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Robust Localization, Mapping, and Navigation for Quadruped Robots
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Abstract— Quadruped robots are currently a widespread
platform for robotics research, thanks to powerful Rein-
forcement Learning controllers and the availability of cheap
and robust commercial platforms. However, to broaden the
adoption of the technology in the real world, we require
robust navigation stacks relying only on low-cost sensors such
as depth cameras. This paper presents a first step towards
a robust localization, mapping, and navigation system for
low-cost quadruped robots. In pursuit of this objective we
combine contact-aided kinematic, visual-inertial odometry, and
depth-stabilized vision, enhancing stability and accuracy of the
system. Our results in simulation and two different real-world
quadruped platforms show that our system can generate an
accurate 2D map of the environment, robustly localize itself,
and navigate autonomously. Furthermore, we present in-depth
ablation studies of the important components of the system
and their impact on localization accuracy. Videos, code, and
additional experiments can be found on the project website.1

I. INTRODUCTION

The widespread availability of robust and reliable robotics

platforms, and the major advances in locomotion controllers

based on Reinforcement Learning [1], [2], [3], [4], [5],

[6], has enabled the deployment of quadruped robots in

challenging environments, both outdoor and indoor [7], [8].

Concurrently, there is an increasing interest in quadruped

robots from the industry for surveillance, inspection, and

search and rescue tasks, owing to their ability to navigate

diverse settings—including stairs, cluttered spaces, and un-

even terrain.

Unfortunately, practical industrial solutions typically rely

on expensive robotic platforms equipped with high-precision

sensors that enable robust autonomous navigation and map-

ping. In low-cost platforms, however, these sensors are not

available, and most of the localization capabilities must rely

on inexpensive depth image cameras or 2D LiDARs, result-

ing in subpar performance. These issues are further exacer-

bated when employing policies learned with Reinforcement

Learning, which can achieve very high speeds and reactive

behavior, at the expense of trajectory smoothness. Such rapid

trajectories may disrupt the SLAM pipeline, resulting in

loss of localization, broken maps, and, consequently, the

inability to navigate autonomously in the environment. These
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Fig. 1. Overall system design for robust navigation in low-cost quadruped
robots. Our contributions are highlighted in light blue, different colors
indicate different types of data.

challenges are even more relevant when quadruped robots

operate in indoor environments, thus in settings where fast

movements change the robot’s perceptions rapidly; in those

environments, even the availability of expensive long-range

LiDARS has a limited impact on performance, due to the

proximity of obstacles to the robot’s location.

In this paper, we focus on designing a simple and robust

localization pipeline that enables low-cost quadruped robots

to navigate autonomously in complex environments, thereby

empowering these robots to tackle interesting real-world

tasks. Our approach targets scenarios where the robot is

equipped with a low-cost RGBD camera and an IMU. Due to

the type and quality of sensors available for our target set-up,

we restrict our localization and navigation pipeline to indoor

settings. These environments, while being one of the target

environments for quadruped robots, are particularly chal-

lenging as fast robot movements can cause abrupt changes

in robot perception, thus causing localization and mapping

issues. Moreover, we focus on localization, navigation, and

mapping using 2D grid maps. Those maps are commonly

used for path planning, localization, and path execution since

widespread methods for 2D map-based navigation are still

de facto the state-of-the-art for autonomous navigation [9],

and since 2D maps can be combined with machine learning

techniques and 3D and semantic maps [10].

In a 2D mapping setting, an occupancy map is generated

using LiDAR scans or from depth data obtained by an

RBGD camera [11]. While setup is widely used in classical

wheeled mobile platforms with stable performance, its im-

plementation with quadruped robots is still challenging, and

https://arxiv.org/abs/2505.02272v2


few robust solutions have been proposed yet. Due to rough,

uneven, and slippery terrain, robot perception data are subject

to jitters and noise, making 2D mapping and localization

highly unreliable. Scans oscillate according to the terrain and

the robot’s own movement, especially when the movement

involves sharp changes in roll and pitch angles. Several

works used 3D map representation and vision-based methods

for SLAM with quadruped robots. Unfortunately, while 3D

maps can provide a more semantically rich representation

of the environment, they are still more computationally

expensive to obtain and maintain. Moreover, when low-cost

sensors are used, 3D maps are heavily affected by noise,

making them impractical for navigation.

