
Multi-Embodiment Locomotion at Scale

with extreme Embodiment Randomization

Nico Bohlinger1, Jan Peters1,2

Abstract— We present a single, general locomotion policy
trained on a diverse collection of 50 legged robots. By combining
an improved embodiment-aware architecture (URMAv2) with
a performance-based curriculum for extreme Embodiment
Randomization, our policy learns to control millions of mor-
phological variations. Our policy achieves zero-shot transfer to
unseen real-world humanoid and quadruped robots.

Fig. 1. (Top) We collected a diverse set of 50 legged robots, including
15 quadrupeds, 23 humanoids, 8 bipeds and 4 hexapods. (Bottom) We train
the policy on all robots simultaneously using 25600 parallel environments.
The performance-based curriculum on extreme Embodiment Randomiza-
tion leads to the policy seeing gradually more challenging embodiments
throughout training. This results in a curriculum of up to 10 million different
embodiments per training run. Here different generated varations of the
ANYmal C, Nao v5 and Unitree G1 are shown as examples.

I. INTRODUCTION

Recent advances and availability of powerful robot hard-

ware, like humanoid robots, have enabled researchers all

around the world to tackle more complex tasks in robotics

[1], [2]. Deep Reinforcement Learning (DRL) has shown

impressive results in many of these tasks, especially in the

field of locomotion [3], [4]. With more and more robot plat-

forms being developed and finding their way into research

labs and real-world applications, the current paradigm of

training a control policy tailored to a specific robot can

become increasingly inefficient. Robot platforms change,

adapt, and evolve over time, but many current training

approaches do not consider robot morphologies as a key

1Technical University of Darmstadt. 2hessian.AI. & German Research
Center for AI (DFKI). & Robotics Institute Germany (RIG).

factor. Their learning process is agnostic or simply unaware

of the specific characteristics and capabilities of the robot’s

embodiment, making cross-embodiment transfer difficult or

even impossible. We build upon the recently introduced

Unified Robot Morphology Architecture (URMA) [5], an

embodiment-aware learning framework that addresses these

challenges for the field of robot locomotion. We train a single

unified embodiment-aware policy across 50 different legged

robots with massive Embodiment Randomization (ER). This

results in a curriculum of up to 10 million embodiments per

training run, in order to learn a robust and adaptive general

locomotion policy, that can be directly zero-shot transferred

to unseen humanoid and quadruped robots in the real world.

II. RELATED WORK

Robot locomotion has seen significant advancements in

recent years, particularly with the rise of DRL techniques [3],

[4], [6]. Leveraging fast and highly parallelizable simulators,

like Issac Gym/Sim [7] or MuJoCo XLA (MJX) [8], in

combination with strong Domain Randomization (DR), and

the scalability of on-policy DRL algorithms, like Proximal

Policy Optimization (PPO) [9], has enabled learning ro-

bust and high-performing locomotion policies for various

quadruped and humanoid robots. Techniques such as DR

[10] and student-teacher learning [4] are used to bridge the

sim-to-real gap and other methods, like curriculum learning,

help to speed up and stabilize the training process [11].

While training directly on the real robot system would be

ideal to make the policy fully aware of the true capabilities

of its embodiment, it is often impractical due to safety

concerns, wear and tear, and the extensive time required for

the unparallelized training [12].

In the pursuit of obtaining a foundation model for robotics

tasks, like locomotion, that can generalize across different

embodiments, the concept of embodiment-aware learning

and the technical challenge of different amounts of sensors

and actuators (meaning different observation and action

spaces in the language of DRL) come into play. It is

natural to consider the field of Multi-Task Reinforcement

Learning (MTRL) here, where a single policy is trained

to solve multiple different tasks. However, many existing

MTRL approaches simply zero-pad observations and actions

or learn different input and output heads for each task, which

can severely limit their ability to generalize across different

embodiments, as they neglect their structural similarities [5].

