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Abstract

We introduce a scaling strategy for Explicit Policy-Conditioned Value Functions (EPVFs) that significantly improves
performance on challenging continuous-control tasks. EPVFs learn a value function V (θ) that is explicitly conditioned
on the policy parameters, enabling direct gradient-based updates to the parameters of any policy. However, EPVFs at
scale struggle with unrestricted parameter growth and efficient exploration in the policy parameter space. To address
these issues, we utilize massive parallelization with GPU-based simulators, big batch sizes, weight clipping and scaled
peturbations. Our results show that EPVFs can be scaled to solve complex tasks, such as a custom Ant environment,
and can compete with state-of-the-art Deep Reinforcement Learning (DRL) baselines like Proximal Policy Optimization
(PPO) and Soft Actor-Critic (SAC). We further explore action-based policy parameter representations from previous work
and specialized neural network architectures to efficiently handle weight-space features, which have not been used in
the context of DRL before.
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1 Introduction

The remarkable success of deep learning in recent years is closely linked to the concept of scaling. In particular, the scaling
of neural networks, datasets, and computational resources has led to significant advances in various domains such as
computer vision and natural language processing. Hardware improvements for GPUs and TPUs and parallelization
techniques like data and model parallelism have enabled the training of large-scale models on massive datasets. The
relationship between scaling and improved performance has been formalized into the concept of scaling laws [1, 2].

While the benefits of scaling are well-established in supervised learning, its application to Deep Reinforcement Learning
(DRL) is less understood. Naively increasing the size of policy and value function networks and using bigger batch
sizes often leads to diminishing returns or even performance degradation [3]. However, recent work has shown that
carefully designing the neural network architecture by incorporating normalization layers, like LayerNorm, BatchNorm
or WeightNorm, and residual connections can help to scale up DRL algorithms and improve their performance with
bigger networks [4, 5, 6, 7]. On-policy algorithms like Proximal Policy Optimization (PPO) have been shown to greatly
benefit from bigger batch sizes, which can be collected efficiently using up to thousands of parallel environments [8].

In this work, we investigate the scaling capabilities of different variations of Explicit Policy-conditioned Value Functions
(EPVFs) with the help of massively parallel environments. While EPVFs have previously struggled on complex tasks,
we show the importance of scaling and weight regularization for the training of EPVFs and compare different neural
network architectures and training setups on a MuJoCo Ant and Cartpole environment.

2 Explicit Policy-conditioned Value Functions

In Reinforcement Learning (RL), we consider a Markov Decision Process (MDP) defined by a tuple M =
(S,A, P,R, γ, ρ0), where S is the state space, A is the action space, P is the transition dynamics, R is the reward function,
γ is the discount factor, and ρ0 is the initial state distribution. The goal of an RL agent is to learn a policy πθ(a|s) that is
parameterized by θ. Rolling out the policy in the environment generates a trajectory τ = (s0, a0, r0, . . .), where s0 is sam-
pled from ρ0 and at ∼ πθ(·|st). The return Rt is defined as the sum of discounted rewards Rt =

∑T−t−1
k=0 γkrt+k+1, where

T is the time horizon. The policy is trained to maximize the expected return J(πθ) = Eτ∼πθ,s0∼ρ0
[R0]. The state-value

function for the policy is defined as V πθ (s) = Eπθ
[Rt|st = s], with which we can re-formulate the policies objective as

J(πθ) =

∫
S
ρ0(s)V

πθ (s) ds. (1)

Many RL algorithms use the action-value function Qπθ (s, a) = Eπθ
[Rt|st = s, at = a] to decompose the state-value func-

tion in the policy objective into V πθ (s) =
∫
A πθ(a|s)Qπθ (s, a) da to get the gradient w.r.t. θ to optimize the policy. EPVFs

take a different approach by learning a value function that is explicitly conditioned on policy parameters or some other
differentiable representation of the policy V (θ), to directly optimize the gradient of the policy objective [9, 10, 11]:

∇θJ(πθ) =

∫
S
ρ0(s)∇θV (s,θ) ds = Es∼ρ0

[∇θV (s,θ)] = ∇θV (θ). (2)

The value function V (θ) is learned using a replay buffer of policy parameters and returns, which can be collected by
any policy, and updated using stochastic gradient descent. Because the value function predicts the performance of a
policy from start to finish and we consider the episodic setting, the target is the undiscounted return. The policy is then
updated by following the gradient of the value function with respect to the policy parameters. The resulting algorithm
is presented in Algorithm 1.