To enhance system autonomous navigation performance,

we exploit joint encoder data to compute leg odometry [12].

This integration requires reliable contact information, typi-

cally obtained from contact sensors. However, these sensors

are not always available or sufficiently accurate on legged

platforms. Recognizing that contact sensors are not always

available or sufficiently accurate on legged robotic platforms,

we also demonstrate how to estimate foot contacts using only

joint torque measurements. Additionally, we incorporate a

scan stabilization technique to mitigate the impact of rapid,

dynamic movements on the SLAM pipeline, ensuring more

robust and accurate localization. The key contributions of

this paper are i) a detailed description of the localization

system, illustrating how it is possible improve localization

and navigation performance integrating standard pipelines

with specific problem-dependent solutions; our system in-

volves a) an estimation of legged odometry and b) contact

estimation, c) scan stabilization, and d) integration of leg-

visual-inertial odometry to improve visual odometry. Then,

we provide (ii) an extensive ablation study of the impact of

each component of the localization system in simulation in

several downstream tasks such as mapping, navigation, and

exploration. Finally, we present (iii) an experimental real-

world evaluation including a robot with an actuated spine.

II. RELATED WORKS

Quadruped robots, similarly to other autonomous mobile

robots, need localization, mapping, and autonomous navi-

gation capabilities [13]. While many different systems with

such capabilities have been presented in literature, most

of them rely on expensive robotic platforms, such as the

Anymal and the Spot robots, mounting high-end, expensive

long-distance sensors, thanks to their large form factor,

allowing heavier payloads. An example of such systems

can be found in [14] for the Anymal and in [15] for the

Spot robot. Indeed, in [15], the authors make a step towards

low-end platforms by reducing the total amount of sensors

used by the system. However, their setup is still relatively

expensive compared with the setup considered in this paper.

On top of this, we consider much more reactive and fast

neural-based policies. A similar setup is used in [13], where

a long-distance 3D LiDAR and RGBD cameras are used for

3D SLAM in outdoor environments, while the recent work

of Li et al. [16] presents a framework to perform 3D SLAM

integrating features extracted from a long-distance LiDAR.

In [17], the authors describe a framework designed to solve

the task of autonomous exploration for object search, where

a Spot robot is equipped with a Velodyne Puck LiDAR and

an Azure Kinect RGBD camera. The robot plans its action

using a 2D grid map by integrating a classifier to detect areas

left to explore (labeled as non-map) where the target object is

located. Interestingly, even if a long-range expensive LiDAR

is used, since acquiring mapping data for training models

is difficult with quadruped robots due to their mechanical

limitations, a remotely controlled wheeled cart with the same

sensor equipment as the quadruped robot is used instead for

data acquisition.

The authors of [18] design an autonomy package that

incorporates 3D LiDAR and IMU data for autonomous

navigation of a Spot robot in GPS-constrained settings. The

robot navigation is performed using a 2D occupancy map of

the environment; to reduce the difficulty of building 2D maps

of indoor environments with quadruped robots, a first run is

made by manually moving the robot within the environment;

the recorded data are later used to compute a 2D map, offline.

In later runs, the map is used online for localization.

In [12], the authors compute Leg Odometry (LO) by

modeling the forward kinematics and fuse it with IMU data

to correct the robot position among different keyframes. To

stabilize the perception, dynamic and moving objects are

filtered from camera data using computer vision methods.

As a result of this, they provide a robust visual-slam method

for quadruped robots in dynamic environments with visually

challenging conditions. Similarly, Kumar et al. [19] improve

visual-intertial SLAM by exploiting the periodic predictabil-

ity in the motion of legged robots by performing visual

SLAM separately on each portion of the gait circle, thus

leveraging a model of how quadruped robots move.

The work of [20] investigates how the combination of

different sources of odometry, such as laser odometry (LO)

and laser-inertial odometry (LIO), reduces the uncertainty in

2D and 3D SLAM that is due to the high noise of legged

odometry derived from kinematics in quadruped robots. To

do so, they estimate LIO from 3D maps, using a long-range

(70 meters) LiDAR and creating both a 2D grid map and a

3D point cloud map of the environment.