Therefore, prior work has proposed Graph Neural Networks

(GNNs) as an architecture to better capture the structure of

robot embodiments [13]. Following work has used Trans-



J
o

in
t 

d
e

s
c

ri
p

ti
o

n

L
in

e
a

r

E
L

U

L
in

e
a

r

S
o

ft
m

a
x

J
o

in
t 

o
b

s
e

rv
a

ti
o

n
s

L
in

e
a

r

E
L

U

R
e

p
e

a
t

x

Joints

+

~

Action

Universal decoder

Joint encoder

L
a

ye
r 

N
o

rm

T
a

n
h

General observations

W
N

 L
in

e
a

r

E
L

U

W
N

 L
in

e
a

r

E
L

U

W
N

 L
in

e
a

r

L
a

ye
r 

N
o

rm

Core network

Attention encoding

E
L

U

W
N

 L
in

e
a

r

E
L

U

W
N

 L
in

e
a

r

·

MuSigma

L
in

e
a

r

Fig. 2. Overview of URMAv2. We extend the original URMA architecture to improve its scalability, learning stability and empirical performance in
the massively multi-embodiment setting. We increase the capacity of the encoder and core network, add WeightNorm layers for more stable training, and
replace the original universal decoder with a streamlined attention-based decoding mechanism.

formers in combination with different graph-based features

or attention mechanisms to improve the scalability in the

multi-embodiment setting [14]. Only recently, the URMA [5]

could show the applicability of multi-embodiment learning

to real-world robots. While the initial study only used 16

robots and could not show sim-to-real transfer to seen or

unseen humanoids, following work has shown embodiment

scaling laws for training URMA on up to 1000 offline

generated robots (based on three template morphologies) and

demonstrated its transfer to a real humanoid [15].

III. METHOD

We build upon the original URMA architecture and

training framework, and scale it to the massively multi-

embodiment setting of 50 different base robots with 10

million variations. To achieve this, we modify the neural net-

work architecture to be larger, more stable and leverage the

attention mechanism also for the policy output (see Figure 2),

which we call Unified Robot Morphology Architecture v2

(URMAv2). Furthermore, we introduce a performance-based

curriculum learning strategy in combination with extreme ER

to expose the policy to gradually more diverse and difficult

embodiments.

A. URMAv2 Architecture

Inputs: Following the original URMA architecture, the

inputs are split into three categories: per-joint description

vectors {dj}j∈J for the set J of all joints in a given

robot that uniquely describe a joint’s static properties (e.g.,

rotation axis, torque limits), per-joint observations {oj}j∈J

containing dynamic state information (e.g., position, veloc-

ity), and general robot observations og (e.g., trunk velocity,

gravity vector). URMAv2 includes an additional per-joint

observation to indicate whether a joint should track its

nominal position or can be controlled freely, allowing for

task-specific joint-level conditioning. Also, we remove the

feet-specific observations and their encoding from the policy

network, as contact sensors are not available on many of the

considered robots. The critic network keeps the feet obser-

vations and now also receives the noise-free observations to

better estimate values.

Joint Encoder: URMAv2 keeps the same attention-based

joint encoder, which processes each joint’s description (at-

tention keys) and observation vector (attention values), and

aggregates them into the combined joint latent vector

z̄joints =
∑

j∈J

zj , zj = αjfψ(oj),

αj =
exp(fφ(dj)/τ)∑
Ld

exp(fφ(dj)/τ)
.

(1)

where fφ (with latent dimension Ld) and fψ are the

encoders for the joint descriptions and joint observations,

respectively, and τ is the learnable temperature parameter of

the softmax. URMAv2 uses a wider Multilayer Perceptron

(MLP) for fψ (2x 256 units) for the policy network to

increase its capacity for the larger number of robots and

variations.

Core Network: The joint latent vector contains all joint

information in a fixed-size vector, so it can be concatenated

with the fixed-size general observations and processed by the

core network hθ to generate the action latent vector

z̄action = hθ(og, z̄joints). (2)

URMAv2 uses a deeper stack of 5 instead of 3 hidden

layers to increase the model capacity. To stabilize training,

WeightNorm layers [16] are used around every Dense layer,

which decompose the weights as w = g v
∥v∥2

, where the

optimizer acts on g, a learnable scalar, and v, representing

the raw weights.

