstrate the ability to
consistently achieve stable and efficient locomotion within limited training time
while addressing challenges such as noisy state estimation and terrain variability.
This research contributes to the field by providing insights into achieving practical
and adaptable quadruped locomotion, bridging the gap between simulation and
real-world deployment.
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Zusammenfassung

Tiefes verstärkendes Lernen bietet einen vielversprechenden Ansatz, um
autonome Agenten in unkontrollierten Umgebungen effektive
Verhaltensstrategien erlernen zu lassen, ohne umfangreiches Domänenwissen zu
benötigen. Allerdings war die Anwendung bisher aufgrund ineffizienten Nutzung
von Trainingsdaten hauptsächlich auf simulierte Umgebungen beschränkt. Diese
Arbeit adressiert diese Einschränkungen durch die Weiterentwicklung von
Techniken für verstärkendes Lernen, die die Dateneffizienz optimieren und es
vierbeinigen Robotern ermöglichen, direkt in realen Umgebungen
Fortbewegungsverhalten zu erlernen. Unter Verwendung aktueller Fortschritte in
maschinellen Lernalgorithmen sowie präzise abgestimmter Robotercontroller
ermöglichen die vorgeschlagenen Ansätze ein schnelles Erlernen von Gangarten
auf verschiedenen Untergründen, darunter Innen- und Außenbereiche, die als
besonders herausfordernd für klassische modellbasierte Steuerungen gelten. Die
Methoden werden in Experimenten evaluiert, die die Wechselwirkungen
zwischen algorithmischem Design, Sensorfeedback und Umgebungsbedingungen
aufzeigen. Die Ergebnisse zeigen, dass es möglich ist, innerhalb kurzer
Trainingszeit stabile und effiziente Fortbewegung zu erreichen, wobei
Herausforderungen wie ungenaue Zustandsschätzungen und
Geländeschwankungen adressiert werden. Diese Forschung liefert einen Beitrag
zum Verständnis und zur Realisierung praktischer und anpassungsfähiger
Fortbewegung quadrupeder Roboter durch tiefes verstärkendes Lernen und
schließt die Lücke zwischen Simulation und realer Anwendung.
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1 Introduction

Quadruped robots hold significant potential for navigating and performing tasks
in rough and uncertain terrain, with applications spanning search and rescue
missions, remote area explorations, and industrial inspections [1, 2]. Achieving
reliable locomotion in these challenging environments requires robots to adapt to
varied surfaces and obstacles. As a result, numerous approaches have been
explored to enable robust and adaptable locomotion. These strategies generally
fall into two categories: white-box approaches, such as Model Predictive Control
(MPC) [3], which rely on predefined, interpretable models of the robot’s
dynamics, and black-box, data-driven methods, such as deep reinforcement
learning (DRL), which leverage large-scale data to learn complex behaviors [4, 5].
While MPC methods offer interpretability and some theoretical guarantees, they
often require precise models of the robot and the environment, which can be
difficult to obtain for complex tasks. In contrast, data-driven approaches like RL
offer the promise of flexibility and adaptability, making them suitable for complex
locomotion challenges such as traversing rough terrain, climbing obstacles, and
executing jumps [6, 7, 8].

RL algorithms can be trained to handle diverse locomotion tasks, adapting to
unpredictable scenarios without explicit programming [9]. However, many RL
approaches are trained in simulation due to the high sample efficiency required for
real-world training. Simulation allows extensive data collection and model tuning
without risking hardware damage [10, 11, 12], but it also introduces challenges,
as simulated environments can only approximate real-world conditions. This gap
between simulation and reality, known as the reality gap, leads to inaccuracies in
the model, which researchers attempt to mitigate through domain randomization.
Moreover, inference in RL models can be computationally demanding compared
to control-based approaches like MPC, which typically benefit from more efficient
real-time performance and come with performance guarantees.
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2 Foundations

2.1 Universal Function Approximators

Deep learning, a subset of machine learning, has emerged as a powerful approach
for modeling complex patterns and representations in data. At its core are deep
neural networks, which are artificial neural networks composed of multiple layers
of interconnected nodes or neurons. These networks are capable of approximating
complex functions by learning from data and are considered universal function
approximators due to their ability to approximate any measurable function to an
arbitrary degree of accuracy, given sufficient data and computational resources
[13].

Mathematically, a neural network defines a function f(x; θ), where x represents
the input data and θ denotes the set of parameters (weights and biases) that
define the network. The learning process involves finding the optimal parameters
θ∗ that minimize a loss function L(f(x; θ), y), where y is the target output. This
optimization is typically performed using algorithms like stochastic gradient
descent and its variants.