Bouman et al. [21] present a system for the large-scale

and long-duration mapping and exploration of a GPS-denied

indoor environment using a Spot Robot. The proposed setup

is based on five custom RealSense RGBD cameras and a

high-end long-range LiDAR. Different sources of odome-

try, such as kinematic-based odometry (KO) and LO, are

integrated using an odometry multiplexer so that the noise

in different sources of odometry can be compensated by

integrating different inputs. Even if the robot is designed

to work in a multi-floor environment, a 2D grid map is built

and used for local and global path planning and navigation.

In [22], the authors present a system that uses a 2D map

to improve the process of building a 3D map of the same

environment. Using a long-range LiDAR sensor, a 2D map is



used for navigation and to correct the expected localization

within the 3D map, while the 3D map process uses LO and

LIO derived from the 2D map. The decoupling of the process

of 2D map-based navigation and 3D scene reconstruction

allows focusing on the accuracy of the 3D reconstruction

while having a robust 2D map.

Miller et al. [23] present a system for mapping large-

scale GPS-denied environments using quadruped robots. The

robot is equipped with a long-range LiDAR and a RealSense

RGBD camera.

Fahmi et al. [24] present a terrain-aware locomotion

framework for quadruped robots, where both proprioceptive

and exteroceptive sensor readings are used to plan the feet

contact location and the feet motion, and to plan the overall

motion of the robot. This information is used to evaluate if

the planned motion of the robot can cause a collision of a leg

or place the robot’s foot in an unstable position; the result

of this model is used to improve motion control.

In [25], the authors show how robot perception about

reinforcement learning can be used to allow quadruped

robots to navigate on risky terrains with dynamic motion.

However, the system assumes perfect perception and uses a

ground truth map for state estimation. A similar work, where

a model of the environment is used for local navigation with

sensor constraints is presented in [26].

Recently, Wasserman et al. [27] developed a method

to estimate the robot odometry of a quadruped robot by

integrating previous action and command velocities, IMUs,

proprioceptive sensing, roll and pitch estimates, and the

angles and velocities of each joint of the robot. These inputs

are processed by a neural network tasked to provide a

probabilistic estimate of the robot’s translation and rotation.

Finally, several works proposed different approaches to inte-

grate heterogeneous proprioceptive and exteroceptive sensor

readings, including IMUs, joint encoders, contact sensors,

force/torque measurements, camera, LiDAR, GPS, and mo-

tion capture, for state estimation in quadruped robots [28],

[29], [30], [31].

III. SYSTEM DESIGN

We present a system for robust localization, mapping, and

navigation for quadruped robots in challenging environments

by combining advances in visual-inertial odometry, contact-

aided kinematic odometry, and an IMU-stabilized laser setup

for mapping. The overall system is described in Fig. 1, where

our contribution is highlighted in light blue. We introduce

two key modules, one that performs legged-inertial odometry

while also doing contact estimation (Section III-A-III-B), and

another that generates stable scans from depth camera mea-

surements and IMU attitude measurements (Section III-C).

We then integrate Visual-Inertial Odometry (VIO), Legged-

Inertial Odometry (LIO), and laser-stabilized scans into

existing 2D localization frameworks that we adapt to the

particular settings of quadruped navigation (Section IV-B).

Furthermore, we use the leg odometry information to restart

the visual odometry system when it gets lost (Section III-

D). This allows us to maintain a reasonable pose estimate

even when the robot performs fast and/or abrupt movement,

causing a loss of visual feature tracking (Section III-E).

A. Contact estimation

Low-cost quadruped robots are often not equipped with

contact estimation sensors, as in the Dingo quadruped, and

the RealAnt robot [32]. In the absence of external force

sensing, we use a contact state detector based on the classic

generalized momentum (GM) disturbance observer [33]. The

GM-based observer is proposed as follows
[

˙̂p
˙̂
f

]

=

[

0 −JT

0 0

] [

p̂

f̂

]

+

[

τ̄

0

]

+

[

L1(p− p̂)
L2(p− p̂)

]

,

with p = M(x)v, the measured generalized momentum,

M denotes the joint space mass matrix, p̂ the estimated

generalized momentum, and f̂ ∈ R
12 the measured contact

force for four legs. τ̄ = τm + CTv − g, where τm are

the motor torques, C the Coriolis matrix, g the gravity, and

L1,L2 the observer gains.

