
APPENDIX

A. Additional Details on Flow Matching in SE(3)

In Section III, we introduced Flow Matching in the Lie
group SE(3). For completeness, we provide the pseudo-code
for both training (Algorithm 1) and sampling (Algorithm 2)
with flow-based models.

Algorithm 1: Flow Matching Training for Action
Poses

1: repeat
2: ra,pa,O „ D # Sample a batch of actions and

observations from the dataset
3: r0,p0,„ q0 # Sample random pose from the

initial distribution
4: t „ Uniformpt0, . . . , 1uq # Sample timestep
5: rt,pt Ð ϕpr0,p0, ra,pa, tq# Compute flow given

Equation (2)
6: 9rt, 9pt Ð uprt,pt, ra,pa, tq # Compute target vector

given Equation (3)
7: vp,vr Ð vθprt,pt, t,Oq # Predict vector given the

learnable model
8: L “ ||vp ´ 9pt||2 ` ||vr ´ 9rt||2 # Compute L2 loss
9: θ Ð ∇θL # Take gradient step

10: until converged

Algorithm 2: Sampling Action Poses from flow-
based models

Require: An observation O
1: rt,pt,„ q0 # Sample random pose from initial

distribution
2: for t “ 0, . . . , 1 do
3: vp,vr Ð vθprt,pt, t,Oq # Predict vector given the

learned model
4: rt,pt Ð EulerStepprt,pt,vp,vr,∆tq # Update the pose

given Equation (4)
5: end for
6: return rt,pt

B. Flow-based Policies in Euclidean Space

In this section, we describe how to represent a Flow
Matching based policy in the Euclidean space. We provide
the details as we actually evaluated the performance of
Euclidean Flow Matching policies in Section IV-A. We
decided to use Flow Matching in the Euclidean space in
Section IV-A, as it allowed for a fairer comparison with
the other baselines. We propose modeling a policy πθpa|oq

as a Continuous Normalizing Flow (CNF) [30] trained via
CFM (Equation (1)). Flow-based policies are expressive,
able to represent multimodal action distributions yet simple.
Additionally, the training is stable, and the sampling method
is simple and deterministic. Similar to previous works [2],
[4], we represent the action space as a trajectory of future
actions.

The problem in flow matching boils down to designing a
conditioned flow that drives randomly sampled points to the
dataset. In the following, we present a popular flow (Rectified
Linear Flow) and showcase how it can be used to generate
robot actions.

Rectified Linear Flow [29], [24], [26] propose representing
the data point conditioned flow ϕtpa|a1q with a straight line
from a noisy sample a0 „ N p0, Iq at t “ 0 to the datapoint
a1 P D at t “ 1

at “ ϕtpa0|a1q “ ta1 ` p1 ´ tqa0. (5)

Then, sampling from the conditioned probability ρtpa|a1q

can be easily done by sampling a0 „ N p0, Iq and comput-
ing the flow at time t with Equation (5). By differentiating
Equation (5), the conditional vector field is utpa|a1q “
d
dtϕtpa|a1q “ a´a1

1´t . Notice that ut is a constant velocity
for any time t defined by utpa|a1q “ a1´a0. An interesting
property of the straight path given by the Rectified Linear
Flow is that it will incur small errors with numerical solvers,
an essential property if we aim to sample with very few
iterations.

Training. Given a dataset D : tan,onuNn“0, we train
a context and time-conditioned vector field vθpa,o, tq by
regressing a designed vector field ut

Lpθq “ Epa1,cq„D,t,ρtpa|a1q ∥vθpa, c, tq ´ utpa|a1q∥2 ,
(6)

with t „ Ur0, 1s and ρt and ut the probability path and
vector field given by the Rectified Linear Flow.

Sampling. In our work, we propose sampling from
πθpa|cq by naively applying Euler discretization. We first
sample from a0 „ N p0, Iq, and iteratively apply Euler
discretization for K steps

ak`1 “ ak ` vθpak, c, k∆tq∆t, (7)

with ∆t “ 1{K. Notice that we can naively play with the
iterations and the ∆t to find the optimal sampling for our
task. In particular, in Section IV-A, we observe that we can
obtain highly accurate samples with very few iterations.