Deep learning has proven effective across various tasks, including regression and
classification. Beyond these foundational applications, specialized architectures
have expanded deep learning’s capabilities in handling specific data types and
problems. Autoencoders, as unsupervised networks, learn compressed
representations by encoding data into a latent space and reconstructing it, which
aids in dimensionality reduction, anomaly detection, and generative modeling.
Convolutional Neural Networks (CNNs) are optimized for grid-like data, such as
images, where they learn spatial feature hierarchies, excelling in computer vision
tasks like image classification and segmentation [14, 15]. Recurrent Neural
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Networks (RNNs) and their variants, such as Long Short-Term Memory (LSTM)
networks, model sequential data by capturing information from previous inputs,
making them ideal for tasks like language modeling and time series prediction
[16]. Transformers have revolutionized natural language processing through
self-attention mechanisms, enabling models to assess the relevance of different
input parts [17]. This architecture has led to breakthroughs in language
understanding and generation, with models like BERT [18] and GPT [19] setting
new performance standards.

2.2 Reinforcement Learning

Reinforcement learning (RL) is a branch of machine learning focused on training
agents to make sequential decisions in an environment in order to maximize a
cumulative reward signal [20]. The primary goal of reinforcement learning is
to derive an optimal policy that dictates the best action an agent should take in
any given state to maximize the expected sum of future rewards. This approach
enables the agent to learn through interactions with the environment, receiving
feedback in the form of rewards, which guide the learning process [20, 21].

RL problems are often modeled as a Markov Decision Process (MDP), where the
environment is defined by a set of states S, a set of actions A, a transition function
P (s′|s, a) that describes the probability of reaching a new state s′ given the current
state s and action a, a reward function R(s, a) that specifies the reward obtained
after taking action a in state s, and a discount factor γ which determines the
importance of future rewards . The agent’s objective in this MDP framework is to
maximize the expected return, often defined as the cumulative discounted reward
over time.

One of the foundational algorithms in reinforcement learning is Q-learning,
introduced by Watkins et al. [22], which is an off-policy algorithm that seeks to
learn the optimal action-value function, Q∗(s, a). The action-value function, or
Q-function, represents the expected cumulative reward of taking a specific action
a in a given state s and subsequently following the optimal policy. In Q-learning,
the Q-value of a state-action pair is iteratively updated using the Bellman
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2.3 Soft Actor-Critic

The Soft Actor-Critic (SAC) algorithm [26, 27] 1 is a model-free, off-policy
actor-critic reinforcement learning algorithm that achieves high sample efficiency
and stable learning in continuous action spaces. Actor-critic methods, in general,
use two primary components: the actor, which represents the policy by selecting
actions, and the critic, which evaluates the chosen actions by estimating their
expected returns. The actor and critic operate concurrently, with the critic
providing feedback that helps the actor improve its policy. In SAC, both the policy
(actor) and the value functions (critic) are approximated by neural networks,
which allow the algorithm to generalize across high-dimensional or continuous
state and action spaces.

SAC extends the reinforcement learning objective by employing a maximum
entropy framework to promote exploration and robustness. In traditional
reinforcement learning, the objective is to find a policy π that maximizes the
expected cumulative reward. However, SAC augments this with an entropy term
to maximize both the expected reward and the entropy of the policy. This
entropy-enhanced objective is represented as:

JMaxEnt(π) = Eπ

[

∞
∑

t=0

γt (R(st, at) + αH(π(·|st)))

]

,

where α > 0 is a temperature parameter that balances the reward and the entropy
term H(π(·|st)) = −Eat∼π [log π(at|st)]. This maximum entropy reinforcement
learning approach encourages the agent to prefer more stochastic policies, which
increases exploration, particularly beneficial in environments with sparse or noisy
rewards.

SAC employs a method known as soft policy iteration, which alternates between
policy evaluation and policy improvement steps. In policy evaluation, the
Q-function is updated to estimate the expected return for each action while
accounting for the entropy. This is achieved by minimizing the soft Bellman
residual with respect to the Q-function, where the Q-function update equation
incorporates both reward and entropy:

Q(s, a)← Q(s, a) + α [R(s, a) + γEa′∼π (Q(s′, a′)− α log π(a′|s′))−Q(s, a)] .
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Figure 2.1: Velocity estimation of Kalman filter fusion of forward kinematics and
acceleration data from the IMU, pure acceleration integration Kalman filter,
compared to ground truth.

2.6.2 Pure Acceleration Integration Kalman Filter

An alternative to the fusion of forward kinematics and acceleration data is to
use only the acceleration data from the IMU. This approach tries to not rely on
the forward kinematics, which can be inaccurate due to the lack of foot contact
information. The acceleration data is integrated using the composite trapezoidal
rule to obtain the velocity of the trunk. To be able to accurately calculate the local
velocity, the local acceleration needs to be transformed into the global frame with
the measured orientation given by the Magnetometer. Additionally, the gravity
needs to be compensated. The data is fused using a linear Kalman filter.