Since our goal is to detect contact states and not to

reconstruct the full force vector, we impose two constraints

on the observer: we estimate the force only on the z axis,

and clip the estimated force to be always positive. Moreover,

to alleviate the phase-lag inherent in high-gain disturbance

observers, we introduce a mixed-mode observer that blends

high-gain and sliding-mode strategies. This design requires

only a global incremental affine bound on the force-signal

nonlinearities—a strictly weaker assumption than that of pure

high-gain observers [34]. Specifically, the observer dynamics

are as follows
[

˙̂p
˙̂
f

]

=

[

0 −JT

0 0

] [

p̂

f̂

]

+

[

τ̄

0

]

+

[

Lk1(p− p̂)
L2k2(p− p̂)

]

,

with f̂ =
[

0 0 f̂z
]

the estimated contact force on only

z axis, and k1, k2 are defined as

k1(s) := q(s) k2(s) := sign(s) + q(s)

with q(s) := sign(s)|s|1/2 + s, sign(s) = 1 if s > 0 and

sign(s) = −1 if s < 0, L the gain parameter. To obtain

the contact states, we filter the estimated contact force to

reduce oscillations during the steady state period, and we

use feet-specific thresholds to determine the contact states.

B. Legged Odometry as Least Squares

Using leg odometry [35], we can estimate the twist of the

robot body, i.e., linear and angular velocities, as a function

of the joint velocities of the legs in contact with the ground.

This is given as an equation of the form

vl
b = −ωb × pl − vl, (1)

with vl
b the velocity of the body due to leg l, ωb the angular

velocity of the body, pl and vl the position and velocity (in

body frame) respectively of the leg in contact. Notice that

the equation above represents a 3DoF linear constraint on

the 6DoF robot twists. Thus, we require at least two linearly

independent constraints to completely identify the twist of



the robot body, resulting in a system of linear constraints. To

ensure that we always have at least two linearly independent

constraints and improve the condition number of the linear

system, we add the angular velocity measured by the IMU

sensor as an additional constraint. The resulting system of

constraints can be written as
[

A

AIMU

]

Vb =

[

b

ωIMU

]

(2)

with the twist of the body Vb, the IMU angular velocity

measurements ωIMU, and the matrices A ∈ R
3×6, AIMU ∈

R
3N×6, and b ∈ R

3N defined as

A =











A1

A2

...

AN











AIMU =
[

03×3 I3×3

]

b =











b1

b2

...

bN











where each block Ai and bi represent a single constraint

and can be written as

Ai =
[

I3×3 −S(pi)
]

bi = −vi = −Jiθ̇θθi

where S(pi) is the skew-symmetric matrix representation

of the position of the i-th leg pi, while Ji and θ̇θθi are the

Jacobian and the joint velocities of the i-th leg.

We can find a solution to this linear system as a least

squares problem

V̂b = argmin
Vb

∥AVb − b∥
2
. (3)

The problem described in (3) can be solved in closed form

as follows

V̂b =
(

A¦A
)−1

A¦b (4)

C. Scan Stabilization

In this Section, we show how we can exploit the informa-

tion from depth images and the robot’s orientation to generate

a stabilized scan. To this end, we use the onboard IMU to

select a slice of the image data, making it invariant to jitters

and significant changes to roll and pitch angles. In this way,

we can obtain more stable 2D depth readings that can be used

for 2D mapping, localization, and, ultimately, navigation. An

example of the effect of the scan stabilization can be seen

in Fig. 1 and an example of the result in Fig. 2.

We extract the slice of image data along a line of pixels

whose slope is determined by the roll r angle and whose

intercept is determined by the pitch p angle. A standard width

of pixels above and below this line is combined to form the

depth scan. This allows us to compensate for any rotation

along the x and y axes. The slope of the reference line is

easily computed directly from the roll angle. However, the

intercept position is slightly more complex to compute as it

depends on these two quantities. We derive an expression for

the intercept position in pixels ∆v for an object’s image in

response to a pitch rotation θ of the camera.