Action Decoder: The most significant architectural

change is the replacement of URMA’s universal decoder

with an attention-based decoding mechanism. Instead of

concatenating the action latent vector in batch with encoded

joint description latents to produce actions for every joint,

URMAv2 computes the mean action µj for each joint via

a simple dot product between the action latent vector zaction



and the corresponding joint’s attention weights αj that were

generated in the encoder:

µj = zaction · αj (3)

Also, the per-joint standard deviations are predicted with a

linear layer συ from the same joint description encoding

calculated for the attention weights, which results in actions

being sampled from

aj ∼ N (µj , συ(fφ(dj))). (4)

This creates a streamlined architecture that is both conceptu-

ally simpler, computationally more efficient and empirically

more performant than the original URMA decoder.

B. Embodiment Randomization

To improve the generalization capabilities of the policy

across different embodiments, we apply extreme ER online

during training (see Figure 1). ER differs from standard DR

in that all the generated values are seen by the policy through

the description vectors, allowing the policy to condition

and adapt to them. We use DR after the ER sampling to

further modify the sampled parameters but keep them hidden

from the policy, to add robustness and improve sim-to-real

transfer. Our ER includes scaling of: body part size and

position in every dimension, coupled and decoupled mass

and inertia, center of mass, inertia and body part and joint

axis orientation, IMU position, motor torque and velocity

and position limits, joint damping and friction and armature

and stiffness, joint nominal position, PD gains, and action

scaling factor. Our framework samples a new embodiment

during every episode step with a probability of 0.2% which

corresponds to once every 10 seconds of simulated time on

average at the highest curriculum level. This leads to up to

10 million different embodiments per training run.

C. Performance-based Curriculum

When drastically increasing the number of robots and their

variations, the learning problem becomes significantly more

challenging. To tackle this, we introduce a performance-

based curriculum learning strategy that attaches every com-

ponent of the learning framework to a single curriculum

coefficient β ∈ [0, 1]. This coefficient is initialized to β = 0
and is increased by n∆β whenever an episode is deemed

successful, e.g., a minimum tracking error, episode length,

or return threshold is reached. n is the number of consecutive

successful or unsuccessful episodes, depending on whether β
should be increased or decreased, and allows the curriculum

to quickly adapt to the current performance of the policy. ∆β
is a small constant step size that determines the granularity of

the curriculum. We attach all training components: domain

and embodiment randomization ranges, perturbations, sam-

pling probabilities, terrain attributes, termination conditions,

and reward penalty coefficients, to this single curriculum

coefficient β. This significantly helps to speed up the training

process for challenging embodiments, especially humanoids,

and leads to more stable training runs.

0 20 40 60 80 100
Environment steps per robot (M)

0.0

0.2

0.4

0.6

0.8

1.0

C
ur

ric
ul

um
 c

oe
ffi

ci
en

t (
be

ta
) Training on all 50 robots

Zero-padding
Multi-Head
URMAv2
URMA

Fig. 3. Comparison of the training performance of URMA, URMAv2,
zero-padding and multi-head baselines when training on all 50 robots.

0 20 40 60 80 100
Environment steps per robot (M)

0

10

20

30

40

50

Ep
is

od
e 

re
tu

rn

Training on 49 robots, zero-shot on left-out robot

Unitree Go2
MAB Silver Badger
Booster T1
Unitree G1
Unitree H1

Fig. 4. Different setups of URMAv2 trained on 49 robots and zero-shot
performance evaluated on the left-out robot. We test on the MAB Silver
Badger and Unitree Go2 for quadrupeds, and the Unitree H1, Unitree G1
and Booster T1 for humanoids.

Furthermore, we define all mentioned components in

a percentage-based manner based on the robot’s nominal

parameters from the URDF, which allows us to use the

exact same parameters, ranges and reward coefficients for all

robots. For any given robot, only the nominal joint positions

and the PD gains have to be specified, the rest of the training

framework is fully shared between all robots.