The measurement of the acceleration and orientation are noisy and therefore are
a source of drift which can only corrected by halting the robot and recalibrating
the filter. In figure 2.1 the orange line represents the velocity estimation of
the pure acceleration integration Kalman filter. After the initial calibration the
velocity estimation is reliable and follows the ground truth. However, the velocity
estimation drifts over time and the velocity estimation is not reliable anymore.
This is due to the fact that the acceleration data is integrated and the drift of the
acceleration data is accumulated over time.
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4.4 Reward Functions

4.4.1 Forward Locomotion Velocity Reward

The velocity tracking reward employed in this study is derived from the reward
function introduced by Smith et al. [66], with modifications designed to enhance
the agent’s performance in stabilizing and optimizing forward locomotion. The
primary objective of this reward structure is to encourage the agent to reach a
specified forward target velocity, corresponding to the robot’s local positive x-axis,
while minimizing or eliminating movement in the lateral (local y-axis) direction.
This objective simplifies the control demands by focusing on forward motion,
allowing the agent to refine its gait along a single axis. Although the reward
function does not explicitly penalize lateral velocity, it encourages an efficient,
forward-focused gait as the most effective way for the agent to maximize reward.
For experimental contexts prioritizing faster convergence, an additional penalty
on lateral velocity could be incorporated to explicitly discourage any off-axis
movement, effectively reducing the exploratory space in the lateral direction.

The reward function contains multiple terms and can be seen in table 4.5. At
its core, a velocity tracking component rewards the agent for achieving a target
velocity in the x-axis direction. As it can be seen in figure 4.4a, this term is linearly
scaled within a bounded range centered around the target velocity, providing
the agent with a signal that guides its actions toward the desired speed. Such a
design aids in promoting smooth convergence, as it defines a clear gradient of
reward values that guide the agent’s gait refinement process. In addition to the
forward velocity tracking term, the reward function incorporates penalties that
deter actions potentially destabilizing or energy-inefficient. Specifically, a yaw
velocity penalty discourages excessive angular rotation, incentivizing the agent
to maintain a straight trajectory. A penalty on high torque usage encourages the
agent to lift its legs rather than dragging them, promoting a gait pattern that
reduces ground impact and minimizes mechanical wear on the robot’s feet. This
torque constraint also discourages the agent from exerting excessive force, which
further promotes energy efficiency and prevents erratic, high-energy movements.

The reward function further penalizes excessive pitch and roll motions in the trunk
to discourage exploratory actions that lead to significant trunk rotation, which
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Table 4.5: Forward Locomotion Velocity Reward Terms

Reward Weight Explanation

Velocity Tracking











1, for vx ∈ [vt, 2vt]

0, for vx ∈ (−∞, −vt] ∪ [4vt, ∞)

1 − |vx−vt|
2vt

, otherwise

1 Track a target velocity vt.
See 4.4a.

Yaw Penalty ω2

z -0.1 Penalize high yaw rate ωz.

Roll and Pitch Penalty θ2pitch + θ2roll -10 Prevent excessive rolling or
pitching.

Energy Penalty ‖τ‖2 -0.0003 Penalize energy
consumption based on
control input τ .

Total Reward rv(s, a) + ry(s, a)
+rp(s, a) + rt(s, a)

10 Combination of all sub-
rewards.

Non-negative Reward max(R(s, a), 0) 1 Ensure that the reward
remains non-negative.

Table 4.6: Forward Locomotion Maximal Velocity Reward Terms

Reward Term Formula Weight Explanation

Target Velocity Reward vx − |vy| 2 Incentivizes to increase x-
velocity and decrease y-
velocity.

Yaw Penalty |ωz| -0.1 Penalize high yaw rate ωz.

Pitch and Roll Penalty θ2pitch + θ2roll -10 Prevent excessive rolling or
pitching.

Total Reward rv(s, a) + ry(s, a)
+rp(s, a) + rt(s, a)

10 Combination of all sub-
rewards.

Non-negative Reward max(R(s, a), 0) 1 Ensure that the reward
remains non-negative.
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4.5 Curriculum

The ability of humans and animals to learn complex behaviors is greatly enhanced
when training examples are presented in a structured and meaningful sequence,
progressing from simple tomore challenging concepts. This principle, formalized in
machine learning as curriculum learning [68], provides a framework for improving
the efficiency and effectiveness of training processes by gradually increasing the
complexity of tasks. Curriculum learning has been shown to not only accelerate
the convergence of training but also to influence the quality of solutions obtained,
particularly in the context of non-convex optimization problems encountered in
deep learning. By guiding the learning process through an organized sequence of
tasks, curriculum learning enables models to achieve better generalization and
more robust solutions.

In RL, curriculum learning has proven especially useful for tackling complex tasks
that may be too challenging for an agent to learn directly. By decomposing these
tasks into smaller, more manageable sub-tasks, the agent is able to progressively
acquire the skills required for more intricate behaviors. In the context of quadruped
locomotion, a curriculum can be employed to first train the agent to walk in a
straight line on flat terrain before introducing more complex scenarios, such
as navigating uneven surfaces, inclines, or obstacles. This gradual increase in
task difficulty allows the agent to develop a stable and efficient gait that can
adapt to diverse environmental conditions, improving its overall robustness and
generalization capabilities.