Assuming that the z-axis of the camera frame lies along

the camera’s optical axis, a pitch rotation along the y-axis

in the robot frame corresponds to a roll rotation along the

x-axis in the camera frame. Therefore, in the camera frame,

the robot’s pitch rotation is represented by the following roll

rotation matrix:

Rx(θ) =





1 0 0
0 cos θ − sin θ
0 sin θ cos θ





For simplicity, we assume the initial coordinates of an object

in the camera’s frame are (X,Y, Z) = (0, 0, Z), meaning the

object is positioned along the optical axis at depth Z. After

applying the rotation θ, the new coordinates of the object in

the camera’s frame are:




Xc

Yc

Zc



 = Rx(θ) ·





0
0
Z



 =





0
− sin θ · Z
cos θ · Z





Let K be the camera’s intrinsic matrix

K =





fx 0 cx
0 fy cy
0 0 1





where fx and fy are the focal lengths in pixels along the x-

and y-axes, respectively, and (cx, cy) represents the principal

point in pixel coordinates. Using the pinhole camera model,

the 3D point in the camera frame projects onto the image

plane as:




u
v
1



 = K ·





Xc/Zc

Yc/Zc

1





Substituting Xc/Zc = 0 and Yc/Zc = − tan θ, we obtain:

u = cx + fx · 0 = cx

v = cy + fy · (− tan θ)

The vertical shift in pixels ∆v = v − v0 = −fy · tan θ
due to the pitch angle θ is the difference between the new v
coordinate and the initial v0 = cy . This gives us the intercept

value where the reference line equation as a function of pixel

coordinates becomes

v = (u− xc) tan (−r)− fy tan(p), (5)

where (u, v) represents the pixel coordinates, with the origin

being on the top left, xc is the x coordinate center of

the image, and fy represents the camera’s focal length.

Combining the pixels above and below this line, we get a

stabilized scan using only depth and IMU data.

D. Integrating leg odometry with visual inerital odometry

When tracking is lost, we leverage the computed leg

odometry to restart the visual odometry system. Due to the

abrupt and jerky nature of quadruped locomotion compared

to wheeled systems, sudden pose changes are frequent.

This can cause visual odometry systems to lose track when

consecutive frames lack sufficient feature correspondence.

Such systems are typically reset to the last computed pose;

however, with fast-moving platforms like ours, this approach

often lacks accuracy and degrades localization performance.



To mitigate this issue, we integrate the last available pose

with the body velocity computed by the leg odometry system

over small time intervals, thereby generating a more accurate

pose to reinitialize visual odometry. This mechanism is

triggered when no correspondences are identified between

two subsequent frames.

E. Integrating leg odometry with 2D SLAM

Finally, we use leg odometry to impose velocity con-

straints on the 2D SLAM factor graph. 2D SLAM factor

graphs are typically formed with pose constraints based

on laser scans. Loop closures occur, and the factor graph

is optimized when scans are matched with ones nearby.

However, when quadruped robots are used, due to noise and

jitter that result from their fast motion, laser scans are often

particularly difficult to match, thus affecting both the quality

of mapping and localization and ultimately not allowing the

robot to robustly navigate in challenging environments. To

address this issue, in addition to the scan pose constraints, we

add a velocity constraint between consecutive poses, thereby

restricting sudden position changes due to mismatched scans.

This ensures that the optimized poses remain consistent with

the robot’s estimated body velocity between poses. This is

integrated with a standard 2D SLAM pipeline, as explained

in Section IV-B.

IV. EXPERIMENTAL EVALUATION

In this Section, we perform an in-depth evaluation of our

localization system by ablating its components. We carry out

our experiments using two different robots: the Unitree Go2

and the MAB Silver Badger. The key difference between

these platforms is that the MAB Silver Badger features an

additional degree of freedom due to its actuated spine. This

results in slightly more erratic camera movements, which

makes the localization even more challenging. We also tested

our system with three other robotic platforms, the Unitree

Go1 and A1, and the MAB Honey Badger, with similar

results. For sensing, we use an Intel RealSense D435i RGBD

camera. Additional results can be found on our website.

In our experiments, we first show that our system can

accurately estimate the state of the robot in simulation and

real-world systems. While we do not strictly focus on accu-

rate state estimation, this measure is useful for estimating the

precision of map reconstruction. Indeed, a sufficiently good

map is fundamental to perform autonomous navigation and

exploration. Then, we present our results for autonomous

navigation in known maps, showing that the system can

navigate autonomously and robustly despite the low-cost

sensors, without causing map corruption. We show that the

system can be combined with an autonomous exploration

algorithm. Finally, we report results made using two real-

world settings where performance is measured using an

OptiTrack system (Section IV-E). For all experiments, we

use the evaluation pipeline from [36].

A. Experimental Setting

We develop our system in ROS2, and we integrate it with

the ROS2 navigation stack. We provide both results obtained

in realistic simulations, using Gazebo, and in the real world

with quadrupeds using RL-based control policies [2].