Algorithm 1 Actor-Critic with Explicit Policy-conditioned Value Function
Input: Initial policy parameters θ, initial value function parameters ϕ, replay buffer D
for I steps do

Choose M policy parameters or representations {θ1, . . . ,θM}
Rollout and compute undiscounted return Rm for each θm
Store {(R1,θ1), . . . , (RM ,θM )} in D
for K steps do

Sample batch B = {(R,θ)1, . . . , (R,θ)N} from D

Update ϕ with gradient descent: ∇ϕ
1
N

∑N
n=1[Rn − Vϕ(θn)]

2

end for
for L steps do

Update θ with gradient descent: ∇θ
1
N

∑N
n=1 −Vϕ(θ)

end for
end for
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EPVFs have the key advantage to learn a value function that can potentially reason about all possible policies instead
of just the current policy and directly optimize the policy through the value function network. This enables completely
off-policy or offline learning with any kind of policy data. Data can be collected by policies that might be optimized for
different objectives as long as the associated return for rolling out the policy is known. This can be especially useful in
multi-task settings or settings where exploration with different strategies is needed.

When using the concatenation of the raw policy parameters as the input to the value function, the size of the value
function network can quickly blow up with the number of policy parameters. This can be mitigated by using another
representation of the policy, like the concatenation of actions given a set of probing states [9, 11]. Furthermore, specialized
neural network architectures that are designed to handle weight-space features efficiently, by utilizing the symmetry
properties of neural network weights [12, 13, 14], are another interesting direction to prevent the network from blowing
up in size. These architectures have not been used in the context of RL or even continual online learning before. We
investigate both alternatives and more in the following experiments.

3 Experiments

First, we evaluate the performance of EPVFs on the Gymnasium Cartpole environment [15]. From previous work, we
know that EPVFs can fully solve simple tasks like Cartpole without additional scaling, i.e., using a small batch size of
16, a replay buffer of size 1e5, a two layer Multilayer Perceptron (MLP) with 64 neurons for the deterministic policy, and
only a single environment [10]. For choosing the policy parameters during rollout, we follow Faccio et al. [10] and simply
use the current best policy parameters and perturb them with Gaussian noise N (µ = 0, σ = 1.0). We compare the single
environment setting with using up to 16 parallel environments, where the policy parameters for every environment are
perturbed with a different sample of Gaussian noise, i.e. we use as many different policies as environments. Figure 1
shows that scaling the number of environments, and therefore the number of different policies, improves convergence
speed, while the perturbed policies in all settings eventually reach the same maximum return of 500. As the Cartpole
task is not particularly challenging, we observe diminishing returns with more than 8 environments.
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Figure 1: Performance on Cartpole with different numbers of parallel environments. The return is the average undis-
counted return achieved with the perturbed policy parameters used during data collection.