C. Equivariant Generation with an Invariant Model

This section provides additional details explaining how
exactly we obtain SE(3) equivariant action generation, given
that the underlying transformer model is SE(3) invariant.
Given a policy πpTa|Fo,Toq that generates action poses
Ta, given the observation poses To, the policy is SE(3)
equivariant if under a transformation Tδ P SEp3q over the
observations, the distribution over the actions is similarly
transformed, i.e., πpTa|Fo,Toq “ πpTδTa|Fo, TδToq.

Our proposed ActionFlow achieves equivariance by updat-
ing the action poses w.r.t. their own local frame. This results
in equivariant action generation as long as the underlying
model is invariant, as we will show in the following. This
property has been previously exploited in protein folding
problems [19], [21], [20].

Let us consider the update rule represented in Equation (4)

pk`1 “ pk ` rkvθpTk,To,Fo, tq∆t

rk`1 “ rkExpp∆tvθpTk,To,Fo, tqq
(8)

with p being the translation in the world frame, r the
rotation matrix in the world frame, and the step length
∆t. Importantly, the current pose’s rotation matrix rk is

premultiplied to the predicted update vectors vθ. Therefore,
the predicted update vector operates in the local frame.
We aim for equivariant generation, such that if we apply
a transformation Tδ “ ppδ, rδq P SEp3q over the current
pose Tk “ ppk, rkq, i.e.,

T 1
k “ pp1

k, r
1
kq “ prδpk ` pδ, rδrkq, (9)

and observations T 1
o “ TδTo, the updated pose T 1

k`1

is by definition similarly transformed, i.e., T 1
k`1 “

pp1
k`1, r

1
k`1q “ prδpk`1 ` pδ, rδrk`1q.

To showcase that for equivariant action generation, the
model should be invariant, we start by considering the update
equations for the transformed poses. They equate to

p1
k`1 “ p1

k ` r1
kvθpT 1

k,T
1
o,Fo, tq∆t

r1
k`1 “ r1

kExpp∆tvθpT 1
k,T

1
o,Fo, tqq.

(10)

By inserting the definitions for pp1
k, r

1
kq and pp1

k`1, r
1
k`1q in

Equation (10), we obtain

rδpk`1 ` pδ “ rδpk ` rδrkvθpT 1
k,T

1
o,Fo, tq∆t ` pδ

rδrk`1 “ rδrkExpp∆tvθpT 1
k,T

1
o,Fo, tqq.

(11)

We observe that we can cancel pδ and rδ on each side of
the equations and obtain

pk`1 “ pk ` rkvθpT 1
k,T

1
o,Fo, tq∆t

rk`1 “ rkExpp∆tvθpT 1
k,T

1
o,Fo, tqq.

(12)

Since Equation (12) has to hold true for the model to
generate equivariant actions, it follows (from Equation (8))
that the model has to be invariant, i.e., vθpT 1

k,T
1
o,Fo, tq “

vθpTk,To,Fo, tq.

D. Invariant Point Attention

This section provides pseudo-code for the Invariant Point
Attention mechanism, the key element for our SE(3) In-
variant Transformer. Since Invariant Point Attention was
originally proposed in the context of protein folding [19],
our pseudo-code in Algorithm 3 aims to provide additional
context from a robotics perspective. The algorithm receives
the set of features F and their associated poses T as
input. The other inputs are hyper parameters. The algorithm
describes the update for one token with associated feature
vector fi and pose Ti. Implementation-wise, we built on top
of [57].

E. Robomimic Experiments

In this section, we present more detailed results obtained
in four Robomimic tasks (cf. Fig. 10) [36] using both
state and image-based observations. Robomimic contains
human demonstrations of several robotic manipulation tasks
in simulated environments.

As mentioned in the main text, in these experiments,
the diffusion process in Diffusion Policy [2] is replaced
with a flow matching process in Euclidean space (App. B)
– we refer to this policy as Flow Matching. We use the
transformer architecture from [2] to model both the flow
matching vector field and the denoising diffusion model.