To compute precise metrics and rigorously evaluate our

system, we conduct experiments in two large-scale sim-

ulated scenarios: the AWS small warehouse (a medium-

scale furnished simulated warehouse) and the AWS small

house environment (a three-room furnished simulated apart-

ment). To demonstrate the effectiveness of our approach,

we perform an ablation study comparing our full method

with configurations that exclude scan stabilization or legged

odometry, as well as a baseline that relies solely on visual-

inertial odometry combined with 2D SLAM. For simulated

environments, we do not use the contact estimation module

to highlight the contribution of the other components, and

we use the ground-truth contact instead. We test the full

model, including contact estimation, in the more challenging

experiments made with a real robot (Section IV-E). Full

details can be found on our website.

Given that ground truth positions are available in sim-

ulation, we evaluate localization accuracy using the fol-

lowing six metrics [37]: ATE (Absolute Translation Error)

and ARE (Absolute Rotational Error) measure, respectively,

the Euclidean distance and the average angular distance

between the estimated and ground truth positions over the

entire trajectory. These two metrics are combined into the

APE (Absolute Pose Error), which assesses the overall pose

discrepancy in pose. Finally, the RPE (Relative Pose Error)

evaluates the relative pose error over fixed intervals; we

consider three values (2m), (5m), and (10m) representing

different translations between poses.

B. Integrated Navigation Stack

Our navigation system is constructed entirely from ROS-

compatible components and is integrated with the ROS2

navigation stack. We employ RTAB-Map [11] as the front-

end for visual-inertial odometry (VIO), utilizing RGB-D

imagery in conjunction with IMU data to estimate motion

in real time. This front-end provides robust pose estimates

in visually structured environments.

For the SLAM back-end, we integrate our pipeline with

the ROS slam toolbox [38], which provides efficient

pose graph optimization and map management capabilities.

This modular combination allows our system to benefit from

Fig. 2. Effects of scan stabilization in the map generation. Left: no scan
stabilization. Right: with scan stabilization.



TABLE I

AWS SMALL HOUSE & WAREHOUSE ENVIRONMENT ABLATION STUDY FOR SB AND GO2 ROBOTS IN 5 INDEPENDENT RUNS.

Robot
Metric

(RMSE)
AWS Small Warehouse AWS Small House

Ours B+SS B+LO B Ours B+SS B+LO B

SB

ATE 0.34 ± 0.09 5.19 ± 2.24 0.44 ± 0.11 5.00 ± 2.38 0.42 ± 0.11 2.54 ± 2.48 0.54 ± 0.22 1.38 ± 0.85
ARE 0.06 ± 0.02 0.75 ± 0.21 0.08 ± 0.03 0.93 ± 0.37 0.08 ± 0.05 0.52 ± 0.49 0.10 ± 0.04 0.35 ± 0.18
APE 0.35 ± 0.02 0.45 ± 0.11 7.90 ± 0.83 5.08 ± 2.41 0.43 ± 0.12 0.55 ± 0.22 2.59 ± 2.53 1.42 ± 0.86
RPE (2m) 0.18 ± 0.01 0.18 ± 0.04 0.56 ± 0.04 0.51 ± 0.04 0.18 ± 0.02 0.21 ± 0.03 0.37 ± 0.04 0.27 ± 0.02
RPE (5m) 0.26 ± 0.02 0.28 ± 0.11 1.15 ± 0.08 1.14 ± 0.16 0.30 ± 0.08 0.40 ± 0.11 0.70 ± 0.08 0.55 ± 0.04
RPE (10m) 0.31 ± 0.01 0.37 ± 0.19 2.09 ± 0.16 2.20 ± 0.46 0.45 ± 0.14 0.64 ± 0.23 1.08 ± 0.28 0.94 ± 0.10