When extending locomotion to include movement in arbitrary directions and
achieving a desired yaw velocity, a curriculum becomes even more critical. The
complexity of these tasks requires a structured approach to ensure that the agent
can build on foundational locomotion skills while incorporating the additional
demands of directional control and orientation. To address these challenges, we
compare a curricular approach tailored to guide the agent through progressively
more complex scenarios to a randomly sampled target direction approach.
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5 Experiments

In this chapter we are going to present the experiments that we conducted to
evaluate the performance of our proposed approach. The experiments are twofold,
simulation and experiments on the real system itself. We will use simulation data
to evaluate the performance of the approach because we can observe the true
state of the environment. For the real world experiments we use the onboard state
estimation that is a Kalman filter fusion of forward kinematics and acceleration
data from the IMU. As described in section 2.6 the measured state does not align
with the real state and vastly underestimates the current velocity. Therefore, the
performance of the robot is evaluated by analyzing the recorded video footage.

5.1 Simulation

The simulation environment that we used for training the robot is based onMuJoCo
[69]. We used the MAB Robotics HoneyBadger 4.0 quadruped robot model (see
figure 5.1) for training the robot. The experiments were conducted with the
parameters that are displayed in table 5.1.

Sim. Freq. Act. Delay Dom. Rand. Obs. Noi. Par. Env. Terrain

200 Hz |t + 0.03|, t ∼ N (0, 0.052) None None False Flat

Table 5.1: Simulation Parameters used in the experiments. Abbreviations: Sim. Freq.
(Simulation Frequency), Act. Delay (Action Delay), Dom. Rand. (Domain
Randomization), Obs. Noise (Observation Noise), Par. Env. (Parallel
Environment).
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The experiments conducted in this study are divided into two primary categories:
Forward and Multidirectional Locomotion experiments. The experiments are
initially conducted in a simulated environment to allow for controlled evaluations
and comparisons, and subsequently on a physical quadruped robot to validate
real-world performance. Simulation is particularly valuable as it provides a reliable
source of velocity measurements, enabling precise performance assessment.

The Forward Locomotion experiments focus on evaluating the robot’s ability to
move efficiently in a straight line along the x-axis. These experiments are further
subdivided into two objectives. In one set, the goal is to achieve and maintain
a specified target velocity of 0.5 m/s, assessing the agent’s ability to track and
stabilize around a predefined speed. In the other, the objective is to determine the
maximum achievable forward velocity, providing insights into the potential speed
limits of the learned locomotion policies. These experiments allow for a detailed
comparison of the presented control methods and their capability to generate
stable and efficient forward motion.

The Multidirectional Locomotion experiments, on the other hand, evaluate the
agent’s ability to move in arbitrary directions on the x-y plane. The aim is to
assess the versatility of the locomotion strategies by testing whether the robot can
achieve specified velocities in both the x- and y-directions. These experiments also
examine the ability to integrate and balance directional control and orientation,
crucial for navigating complex environments.

Approach Filter/Extension Abbreviation

Joint Target Prediction No Filter JT-NF

Joint Target Prediction Low-Pass Filter JT-LPF

Joint Target Prediction One Euro Filter JT-OEF

Central Pattern Generator Default CPG-D

Central Pattern Generator Variable Frequency CPG-VF

Central Pattern Generator Residual Target CPG-RT

Table 5.2: Overview of locomotion control approaches, their associated filters or
extensions, and corresponding abbreviations.
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The approaches that are displayed in table 5.2, introduced in the methodology,
are evaluated in these experiments.

All experiments begin with a warm-up phase of 1000 steps to prefill the replay
buffer, ensuring that the initial learning process is not hindered by a lack of
experience data. In the Forward Locomotion experiments, training is conducted
over 50k steps with a target velocity of 0.5 m/s, with the target of conducting
20k steps in real-world experiments corresponding to approximately 9 minutes of
wall time. For Multidirectional Locomotion, training runs for 50k steps, equating
to about 21 minutes of real time. These time estimates exclude any potential
overhead, such as manually resetting the robot or the time required for just-in-time
compilation of the learning loop.

To ensure statistical reliability and minimize the impact of outliers, in simulation,
each experiment is repeated 10 times. By conducting these experiments in both
simulation and real-world settings, this study provides a comprehensive analysis of
the locomotion strategies, ensuring their robustness and applicability in practical
scenarios.

Figure 5.1: The MAB Robotics HoneyBadger 4.0 in the simulation environment.
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Figure 5.4: Gait evaluation in the Forward Locomotion Experiment. Data was collected
after training completion using deterministic sampling from the policy. The
figure illustrates the contact points of the feet with the ground over a one-
second duration.
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Figure 5.5: Forward velocity of the Joint Target andCPG-based approaches in the Forward
Locomotion Experiment. Velocities below vx < 0.5m/s are highlighted.
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Figure 5.6: Comparison of JT-NF, JT-OEF, JT-LPF, CPG-D, CPG-VF, CPG-RT in the Maximal
Velocity experiment. This Forward Locomotion experiment evaluates the
ability of each approach to achieve the highest possible velocity.
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Figure 5.7: Gait evaluation in the Forward Locomotion with Maximal Velocity Experiment.
The figure illustrates the contact points of the feet with the ground over a
one-second duration.
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Figure 5.8: Local Trunk Forward Velocity in the Forward Locomotion with Maximal
Velocity Experiment.
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Figure 5.9: Comparison in the Omnidirectional Locomotion with Random Target
Command experiment.
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5.2 Real World Experiments

Real-world experiments are critical to validate the findings from simulation and
assess the applicability of the trained policies under physical constraints. While
simulation provides a controlled environment with precise state estimation,
efficient exploration, and rapid iteration, transferring these results to the real
robot introduces numerous challenges. In simulation, agents often demonstrate
excellent sample efficiency, learning effective behaviors within a constrained
number of steps. However, reality poses a markedly different scenario, with
inherent noise, uncertainties, and wear introducing complexities that can impede
the learning process. These factors show the need to evaluate the training process
on the physical robot to ensure their robustness and reliability.