IV. EXPERIMENTS

We train URMAv2 on a set of 50 legged robots, including

15 quadrupeds, 23 humanoids, 8 bipeds and 4 hexapods,

collected from various freely available URDFs (see Figure 1).

We use MJX as the physics engine and PPO as the DRL

algorithm, which we implement with the RL-X library [17].

With a total of 25600 parallel environments (512 per robot),

we collect 1.6 million samples (32768 per robot) and use

16 minibatches of size 102400 (2048 per robot) for 10

epochs for every policy update. We train for a total of 5

billion environment steps (100 million per robot), which

takes approximately 40 hours on a single NVIDIA A100

GPU.

Figure 3 compares the training performance of URMAv2

with the original URMA architecture, as well as a zero-

padding and multi-head baseline (one head per robot). We

measure the performance by the average curriculum coeffi-

cient β over all robots. URMA and URMAv2 significantly

outperform the zero-padding and multi-head baselines, show-

ing the effectiveness of the embodiment-aware architecture in



Fig. 5. Shows the zero-shot transfer of URMAv2 to the Unitree Go2 (row
1), MAB Silver Badger (row 2), and Booster T1 (row 3). We also deploy
the policy trained on all 50 robots on the Unitree H1 (row 4).

general. URMAv2 outperforms URMA in terms of learning

speed and final performance (β = 0.88 vs. β = 0.82).

Figure 4 shows the zero-shot transfer performance of

URMAv2 trained on 49 robots and evaluated on the left-

out robot. For quadrupeds, we test on the Unitree Go2 and

MAB Silver Badger (has an additional spine joint), and

for humanoids, we test on the Unitree H1, Unitree G1 and

Booster T1. URMAv2 shows strong zero-shot performance

on especially the quadruped robots, even the MAB Silver

Badger, which proved to be challenging in the original

URMA study due to its additional spine joint that is not

present in any other training robot. Zero-shot performance

for the humanoids is clearly lower, but still a significant

improvement over the reported 0 return for the Unitree H1 in

the original URMA study. In simulation, the policy is able to

control all three humanoids fairly well, especially the Booster

T1 and the Unitree G1, but under server perturbations or

really rough terrain, it still falls occasionally.

A. Sim-to-Real Transfer

While inspecting the learned policy in simulation can give

a good indication of its performance, the ultimate test is

its transfer to the real robots. Figure 5 shows the zero-

shot sim-to-real transfer of URMAv2 trained on 49 robots

to the Unitree Go2, MAB Silver Badger, and Booster T1.

The policy is able to control both quadrupeds very well,

even under disturbances like pushes and pulling on the legs.

The policy is able to walk forward and sidewards reliably

on the Booster T1, but struggles with turning and walking

backwards, leading to regular falls. We could not zero-shot

transfer to the Unitree H1 as the policy was not stable

enough, but we transfered to URMAv2 policy trained on all

50 robots, which was able to locomote well on the H1 in

every direction.

V. CONCLUSION

We presented URMAv2, an improved embodiment-aware

architecture for learning a general locomotion policy across

a diverse set of 50 legged robots with extreme ER and

a performance-based curriculum. While URMAv2 shows

strong training performance and zero-shot transfer to unseen

quadruped and humanoid robots in simulation, sim-to-real

transfer to unseen humanoids still remains challenging. Even

more embodiment diversity through more base robots and

curriculum learning methods that can explore the embod-

iment space more effectively could help to improve the

generalization capabilities to obtain a true foundation model

for robot locomotion.

ACKNOWLEDGMENT

This research is funded by the National Science Cen-

tre Poland (Weave programme UMO-2021/43/I/ST6/02711),

and by the German Science Foundation (DFG) (grant number

PE 2315/17-1).

We gratefully acknowledge support from the hessian.AI

Service Center (funded by the Federal Ministry of Ed-

ucation and Research, BMBF, grant no. 01IS22091) and

the hessian.AI Innovation Lab (funded by the Hessian

Ministry for Digital Strategy and Innovation, grant no. S-

DIW04/0013/003).

We acknowledge EuroHPC Joint Undertaking for award-

ing us access to MareNostrum5 at BSC, Spain.