Go2

ATE 0.44 ± 0.07 0.85 ± 0.57 0.56 ± 0.20 0.53 ± 0.13 0.43 ± 0.22 0.43 ± 0.25 0.97 ± 0.63 0.93 ± 1.06
ARE 0.08 ± 0.02 0.12 ± 0.05 0.10 ± 0.03 0.08 ± 0.04 0.11 ± 0.06 0.12 ± 0.06 0.21 ± 0.18 0.24 ± 0.29
APE 0.45 ± 0.07 0.57 ± 0.19 0.86 ± 0.57 0.54 ± 0.13 0.45 ± 0.23 0.99 ± 0.65 0.44 ± 0.25 0.96 ± 1.10
RPE (2m) 0.19 ± 0.03 0.23 ± 0.03 0.22 ± 0.06 0.23 ± 0.05 0.19 ± 0.04 0.23 ± 0.03 0.20 ± 0.05 0.23 ± 0.09
RPE (5m) 0.27 ± 0.03 0.32 ± 0.05 0.38 ± 0.16 0.32 ± 0.07 0.25 ± 0.07 0.45 ± 0.18 0.26 ± 0.08 0.36 ± 0.16
RPE (10m) 0.37 ± 0.07 0.41 ± 0.11 0.54 ± 0.24 0.42 ± 0.10 0.36 ± 0.12 0.80 ± 0.38 0.40 ± 0.16 0.58 ± 0.38

Acronyms: SB = Silver Badger, Go2 = Unitree Go2, B+LO = Baseline + Leg Odometry, B+SS = Baseline + Scan Stabilization, B = Baseline.

the real-time performance of RTAB-Map and the global

consistency afforded by the graph-based SLAM framework.

For autonomous navigation on pre-mapped environments,

we utilize the Adaptive Monte Carlo Localization (AMCL)

in tandem with RTAB-Map’s visual odometry to ensure

accurate and drift-resilient localization. This hybrid local-

ization strategy enhances robustness, particularly in visually

repetitive indoor settings, where AMCL alone might struggle.

C. Mapping Results

Table I presents the results of our ablation study, with

metrics averaged over five runs per environment and robot.

The baseline configuration (B) relies solely on visual-

inertial odometry and laser-based mapping without additional

enhancements. The system variants include B (Baseline),

B+LO (Baseline with Leg Odometry), and B+SS (Baseline

with Scan Stabilization). Each subsequent variant isolates the

contribution of a specific component to assess its impact. The

results clearly demonstrate that the full system outperforms

the alternatives and maintains consistency across all the

possible metrics. Notably, scan stabilization proves to be the

most critical component–a conclusion further supported by

the qualitative results in Fig. 2. This component is essential

for generating accurate maps, enabling effective loop closure,

and maintaining localization even during rapid movements

that may challenge the VIO pipeline.

Fig. 3. Estimated trajectories of the Silver badger robot in the small
warehouse environment

Our experiments further reveal that incorporating leg

odometry into the pipeline enhances localization accuracy,

yielding slightly better maps. However, when leg odometry

is used without laser stabilization, performance may occa-

sionally degrade relative to the baseline. We attribute this to

inaccuracies in scan alignment within the 2D SLAM system,

which result in erroneous pose refinements. When combined

with additional constraints from the leg odometry system,

these inaccuracies further deteriorate overall performance.

Fig. 3 illustrates that the full system accurately estimates

trajectories that closely match the ground truth, underscoring

the crucial role of scan stabilization in producing high-

quality maps and enabling effective loop closure. More

detailed results, including per-run localization performance,

are available on our project website.

D. Robot autonomy

After assessing our system’s map reconstruction capabili-

ties, we proceeded to evaluate the robot’s autonomy and the

robustness of its navigation stack. First, we examined the

navigation performance within a pre-established map across

two environments using both the Silver Badger and Go2 plat-

forms and using the previously described navigation setup

(Section IV-B). The maps were generated before testing by

teleoperating the robot through each environment, using our

mapping system described in Section IV-C. In this experi-

ment, the robot is sequentially commanded to navigate to five

predefined poses, and we measure its success rate in reaching

each target. The results, presented in Table II, clearly indicate

that our system outperforms the baseline—achieving a higher

TABLE II

NAVIGATION SUCCESS RATE RESULTS ON AWS HOUSE

AND AWS WAREHOUSE FOR SB AND GO2 ROBOTS.

Method AWS House AWS Warehouse

SB Go2 SB Go2

Baseline 0% 80% 60% 60%
Ours 100% 100% 100% 100%

Acronyms: SB = Silver Badger, Go2 = Unitree Go2



TABLE III

REAL WORLD ENVIRONMENT ABLATION STUDY FOR THE SB ROBOT IN 5 INDEPENDENT RUNS.