In simulation, agents were trained for Forward Locomotion with Target Velocity,
Omnidirectional Locomotion with Random Target Command, and
curriculum-based approaches such as Omnidirectional Locomotion with
Progressive Directional Expansion Curriculum. These experiments explored the
agent’s ability to move stably in predefined directions, navigate across all
directions, and incrementally expand its behavioral repertoire. The real-world
experiments aimed to translate these findings by evaluating the agent’s ability to
perform Forward Locomotion and Omnidirectional Locomotion in two distinct
environments: the smooth and constrained office environment and the more
complex outdoor environment featuring uneven cobblestones and environmental
variability. These experiments bridge the gap between simulation and physical
systems by testing the agent’s adaptability to different levels of terrain complexity
and friction coefficients.

The challenges of real-world experiments extend beyond the physical constraints
of the robot itself. Noise in sensor measurements, such as inaccurate state
estimation, can degrade the observation and reward signals used during training.
Wear and tear on hardware components, such as the robot’s feet, introduce
additional uncertainty over time, while fluctuations in battery levels affect
actuator responsiveness. The outdoor environment adds further complications,
such as wind disturbances and a three degree terrain inclination. Safety measures
were employed to protect the robot, including automatic disengagement of
training when orientation thresholds were exceeded or joint limits were violated.
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5.2.1 Forward Locomotion in Office Environment

This experiment evaluates the real-world applicability of the findings from the
Forward Locomotion with Target Velocity experiment conducted in simulation.
The primary goal is to train the robot to walk forward with a target velocity of
0.25m/s, using the same reward and command functions as in simulation. The
experiments are conducted for 20k steps to assess how quickly and effectively the
approaches can learn to achieve stable locomotion. The experimental setup was
constrained by the physical limitations of the office environment. The available
space was restricted, requiring frequent manual relocation of the robot, which
significantly increased the overall experimental runtime. Additionally, the floor
surface in the office was smooth, which reduced the robot’s struggle to lift its legs
during motion but introduced other challenges related to stability. For the CrossQ-
based methods, Joint Target Prediction approaches utilizing either a one Euro filter
or a low-pass filter were evaluated. However, the Joint Target Prediction approach
without any filtering was excluded due to its instability and high risk of damaging
the robot, as it led to frequent falls during preliminary tests. Similarly, the Central
Pattern Generator with residual targets was omitted because it caused over 100
terminations within the first 10k steps, rendering it unsuitable for real-world
evaluation. A significant challenge during these experiments was the inaccuracy
of the robot’s state estimation. The internal velocity estimation substantially
underestimated the actual velocity, leading to an observation signal that differed
markedly from the real-world dynamics. Consequently, the perceived velocity
only showed slight improvements during training, even as the robot’s actual
performance improved. This discrepancy caused the cumulative reward to be

Figure 5.15: Evaluation run of internal MPC controller showing a stable trot gait.
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dominated by episode length rather than velocity tracking, making it difficult to
evaluate the effectiveness of different approaches purely based on reward metrics.
Figure 5.15 illustrates a run of the internal MPC controller, demonstrating its
use of a trot gait for forward locomotion. The controller effectively navigates the
uneven terrain without falling or generating any significant yaw velocity.

SAC UTD 20 JT-LPF The experiment with SAC UTD 20 and low-pass filter took
more than 40 minutes to complete. There are two reasons for this: this experiment
was done with a reduced frequency of 20 Hz and therefore it took more time to
collect the same amount of steps. Secondly, the Number of Terminations ended up
to be 43, which is comparably a high number. One reason for this is that the safety
measures were prematurely triggered a number of times. The strategy of the agent
was to heavily jump with the front legs. This resulted in a harsh movement and
the robot was not able to grip the ground properly. The robot was not able to learn
a proper gait and the velocity was not improving over time. Also, the evaluation
run showed (depicted in figure 5.16) that the agent was not able to walk in a
straight line. Despite the jumping while learning, it shows signs of a trot gait and
has connected the front left and rear right leg multiple times but is brushing the
ground while the other legs are used for stabilization. Resulting in a very low
forward velocity, travelling about half a meter in 40 seconds. Additionally, it has
very low control over yaw and lateral velocity.

Figure 5.16: Evaluation run of SAC UTD 20 with low-pass filter, staying on the spot for the
duration of 10 seconds.