REFERENCES

[1] Y. Ma, A. Cramariuc, F. Farshidian, and M. Hutter, “Learning coor-
dinated badminton skills for legged manipulators,” Science Robotics,
vol. 10, no. 102, p. eadu3922, 2025.

[2] Z. Su, B. Zhang, N. Rahmanian, Y. Gao, Q. Liao, C. Regan,
K. Sreenath, and S. S. Sastry, “Hitter: A humanoid table ten-
nis robot via hierarchical planning and learning,” arXiv preprint

arXiv:2508.21043, 2025.

[3] G. B. Margolis and P. Agrawal, “Walk these ways: Tuning robot
control for generalization with multiplicity of behavior,” in Conference

on Robot Learning. PMLR, 2023, pp. 22–31.

[4] X. Cheng, K. Shi, A. Agarwal, and D. Pathak, “Extreme parkour with
legged robots,” in RoboLetics: Workshop on robot learning in athletics

@ CoRL, 2023.

[5] N. Bohlinger, G. Czechmanowski, M. Krupka, P. Kicki, K. Walas,
J. Peters, and D. Tateo, “One policy to run them all: an end-to-end
learning approach to multi-embodiment locomotion,” Conference on

Robot Learning, 2024.

[6] M. Stasica, A. Bick, N. Bohlinger, O. Mohseni, M. J. A. Fritzsche,
C. Hübler, J. Peters, and A. Seyfarth, “Bridge the gap: Enhancing
quadruped locomotion with vertical ground perturbations,” Interna-

tional Conference on Intelligent Robots and Systems, 2025.

[7] M. Mittal, C. Yu, Q. Yu, J. Liu, N. Rudin, D. Hoeller, J. L. Yuan,
R. Singh, Y. Guo, H. Mazhar, A. Mandlekar, B. Babich, G. State,
M. Hutter, and A. Garg, “Orbit: A unified simulation framework for
interactive robot learning environments,” IEEE Robotics and Automa-

tion Letters, vol. 8, no. 6, pp. 3740–3747, 2023.

[8] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ international conference on

intelligent robots and systems. IEEE, 2012, pp. 5026–5033.

[9] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint

arXiv:1707.06347, 2017.

[10] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in International conference on intelligent

robots and systems, 2017.



[11] G. B. Margolis, G. Yang, K. Paigwar, T. Chen, and P. Agrawal,
“Rapid locomotion via reinforcement learning,” International journal

of robotics research, vol. 43, no. 4, pp. 572–587, 2024.
[12] N. Bohlinger, J. Kinzel, D. Palenicek, L. Antczak, and J. Peters, “Gait

in eight: Efficient on-robot learning for omnidirectional quadruped
locomotion,” International Conference on Intelligent Robots and Sys-

tems, 2025.
[13] T. Wang, R. Liao, J. Ba, and S. Fidler, “Nervenet: Learning structured

policy with graph neural networks,” in International conference on

learning representations, 2018.
[14] A. Gupta, L. Fan, S. Ganguli, and L. Fei-Fei, “Metamorph: learning

universal controllers with transformers,” in International Conference

on Learning Representations. ICLR, 2022.
[15] B. Ai, L. Dai, N. Bohlinger, D. Li, T. Mu, Z. Wu, K. Fay, H. I.

Christensen, J. Peters, and H. Su, “Towards embodiment scaling laws
in robot locomotion,” Conference on Robot Learning (CoRL), 2025.

[16] T. Salimans and D. P. Kingma, “Weight normalization: A simple
reparameterization to accelerate training of deep neural networks,”
Advances in neural information processing systems, vol. 29, 2016.

[17] N. Bohlinger and K. Dorer, “Rl-x: A deep reinforcement learning
library (not only) for robocup,” in Robot world cup. Springer, 2023,
pp. 228–239.


	INTRODUCTION
	RELATED WORK
	METHOD
	URMAv2 Architecture
	Embodiment Randomization
	Performance-based Curriculum

	EXPERIMENTS
	Sim-to-Real Transfer

	CONCLUSION
	References