Algorithm 3: Invariant Point Attention
(F“tf1, ¨ ¨ ¨ ,fi, ¨ ¨ ¨ u,T“tT1, ¨ ¨ ¨ , Ti, ¨ ¨ ¨ u,
Nhead, c,Nquery points, Npoint values)

1: qh
i ,k

h
i ,v

h
i “Linearpfiq,

qh
i ,k

h
i ,v

h
i PRc, hPt1, ..., Nheadu # Create global

query, key and velocity points. c is the
dimension of the embedding space.

2: q⃗h,p
i , k⃗h,p

i “Linearpfiq, q⃗h,p
i , k⃗h,p

i PR3, pPt1, ..., Nquery pointsu #
Create a set of three dimensional query and key
points for compatibility

3: v⃗h,p
i “Linearpfiq, v⃗h,p

i PR3, pPt1, ..., Npoint valuesu # Create a
set of three dimensional feature points

4: wL “ 1?
3c

wc “ 0.5
b

2
p3¨9qNquery points

Initialize

regularisation constants

5: ahi,j“softmaxjpwLq
h
i
T
kh
j ´ wc

ř

p

›

›

›
riq⃗

h,p
i ´ rj k⃗

h,p
j

›

›

›

2
q

#Compute Compatibility
6: oh

i “
ř

j a
h
i,jv

h
j #Compute how the Neighbors

contribute to the update of the current Node
considering the global feature which does not
take into account their relative transform

7: o⃗h,p
i “rT

i p
ř

j a
h
i,jrj v⃗

h,p
j q #Compute how the Neighbors

contribute to the update of the current Node
considering the local ‘‘‘point’’ features

8: f̃i“Linearpconcath,ppoh
i , o⃗

h,p
i ,

›

›

›
o⃗h,p
i

›

›

›
qq #Compute the

updated feature value for token i

Tool HangCan Tool HangCanLift SquareLift Square

Fig. 10: Robomimic tasks used to compare diffusion policy and
flow matching in simulation.

We chose this architecture over the convolutional neural
network since, in this work, we heavily use this type of
architecture. For a fair comparison, we use the same hy-
perparameters in Flow Matching as the ones provided by the
Diffusion Policy authors and build our Flow Matching code
on top of the authors’ code from https://github.com/
real-stanford/diffusion_policy.

Training. Diffusion Policy is trained using DDPM [33]
and cosine schedule with K “ 100 steps. Flow Matching
uses the rectified linear flow (Equation (5)) and also K “

100 steps. Due to limited computing resources, both policies
are trained to a maximum of 3 days or 4000 epochs for
the dataset with state-based observations. For the dataset
with image-based observations, both policies are trained to
a maximum of 3 days or 3500 epochs. Checkpoints are
evaluated every 100 epochs. We use a machine with the
following components (CPU, RAM, GPU): AMD EPYC
7453 28-Core; 512 GB RAM; RTX 3090 Turbo (24 GB).

Inference. For testing the policies, we choose the (epoch)
checkpoint that performs best during training, i.e., with
the highest average success rate. We report the average
success rate from policy rollouts from 50 different initial
configurations (from the test set) across 3 seeds. During
inference, we use fewer steps than during training since it
allows policies to be run at higher frequencies. For Diffusion

https://github.com/real-stanford/diffusion_policy
https://github.com/real-stanford/diffusion_policy

Method IS
Can Lift Square ToolHang

ph mh ph mh ph mh ph

Diffusion Policy

2 0.93 ˘ 0.03 0.94 ˘ 0.03 1.00 ˘ 0.00 1.00 ˘ 0.00 0.72 ˘ 0.11 0.65 ˘ 0.01 0.51 ˘ 0.15

5 0.99 ˘ 0.02 0.96 ˘ 0.03 1.00 ˘ 0.00 1.00 ˘ 0.00 0.90 ˘ 0.03 0.77 ˘ 0.03 0.81 ˘ 0.08

10 0.98 ˘ 0.03 0.97 ˘ 0.01 1.00 ˘ 0.00 1.00 ˘ 0.00 0.91 ˘ 0.02 0.79 ˘ 0.06 0.90 ˘ 0.02

20 0.99 ˘ 0.02 0.96 ˘ 0.02 1.00 ˘ 0.00 1.00 ˘ 0.00 0.86 ˘ 0.06 0.74 ˘ 0.02 0.90 ˘ 0.03