Next, we evaluate the performance of EPVFs when scaling to massively parallel environments on a custom Ant environ-
ment. For the physics simulation, we us MJX, which is a highly parallelizable GPU-based version of MuJoCo [16] based
on JAX [17]. Our Ant environment is a continuous control task with a 34-dimensional state space and a 8-dimensional
action space. In this task, the Ant’s objective is to walk forward at a target velocity of 2 m/s. The time horizon is set to
1000 steps and the reward is calculated as r = exp(−|vxy − cxy|2/0.25), where vxy is the linear velocity of the Ant and
cxy is the target velocity (2, 0). This results in a maximum possible return of 1000. We setup the learning environment
and algorithm in the DRL framework RL-X [18]. We can jit-compile the full training loop, enabling up to 4096 parallel
environments on a single RTX 3090 GPU. This setup allows for extremely fast data collection and throughput of up to 3
million environment steps per second.
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Figure 2: Top left – Performance on Ant with different numbers of parallel environments, which equal the batch size.
Top right – Ablation on the different algorithmic changes introduced to scale EPVFs. Every ablation uses all the same
parameters as the best setup but with one change. Multiple policies: Update a set of 4096 differently initialized policy
parameters instead of just one. 100x buffer size: Increase the replay buffer size to 409600 to sample older data as well.
Fixed policy LR: Use a fixed learning rate of 1e − 5 for the policy instead of the learning rate schedule. 1.0 noise scale:
Use a uniform noise scale of 1.0 for perturbing the policy parameters instead of 0.3. No weight clip: Do not clip the
policy parameters. Clip perturbations: Directly clip the perturbations of the policy parameters to (−0.3, 0.3) instead
of only after the gradient steps. Gaussian noise: Use N (µ = 0, σ = 1.0) instead of uniform noise for perturbing the
policy parameters. Bottom – Performance of the action-based policy parameter representations (Probing) and specialized
weight-space architectures (UNF). Additionally, the performance of the PPO and SAC baselines is shown as dashed lines.

To successfully train EPVFs on the Ant environment, the training setup is significantly scaled up. We increase the number
of environments to 4096, the batch size to 4096 and also the replay buffer size to 4096. As the replay buffer is now just
as big as the batch size, the value function is trained on only fresh data and the big batch size ensures good gradient
estimates through averaging on diverse data. Furthermore, we perturb the policy parameters with uniform noise that is
(−0.3ω, 0.3ω) for each parameter ω instead of Gaussian noise. This change allows the added noise to be automatically
scaled to the magnitude of every policy parameter. Additionally, we introduce weight clipping for the policy parameters
to be in the range (−0.1, 0.1), which helps to stabilize the training and prevent the policy parameters from constantly
growing in magnitude. Alternatively, weight regularization with strong weight decay can also be used but the weight
decay coefficient is harder to tune. Finally we add an exponential learning rate schedule for the policy from 1e − 3 to
1e− 7 over the course of training. The top right of Figure 2 shows the ablations on the mentioned algorithmic changes.

The top left of Figure 2 highlights the scaling capabilities of EPVFs on the Ant environment, where the number of envi-
ronments equals the batch size. The results show that increasing the batch size directly improves the policy performance.
An environment and batch size of at least 2048 is necessary to achieve strong performance and to solve the task, while
setups with less environments struggle to reach even a quarter of the maximum return. EPVFs thrive in settings with
many environments and large batch sizes, as the value function trained for the policy parameter space is inherently more
difficult to learn but can give good gradient estimates to the policy when the policy parameter space is well explored and
well restricted with weight clipping.

Finally, we investigate action-based policy parameter representations and specialized neural network architectures for
the value function and also compare the performance of EPVFs to PPO and Soft Actor-Critic (SAC) [19]. For the action-
based policy parameter representation, we follow prior work [9, 11] and use the concatenation of actions given a set
of 200 learnable probing states as the input to the value function. Furthermore, we test a variation where the resulting
action representation is concatenated with the raw policy parameters to see if both representations can be combined.
Figure 2 shows that the action-based representation is not reaching the same performance as just using the raw policy
parameters. The combination of both improves upon only using the actions but still does not reach good performance.
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For the specialized weight-space neural network architecture, we use the recently proposed Universal Neural Functional
(UNF) [14] for the value function. Figure 2 shows that the features from the UNF architecture in concatenation with
the raw policy parameters are able to reach the same performance as the default MLP architecture, while even learning
slightly faster. When using UNF features alone, the learned policy is not able to reach the same end performance.

4 Conclusion

We have shown that EPVFs can be scaled to solve complex continuous control tasks and compete with state-of-the-art
DRL baselines with the help of massively scaling up the number of parallel environments and the batch size. Key to
stability is the use of weight clipping, to restrict the policy parameter space and prevent the parameters from constantly
growing, and the use of uniform noise scaled to the magnitude of the parameters for exploring the policy parameter
space efficiently. Further investigation on weight-space features from specialized architectures like UNFs might enable
even better scaling capabilities for EPVFs in the future.
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