70



CrossQ JT-OEF This experiment needed 25 minutes to conclude the required
samples. Within the first three minutes, the agent was able to make little steps
while keeping balance. This led to more exploration and consecutive falling. After
4.5 minutes, the agent was able to take bigger consecutive steps without falling
directly at a low speed. This was followed by increasing the steps and lifting the
leg from the floor to optimize the needed torque. At the same time the agent
picked up that the velocity can be reduced to prevent falling down. Additionally,
it also learned at this stage that a trot gait gives good balance while improving
velocity. Moreover, the agent has already learned a higher walking speed than the
given target velocity. After 6 minutes it is still increasing the velocity until it peaks
at about 12:30 minutes. The agent develops a strategy of falling backwards when
it is threatened to terminate. After this, the agent tries to improve robustness
and yaw velocity restriction. In the end, it also learns to recover from falls by
catching itself, but this only works when the agent tips in a shallow angle and one
of its front feet are placed in the front of the robot. The evaluation run (see figure
5.17) showed that the agent capable of performing a stable trot gait and is able
to reach up to 0.85 m/s for short distances of 1 m. This is due to the fact, that
the agent is then falling to the back to prevent falling. For longer distances, the
agent is able to reach a velocity of about 0.65 m/s. The agent struggles to walk in a
completely straight line and occasionally changes its direction but learns a trot gait
that lifts the leg. Despite the fact that the agent was trained for the target velocity
of 0.25 m/s, it has exceeded this velocity. This is due to the fact that the internal
velocity estimation is bounded, but the agent picks up that a higher velocity results
in a higher reward and therefore intuitively aims for higher velocities even though

Figure 5.17: Evaluation run of CrossQ JT-OEF showing a trot gait and achieving a velocity
of 0.65 m/s and 0.85 m/s for short distances.
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these higher velocities only lead to minor reward increases. Then the learned
policy was tested in simulation, it was possible to achieve velocities up to 1.5m/s.

CrossQ JT-LP The experiment was completed in approximately 20 minutes,
during which the agent exhibited a maximum velocity of less than 0.4m/s.
Initially, for the first two minutes, the agent displayed no forward movement.
During this time, it performed very small, rapid steps that provided negligible
progress. These steps were slightly larger than jittering movements but still
resulted in minimal forward progress. The application of a low-pass filter to the
action outputs aimed to suppress jittering and excessively small movements, yet
the agent exploited the residual movement allowance to generate these tiny steps.

Around the five-minute mark, the agent began to demonstrate more assertive
movements, combining small vibrating motions with occasional large, inconsistent
steps. These larger steps introduced a jerky forward progression, with frequent
foot dragging on the ground. To stabilize itself against forward imbalance, the
agent often adopted a rapid backward-leaning motion, which sometimes led to
larger, sporadic steps.

From the eleventh minute onward, the agent transitioned to a gait dominated
by medium forward jumps, engaging all four legs simultaneously. This strategy
improved speed and alignment, allowing the agent to sustain faster movement. In
simulation, the policy was able to reach a velocity of 0.65m/s.

The evaluation run following training, depicted in figure 5.18, showcased the
resulting gait. The agent adopted a common strategy of executing medium

Figure 5.18: Evaluation run of CrossQ JT-LPF achieving a velocity of 0.4 m/s.
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forward jumps with synchronized front and rear legs. While this gait
demonstrated improved coordination compared to earlier phases of training, the
achieved velocities remained modest, highlighting the constraints imposed by
real-world dynamics and the filtering approach.

CrossQ CPG-D The training process for this experiment lasted approximately
30 minutes, with a total of 38 terminations recorded. These terminations were
primarily caused by the safety measures, which frequently triggered before the
robot could fall. This early intervention were partially caused by the swing height
being set to 0.2m with an additional possible z-offset of up to 0.1m. These
parameters were configured to accommodate very rough terrain and maintained
consistently across all runs for comparability. While this setup ensured the safety of
the robot, reducing these parameters could potentially lead to better performance.

During the initial phase of training, the agent focused on exploring the boundaries
of the safety measures and optimizing the trunk’s tilting angle to prevent premature
termination. This was followed by the agent quickly learning to take forward
steps. Throughout the training process, the agent consistently tested the limits
of the safety parameters, seeking to refine its gait and achieve efficient forward
movement. Concurrently, it developed the ability to maintain a level trunk despite
the elevated swing height, demonstrating robust compensation strategies.

The evaluation run, illustrated in figure 5.19, revealed that this approach was
capable of walking forward with a consistent speed without falling. However,
yaw velocity remained an unresolved issue, indicating room for improvement in

Figure 5.19: Evaluation run of CrossQ CPG-D achieving a velocity of 0.3 m/s.
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directional stability. The evaluation run measured a maximum velocity of 0.3m/s,
while the agent achieved approximately 0.6m/s in simulation.

CrossQ CPG-VF It took about 45 minutes to complete. Safety measures were
triggered prematurely, partly due to the agent’s control over its gait frequency.
This flexibility resulted in an initially unstable learning phase, as the agent had
to identify the boundaries of the safety constraints. Adjusting the swing height
parameter could potentially improve stability.

In the first 20 minutes, the agent primarily focused on learning how to avoid
activating the safety measures. By the 25-minute mark, it was able to move
forward slowly, though frequent falls still occurred. Following this, the agent
began exploring faster walking patterns. Around 32 minutes, it reduced the
number of falls, increased its speed, and adjusted its gait frequency.