100 0.98 ˘ 0.03 0.95 ˘ 0.03 1.00 ˘ 0.00 1.00 ˘ 0.00 0.91 ˘ 0.02 0.67 ˘ 0.10 0.85 ˘ 0.05

Flow Matching

2 0.99 ˘ 0.01 0.97 ˘ 0.02 1.00 ˘ 0.00 1.00 ˘ 0.00 0.83 ˘ 0.05 0.73 ˘ 0.06 0.73 ˘ 0.11

5 0.98 ˘ 0.00 0.95 ˘ 0.06 1.00 ˘ 0.00 1.00 ˘ 0.00 0.91 ˘ 0.07 0.73 ˘ 0.08 0.85 ˘ 0.03

10 0.99 ˘ 0.01 0.96 ˘ 0.02 0.99 ˘ 0.01 1.00 ˘ 0.00 0.87 ˘ 0.10 0.65 ˘ 0.03 0.81 ˘ 0.09

20 0.99 ˘ 0.01 0.96 ˘ 0.03 0.99 ˘ 0.01 1.00 ˘ 0.00 0.85 ˘ 0.06 0.65 ˘ 0.07 0.85 ˘ 0.05

100 0.99 ˘ 0.01 0.96 ˘ 0.03 0.99 ˘ 0.01 1.00 ˘ 0.00 0.88 ˘ 0.05 0.67 ˘ 0.06 0.87 ˘ 0.03

TABLE I: Robomimic results for policies using state-based observations. Success rate (mean ˘ std) evaluation on Robomimic tasks
with proprioception observations averaged over 3 seeds and 50 environments initializations (in the test set). The models are trained with
100 steps and tested with different inference steps (IS). Diffusion Policy models are trained with DDPM, and inference is done with
DDIM, except for IS=100, for which we use DDPM since these are the number of steps the model was trained on.

Method IS
Can Lift Square ToolHang

ph mh ph mh ph mh ph

Diffusion Policy

2 0.93 ˘ 0.06 0.88 ˘ 0.04 1.00 ˘ 0.00 1.00 ˘ 0.00 0.85 ˘ 0.03 0.67 ˘ 0.10 0.15 ˘ 0.07

5 0.95 ˘ 0.05 0.93 ˘ 0.01 1.00 ˘ 0.00 0.99 ˘ 0.01 0.89 ˘ 0.02 0.73 ˘ 0.10 0.54 ˘ 0.14

10 0.95 ˘ 0.04 0.91 ˘ 0.01 1.00 ˘ 0.00 1.00 ˘ 0.00 0.88 ˘ 0.03 0.81 ˘ 0.08 0.64 ˘ 0.12

20 0.96 ˘ 0.03 0.92 ˘ 0.02 1.00 ˘ 0.00 0.99 ˘ 0.01 0.87 ˘ 0.04 0.76 ˘ 0.07 0.68 ˘ 0.13

100 0.97 ˘ 0.04 0.92 ˘ 0.03 1.00 ˘ 0.00 0.99 ˘ 0.01 0.90 ˘ 0.04 0.75 ˘ 0.07 0.64 ˘ 0.09

Flow Matching

2 0.95 ˘ 0.01 0.95 ˘ 0.01 1.00 ˘ 0.00 1.00 ˘ 0.00 0.93 ˘ 0.03 0.73 ˘ 0.01 0.43 ˘ 0.05

5 0.96 ˘ 0.02 0.93 ˘ 0.02 1.00 ˘ 0.00 1.00 ˘ 0.00 0.94 ˘ 0.04 0.71 ˘ 0.08 0.47 ˘ 0.03

10 0.96 ˘ 0.02 0.95 ˘ 0.01 1.00 ˘ 0.00 1.00 ˘ 0.00 0.93 ˘ 0.02 0.72 ˘ 0.14 0.51 ˘ 0.11

20 0.95 ˘ 0.03 0.91 ˘ 0.04 1.00 ˘ 0.00 1.00 ˘ 0.00 0.95 ˘ 0.02 0.73 ˘ 0.13 0.57 ˘ 0.13

100 0.97 ˘ 0.01 0.93 ˘ 0.03 1.00 ˘ 0.00 1.00 ˘ 0.00 0.92 ˘ 0.05 0.74 ˘ 0.09 0.58 ˘ 0.12

TABLE II: Robomimic results for policies using image-based observations. Success rate (mean ˘ std) evaluation on Robomimic tasks
with image observations averaged over 3 seeds and 50 environments initializations (in the test set). The models are trained with 100 steps
and tested with different inference steps (IS). Diffusion Policy models are trained with DDPM, and inference is done with DDIM, except
for IS=100, for which we use DDPM since these are the number of steps the model was trained on.