Robot
Metric

(RMSE)
Environment 1 - IAS Lab Environment 2 - IRIM Lab

Ours B+SS B+LO B Ours B+SS B+LO B

SB (real)
ATE 0.22 ± 0.36 1.91 ± 0.33 2.34 ± 0.43 2.51 ± 0.50 0.65 ± 0.28 1.68 ± 1.27 1.74 ± 0.77 1.50 ± 0.89
ARE 0.33 ± 0.21 1.38 ± 0.33 1.65 ± 0.23 2.07 ± 0.17 0.48 ± 0.50 0.54 ± 0.39 0.78 ± 0.48 0.60 ± 0.38
APE 0.64 ± 0.40 2.38 ± 0.28 2.83 ± 0.40 3.27 ± 0.37 0.84 ± 0.52 1.74 ± 1.23 1.99 ± 0.61 1.65 ± 0.90

Acronyms: SB = Silver Badger, B+LO = Baseline + Leg Odometry, B+SS = Baseline + Scan Stabilization, B = Baseline.

success rate in reaching the commanded pose without losing

track of its position w.r.t. the map. Scan stabilization plays

a crucial role because the localization uses scans to localize

itself. Even though the baseline method can navigate to a

few poses successfully, the robot struggles to do so, and the

navigation system has to recover several times. Videos of the

results can be viewed on our project website.

Second, we evaluated the robot’s capability to solve the

widely-known task of autonomous exploration for map build-

ing by using a frontier-based exploration strategy [39] using a

nearest-frontier method. In this scenario, we use our mapping

setup in conjunction with the navigation setup (Sections IV-C

& IV-B) to autonomously map the environment. The explo-

ration results, available on our project website and illustrated

in Fig 4, demonstrate that the system can successfully navi-

gate through diverse simulated environments. It covers over

90% of the AWS house and warehouse environments without

getting lost and consistently achieves robust localization and

high-quality map estimation.

E. Real robot experiments

We evaluate our system’s performance in two different

real-world environments over five independent runs each in

Table III using a SB robot. Experiments were conducted

in two room-scale environments—one heavily cluttered and

the other mostly clear. Details about our settings can be

found on the website. Robot poses are tracked via an

Optitrack motion-capture system to provide high-precision

ground truth. Robots are equipped with an Intel RealSense

D435i RGBD camera, while the onboard IMU supplies

high-frequency acceleration and angular-velocity measure-

ments, and the joint encoders provide leg kinematics for

proprioceptive odometry. We perform our experiments using

these sensors along with the same ROS-based setup as in

simulation. Robots are not equipped with contact estimation

sensors, and thus rely on our method as in Section III-A.

Real-world results presented in Table III confirm the

insights from simulation, showing that our method reduces

Fig. 4. Autonomous exploration mapping results.
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Fig. 5. Estimated trajectories using our system and the baseline of the
Silver badger robot in a real-world environment (Environment 1, IAS Lab)

localization error and generates good-quality maps. The

maps for both these environments using our system can

be seen in Fig. 6, showing reasonable performance even in

complex cluttered environments such as the IRIM lab. Fig. 5

compares our full system against the baseline for the IAS

Lab. Our approach achieves consistently better overall per-

formance and produces a trajectory that follows the ground

truth closely. In general, real-world results confirm the need

for the full pipeline: leg odometry alone introduces more

noise, reducing the accuracy, and only scan stabilization has

problems with loop closure, which is improved by the leg

odometry edges in the factor graph. More details about the

real-world experiments are available on the project website.

V. CONCLUSIONS

This paper shows how to develop a robust navigation sys-

tem for low-cost quadruped robots, empowering them with

the capability of autonomously navigating and exploring the

environment. These platforms are particularly challenging

to use due to the limited number of inexpensive sensors

available and reactive Reinforcement Learning policies that

may cause abrupt movements. Our system proves that it

is possible to make these robots autonomous by using

mostly off-the-shelf localization and mapping pipelines, by

only fixing some key details. Our analysis shows that scan

stabilization is the key issue preventing the application of

Fig. 6. Maps generated on two real-world environments. Left: IAS lab.
Right: IRIM lab.



standard 2D localization pipelines. Furthermore, we can

improve the mapping and the stability of VIO using the

information coming from legged odometry. Both simulated

and real-world results prove the effectiveness of our system

in terms of map accuracy and autonomy.

In future works, we want to extend this system to more

challenging 2.5D/3D mapping, possibly allowing quadruped

robots to navigate and explore buildings with multiple floors.
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