The agent initially discovered that a very high frequency provided more stability.
Over time, it learned to walk faster at a lower frequency but would revert to a higher
frequency in situations with a high risk of falling. By the end of the evaluation
(see figure 5.20), the agent had learned to walk consistently without falling.
The evaluation runs also showed good yaw control throughout. The evaluation
achieved a velocity of approximately 0.3 m/s, both in real and simulated runs.

Figure 5.20: Evaluation run of CrossQ CPG-VF achieving a velocity of 0.3 m/s.
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Figure 5.21: Training progress of the Forward Locomotion in the office environment. Due
to the wrong velocity estimation, the velocity tracking reward is an insufficient
indicator of the performance.
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5.2.2 Forward Locomotion in Outdoor Environment

This experiment extends the findings from the Forward Locomotion with Target
Velocity simulation experiment and the Forward Locomotion in Office
Environment real-world experiment to a more challenging outdoor setting. The
primary objective remains consistent: training the robot to walk forward with a
target velocity of 0.25m/s using the same reward and command functions as
employed in simulation. The experiments are conducted for 20k steps, aiming to
evaluate how effectively the approaches can learn stable locomotion under more
demanding real-world conditions.

The outdoor environment posed additional challenges compared to the office
setting. The surface consisted of uneven cobblestones with varying friction levels
and a slight inclination, introducing more complex dynamics for the robot to adapt
to. However, the increased training area reduced the need for frequent manual
relocation of the robot, thereby accelerating the overall training process.

Joint Target Prediction approaches using either a one Euro filter or a low-pass filter
were tested. As in the office environment experiments, the Joint Target Prediction
approach without filtering and CPG with residual targets were excluded due to
instability and high risk of damage, as it led to over 100 terminations within the
first 10k steps in earlier tests, making it unsuitable for real-world deployment.

A key challenge in these experiments was the inaccuracy of the internal state
estimation system. The velocity estimation consistently underestimated the
robot’s actual velocity, leading to observation signals that poorly reflected the

Figure 5.22: Evaluation run of MPC controller.
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6 Discussion

This thesis evaluates the performance of on-robot learning approaches for
quadruped locomotion, emphasizing sample efficiency, robustness, and
adaptability in both simulated and real-world environments. The discussion is
organized into a comparison of reinforcement learning algorithms, joint target
prediction methods, and Central Pattern Generators, culminating in an analysis of
their relative strengths and limitations.

6.1 Comparison of High Sample-Efficient SAC Algorithms

Various high sample-efficient reinforcement learning algorithms, including SAC,
SAC UTD 20, DroQ, and CrossQ, were compared in simulation, to determine the
most effective algorithm for on-robot learning. CrossQ outperformed the other
methods, achieving the target velocity within 2 minutes and completing training
in 21 minutes due to its higher operating frequency of 40Hz, which enabled faster
data collection. CrossQ also exhibited greater stability with an average termination
rate of 14 falls, compared to DroQ’s 32 falls.

The computational efficiency of CrossQ not only enhanced the learning process
but also made it feasible to conduct training on a MacBook equipped with an
integrated GPU, rather than requiring a laptop with a dedicated GPU. This reduced
hardware dependency further highlights CrossQ’s potential for practical on-robot
learning scenarios, where accessibility and portability are critical factors.
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6.2 Comparison of Joint Target Approaches

Joint Target Prediction methods were evaluated using no filter (NF), one Euro
filter (OEF), and low-pass filter (LPF). Table 6.1 summarizes the results across
simulation, office, and outdoor environments.

JT Approaches Simulation Office Outdoor

No Filter (NF) 2.2 N/A N/A

One Euro Filter (OEF) 1.3 0.85 0.25

Low-Pass Filter (LPF) 1.15 0.4 0.23

Table 6.1: Performance of Joint Target Prediction methods in Forward Locomotion
experiments (velocity in m/s). Simulation results show maximal achievable
velocity. Real-world results use target velocities of 0.25 m/s.

In simulation, all methods achieved the target velocity of 0.5m/s within 20k
steps, but differences became apparent in maximal velocity experiments. The
NF approach achieved the highest velocity (2.2m/s) but at the cost of significant
instability and jittering in early training phases. In contrast, OEF and LPF achieved
similar maximal velocities (1.3m/s and 1.15m/s, respectively), but OEF converged
to its velocity much faster, stabilizing within 20k steps, whereas LPF required
significantly more steps to approach this performance.

The choice of filter plays a crucial role in balancing stability and responsiveness
during joint angle predictions. The OEF operates as an adaptive smoothing
mechanism that dynamically adjusts its filtering properties based on the rate of
change of the input signal. This dynamic adjustment allows the OEF to preserve
rapid changes when necessary while suppressing high-frequency noise, making it
particularly suitable for tasks requiring both stability and responsiveness. In
contrast, the LPF applies a fixed smoothing factor to the entire signal, heavily
attenuating high-frequency components regardless of their relevance to the
control task. While this approach effectively reduces noise, it can hinder the
robot’s ability to respond to abrupt changes, leading to slower convergence and
less dynamic locomotion. The NF approach entirely avoids smoothing, passing the
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automatic resetting or sophisticated techniques like Adaptive Policy
Regularization (APRL) or network resetting. This performance increase, achieved
despite the use of noisy velocity estimation and the absence of foot contact
sensors, highlights the effectiveness of the OEF filter in enabling rapid and stable
learning.