Policy, we use DDIM for faster sampling [37]. For Flow
Matching, we use exponentially spaced time steps (from the
linear training schedule). This has the benefit of using larger
Euler integration steps ∆t when t is closer to 0 and smaller
ones when it is closer to 1. We report the success rates
obtained by both methods when using the same number of
calls to the vector field or the denoising model (number of
inference steps in Tables I and II).

Results. Tables I and II underline the findings from
the main text: flow matching-based policies are capable of
obtaining comparable results with diffusion-based policies
with both state and image-based observations. In the tables,
we highlight the rows in bold, which correspond to using
a very low number of inference steps (i.e., 2 steps). Low
inference steps allow for higher policy frequencies, e.g., 2
steps correspond to approximately 100 Hz. We observe that
in this low inference steps regime, the success rate from
flow matching policies surpasses that from diffusion policies,
particularly in tasks such as Square and Tool Hang, where
precise actions are needed to complete the tasks.

F. Mimicgen Experiments

In this section, we provide a more detailed description of
the experiment introduced in Section IV-B.

1) Observations and Actions Representation: ActionFlow
represents both the observations and actions with a tuple
of poses T and features F . Each pair of pose and feature
represents a different entity in the space. For the experiments
in Section IV-B, the pose represents the location of the
different relevant objects in the space, while the feature is
a fixed identifier for each object. The considered objects in
each task are:
Three Piece Assembly: robot’s end effector, the base, piece
1, and piece 2.
Coffee: robot’s end effector, coffee pod, coffee machine,
coffee pod holder, and coffee machine lid.
Stack Three: robot’s end effector, cubeA, cubeB, and cubeC.
Threading: robot’s end effector, needle, and tripod.
Additionally, the action is also expressed as a pose, repre-
senting the desired target pose for the robot’s end-effector.

2 5 10 20 100
Inference steps

0.0

0.2

0.4

0.6

0.8

1.0
Su

cc
es

s
ra

te
lift ph

2 5 10 20 100
Inference steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

can ph

2 5 10 20 100
Inference steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

square ph

2 5 10 20 100
Inference steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

lift mh

2 5 10 20 100
Inference steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

can mh

2 5 10 20 100
Inference steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

square mh

2 5 10 20 100
Inference steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s

ra
te

tool hang ph

Flow Matching Diffusion Policy
Fig. 11: Robomimic results for policies using image-based observations. The bar plots showcase the mean results from Table II and
provide a better visualization.

2) Policy Representation: ActionFlow’s network is a
SE(3) Invariant Transformer as introduced in Section III-B.
We additionally introduce an adaptation and normalization
module, which is applied to the poses before they are further
processed inside the transformer network. This is a common
practice when training deep learning models.
Adaptation Module. Given a set of observation and action
poses, we represent all the poses in the end-effector’s frame.
Then, we scale the translation vectors with a scaling factor
of 10 and apply Tanh to the translations to regularize the
distances to a range within ´1 and 1. The objective of this
adaptation module is to increase the distance error between
the points in the IPA module, while reducing variability when
the object’s are too far. We represent all the poses around
the end effector to guarantee that the initial distribution of
the flow is centered close to the actions.