The Forward Locomotion in Outdoor Environment experiment posed additional
challenges due to uneven terrain and increased surface friction. OEF reached
0.25m/s, while LPF achieved 0.23m/s. These reduced velocities, compared to
the office environment, are likely due to the increased difficulty of lifting feet
off high-friction surfaces, which requires more precise and forceful movements.
The robot’s lack of exteroceptive feedback further exacerbated these difficulties,
leading to frequent foot dragging and collisions with uneven terrain. Despite
these challenges, OEF maintained a slight advantage over LPF, demonstrating its
robustness across different terrains.

6.3 Comparison of CPG Approaches

The evaluation of Central Pattern Generator-based approaches included constant
frequency, variable frequency, and residual target configurations, with their results
summarized in table 6.2.

CPG Approaches Simulation Office Outdoor

CPG-D 0.55 0.3 0.3

CPG-VF 0.75 0.3 0

CPG-RT 0.55 N/A N/A

Table 6.2: Performance of CPG-based methods in Forward Locomotion experiments
(velocity in m/s). Simulation results show maximal achievable velocity. Real-
world results use target velocities of 0.25 m/s.

In simulation, CPG-based methods demonstrated rapid learning, converging within
5k–10k steps for the target velocity experiment. Their robustness was reflected
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For the Omnidirectional Locomotion experiments, CPG-VF was excluded due to its
high termination rates and the associated risk to the robot’s safety, similar to the
exclusion of CPG-RT. CPG-D, while struggling initially with safety mechanisms,
eventually adapted to multiple directions. However, its evaluation phase revealed
limitations in generalization, as it refused to move backward while successfully
executing movements in the forward, left, and right directions. These observations
suggest that a Progressive Directional Expansion Curriculum could address such
challenges by incrementally increasing task complexity, thereby enabling more
effective generalization to dynamic, multi-directional tasks.

6.4 Comparison of Joint Target and CPG Approaches

The experiments highlighted distinct advantages and limitations of JT and CPG
approaches, each excelling in specific environments and tasks.

JT approaches demonstrated superior adaptability and higher velocities in smooth
indoor environments. For instance, JT-OEF achieved an impressive velocity of
0.85m/s in the office setting, outperforming CPG methods. This performance can
be attributed to the greater flexibility of JT methods, which allow the agent to
dynamically adjust its movements without adhering to predefined gait patterns.
However, this adaptability came at the cost of increased terminations during the
exploratory phases of training. These terminations often required manual resets,
posing a risk to the robot’s hardware and significantly extending wall-clock training
times.

On the other hand, CPG approaches excelled in robustness, particularly in
unstructured outdoor terrains. The predefined patterns inherent to CPG methods
reduced the complexity of the learning problem by providing a reliable
framework for step generation. This allowed the agent to focus on higher-level
locomotion tasks rather than learning how to generate individual steps. In
outdoor experiments, CPG-D maintained a steady velocity of 0.3m/s,
outperforming JT methods, which struggled with the increased friction and
uneven terrain. Moreover, CPG terminations were primarily triggered by safety
mechanisms rather than falls, enabling training to resume automatically without
requiring human intervention.
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7 Conclusion and Outlook

This thesis investigated on-robot deep reinforcement learning methods for
quadruped locomotion, focusing on enhancing the sample efficiency, robustness,
and adaptability required for effective on-robot learning. By evaluating and
comparing several approaches, including advanced soft actor-critic algorithms
and central pattern generator frameworks, this research has contributed to
improving quadruped locomotion performance and adaptability, especially in
challenging and unstructured environments.

CrossQ was investigated in the context of on-robot learning, combined with a one
Euro filter and an increased control frequency of 40 Hz, leading to remarkable
performance gains. This combination enabled the quadruped robot to reach
walking speeds of up to 0.85m/s within less than 20 minutes of training,
demonstrating a stable trot gait. Additionally, the design of the reward function
was optimized to facilitate more efficient exploration, incorporating torque, pitch,
and roll information to enhance the agent’s stability and forward progression.
The results showed that this reward structure, in conjunction with the improved
filtering and control strategy, produced a reliable gait in a minimal amount of
training time, confirming CrossQ’s value in real-world applications.

Another contribution is the exploration of CPG-based approaches, an area
previously underutilized in on-robot reinforcement learning for quadruped
control. Among the tested CPG configurations, the approach with a constant
frequency emerged as the most promising, demonstrating faster learning and
greater robustness than the joint target prediction methods. This CPG
configuration provided smooth, rhythmic locomotion patterns that allowed the
robot to quickly adapt to directional commands. The experiments confirmed that
CPG-based control methods could achieve coordinated multi-directional walking,
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