G. Real Robot Experiments
This section provides additional details and results regard-

ing our real robot experiments presented in Section IV-C.
1) Additional Information regarding the Teleoperation In-

terface: The teleoperation interface used in our real robot
experiments consists of two main components. We leverage
an off-the-shelf presenter (cf. here) for conveniently starting
and stopping the recording of the individual demonstrations,
as well as controlling, i.e., opening and closing the gripper.
To control the pose of the robot’s end effector, we rely on
the OptiTrack Motion capture system. In particular, as shown
in Fig. 5, the teleoperator wears a glove that has OptiTrack
markers rigidly attached to it. Upon starting teleoperation, the
glove’s current pose is defined as the reference. Moving the
glove w.r.t. this reference results in moving the robot’s end-
effector w.r.t. its initial pose accordingly. The teleoperation
interface is set to operate at 25Hz. Throughout all the real
robot experiments, we use this teleoperation interface to
control the robot end-effector’s 6D pose, as well as the
gripper opening width through a binary signal corresponding
to gripper open / closed. Last, we want to point out that the

last phase of the lightbulb mounting task solely necessitates
a rotation to fix the bulb and turn it on. We found it
extremely challenging to command a pure rotation around the
end-effector’s upward-pointing axis through the teleoperation
interface. We, therefore, assigned one of the presenter’s keys
to trigger a rotation of 67˝ around the end-effector’s upward-
pointing axis. Thus, for the lightbulb mounting task, the
teleoperator is mainly tasked with inserting the lightbulb’s
pins into the socket, and subsequently, the necessary rotation
can be achieved by pressing the presenter’s respective key.

2) Robot Control: As shown, e.g., in Fig. 1 & Fig. 5, this
work uses a Franka Panda 7 DoF manipulator equipped with
a parallel gripper. On the lowest level, we control the robot
through the effort joint interface. This interface requires real-
time control actions at 1000Hz. For converting the current
desired end-effector pose (which is either provided through
the teleoperation interface or the running policy) into the
effort joint commands, we build on top of the Cartesian
Pose Impedance Controller provided in [41]. Since we do
not have any smoothness guarantees on the output of our
teleoperation interface and the policy’s output, we employ
exponential smoothing on the update of the desired target
pose. In practice, we found this measure sufficient to stay
within the Franka Panda robot’s acceleration limits and yield
smooth trajectories for both teleoperation and policy rollouts.

3) ActionFlow for Real Robot Manipulation - Imple-
mentation Details: The real robot experiments presented
in Section IV-C are conducted using ActionFlow, i.e., the
combination of the proposed SE(3) Invariant Transformer
and SE(3) Flow Matching on the action space resulting in
equivariant action generation.

Observations & Actions. For both experiments, we use an
observation history of 5 steps and predict an action sequence
containing 16 steps. In line with the teleoperation interface
(which is set to collect actions at 25Hz), we employ a time
discretization of 0.04 s. While the RealSense camera returns
RGB readings with a resolution of 640 ˆ 480, we resize

https://www.amazon.de/Verbindung-USB-Empf%C3%A4nger-Laserpointer-Fernbedienung-Pr%C3%A4sentation/dp/B09DYBSJV1

the images to 80 ˆ 80 pixels before passing them through
the ResNet18 [39] for obtaining the encodings. The resizing
helps to reduce the dataset’s size significantly and, therefore,
facilitates & speeds up policy training.

Training. We parametrize our ActionFlow policies for real
robot manipulation using the SE(3) Invariant Transformer
introduced in Fig. 2, and use four layers of IPA. Additionally,
we consider K “ 4 inference steps. We train the policies for
75 epochs and evaluate the last checkpoint. We use a machine
with the following components (CPU, RAM, GPU): AMD
EPYC 7453 28-Core; 512 GB RAM; RTX 3090 Turbo (24
GB).

Inference. As mentioned in Section IV-C, our policies
are efficient and can be run in real-time. On average, it
takes 0.03 s to generate an action sequence of 16 steps on
an NVIDIA RTX 3090 GPU. On the real robot, we also
account for the delay between passing the observations to
the model and obtaining the action sequences. This is done
by monitoring the time required for model inference and
skipping the respective entries within the action sequence. In
particular, we skip the actions that should have been applied
at times when the model inference was still active. Moreover,
we do not apply the whole remaining action sequence after
each call to the model. Instead, we leverage our model’s
fast inference speeds and only apply the two next actions.
Additionally, we employ exponential smoothing to ensure a
smooth transition when updating the action sequence.

Modified Image Observations for the Mug Hanging
Task. The mug hanging task can be divided into two phases,
i.e., 1) reaching and grasping the mug, and subsequently,
2) hanging it. While for the first part, the view of the
robot’s wrist-mounted camera is essential, for the second
phase of approaching the hanger, apart from the mug’s
pose, the camera image does not contain any information. In
initial experiments, we nevertheless found that the ResNet18
extracts spurious correlations from background pixels for the
phase of approaching the hanger, which harmed performance.
To circumvent this issue, once the robot’s gripper is closed,
we set all pixels to black apart from the image’s center
region of size 30 ˆ 30 pixels. This additional inductive
bias, i.e., eliminating all the image background information
once the mug is grasped, effectively improved the models’
performance. We want to point out that a similar effect could
be achieved by masking out background pixels based on the
camera’s depth information. However, we discovered that
the depth readings from the Intel RealSense D435 were not
accurate enough for this purpose, so we decided to employ
the previously described image masking once the gripper is
closed.

4) Additional Information on the Point Cloud conditioned
Mug Hanging Experiment: This last section provides addi-
tional details about the mug hanging experiment presented in
Section IV-C. For the point cloud conditioned mug hanging
experiment, we had to switch from the RealSense D435
which is used in all other experiments to an RealSense
D405. The reason for this change in RGB-D camera is
that initial testing revealed that the depth readings from the

Initialization ActionFlow Success Rate

Train 9/10

Test 8/10

Fig. 12: Success Rates for the Pose-conditioned Mug hanging
experiment on train and test configurations.

RealSense D435 are insufficient to capture the details of the
thin hanger. Therefore, the point cloud conditioned version
of this experiment used a RealSense D405, which is mounted
in the same pose as the RealSense D435 has been mounted
in the previous experiments. Moreover, as mentioned in the
main paper, to obtain a good point cloud of the hanger,
before starting the teleoperation (for data collection) or the
policy rollout, the robot visits 7 pre-defined end-effector
poses, which ensure good visibility of the hanger as shown
in Fig. 13.

5) Additional Information on the Pose-based Mug Hang-
ing Experiment: As mentioned in the main paper, for the
task of picking up a mug and placing it onto a hanger,
we also trained an ActionFlow policy that directly obtains
the hanger’s pose from OptiTrack readings. Therefore, this
baseline policy is conditioned on the RGB images from
the wrist camera and the hanger’s pose obtained through
OptiTrack. For training this baseline policy, we collect 200
demonstrations using variations, as shown in the main paper.
To reiterate, the demonstrations only include slight variations
of the mug poses, while the hanger always stays in the
same pose. The results are presented in Fig. 12. The table’s
first row reveals that the ActionFlow policy achieves high
success rates of 90% upon evaluating in similar scenarios
as those encountered during training. We only observe one
failure in which the mug is not grasped properly. Importantly,
our policies run online in real-time as action generation
only takes 0.03 s on an NVIDIA RTX 3090 GPU. We
also evaluate the policy in previously unseen test scenarios,
where, as mentioned in the main paper, the hanger is moved
to either side of the table. The results show that our policy
can still handle these novel test scenarios well, achieving
80% success. Fig. 14 shows a policy rollout in one of
the testing scenarios. These high success rates, despite the
previously unseen scenarios, demonstrate the equivariance
property of our proposed ActionFlow, which inherently can
handle these translated scene instances.

One potential explanation for the slightly increased suc-
cess rates in the test configurations compared to the exper-
iments presented in Section IV-C might be that despite the
changed hanger pose in the test configurations, the waypoints
visited during initialization do not change. Therefore, there
might be a slight distribution shift w.r.t. the hanger’s point
cloud and its latent encoding from the point cloud encoder,
which might negatively affect the network’s generalization.
This could be tackled, e.g., by adding more initial waypoints
to ensure better coverage of the overall space or further
refining the point cloud encoder’s architecture.

Fig. 13: Illustrating the initial phase for the point cloud-conditioned mug hanging experiment in which a couple of waypoints are visited
to register the hanger. Shown are two of these waypoints and the corresponding raw pointcloud observations next to them.

Fig. 14: Visualization of one ActionFlow policy rollout on the mug hanging task, in which the hanger is placed in a pose that was not
included in the demonstrations.

