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Abstract

In recent years, the importance of object tracking in many technological areas, such as

augmented reality, autonomous driving, robotic interaction, or assembly applications, is

increasing rapidly as autonomous systems interact more and more in and with the environ-

ment. Since most real-world tasks take place in partially observable environments, noise,

inaccuracies, and occlusions have a major impact on the tracking of objects. Therefore,

many learning- and model-based approaches exist that try to determine reliable poses

even under the previously mentioned influences.

In this work, we present a model-based object tracking algorithm based on the Point Set

Registration (PSR) method proposed by the FilterReg [1] paper. Hereby, we develop a

framework that enables object tracking with PSR algorithms and propose several extensions

e.g. additional features to improve the tracking result. Moreover, we test our proposed

tracking algorithm on accuracy and real-time capability on a dataset that was recorded in

a real robotic assembly setup.

From our results, we conclude that our proposed object tracking algorithm achieves a

Euclidean accuracy of 2cm compared to the ground truth, and has a maximum error of 20°
in the rotation, given in Euler angles, while frame rates of 30Hz− 76Hz can be achieved.

Furthermore, we state that our efficient object tracking algorithm can handle real-time

applications, and can be further explored to improve the tracking result.



Zusammenfassung

In den letzten Jahren hat die Bedeutung von Objektverfolgung in vielen technologischen

Bereichen wie Augmented Reality, autonomes Fahren, Roboterinteraktion oder Assem-

blierungsanwendungen rapide zugenommen, da autonome Systeme mehr und mehr in

und mit der Umgebung interagieren. Da viele Aufgaben in der realen Welt in teilweise

beobachtbaren Umgebungen stattfinden, haben Rauschen, Ungenauigkeiten und Verdeck-

ungen große Auswirkungen auf die Verfolgung von Objekten. Daher existieren viele

lern- und modellbasierte Ansątze, die versuchen, auch unter den genannten Einflüssen

zuverląssige Posen zu bestimmen.

In dieser Arbeit stellen wir einen modellbasierten Objektverfolgungsalgorithmus vor, der

auf der PSR-Methode basiert, die in dem Paper FilterReg [1] vorgeschlagen wurde. Dabei

entwickeln wir eine Struktur, die Objektverfolgung mit PSR-Algorithmen ermöglicht und

schlagen mehrere Erweiterungen, wie z. B. zusątzliche Merkmale zur Verbesserung des

Tracking-Ergebnisses vor. Darüber hinaus testen wir unseren vorgeschlagenen Tracking-

Algorithmus auf Genauigkeit und Echtzeitfąhigkeit an einem Datensatz, der in einer realen

Roboter-Assemblierungsumgebung aufgezeichnet wurde.

Aus unseren Ergebnissen schließen wir, dass der von uns vorgeschlagene Objektverfol-

gungsalgorithmus eine euklidische Genauigkeit von 2cm im Vergleich zur tatsąchlichen

Pose des zu verfolgenden Objektes erreicht und einen maximalen Fehler von 20° in der Ro-

tation, angegeben in Euler-Winkeln, aufweist, wąhrend Wiederholraten von 30Hz− 76Hz
erreicht werden können. Weiterhin folgern wir daraus, dass unser effizienter Objektverfol-

gungsalgorithmus Echtzeianwendungen verarbeitern kann und weiterentwickelt werden

kann, um das Verfolgungsresult weiter zu verbessern.
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1 Introduction & Motivation

Object tracking and pose estimation play a fundamental role in many technological do-

mains, such as Augmented Reality, autonomous driving, robotic interaction, and assembly

tasks. In these areas, it is important to reliably track an object despite occlusion, noise, and

varying environmental conditions that occur in these partially observable environments.

This thesis focuses on the task of robotic assembly. In this context, robotic assembly is

defined as the task of moving and stacking parts to create more complex structures. In this

very demanding task, the exact pose of all objects involved is required during execution.

Therefore, real-time estimation of poses is crucial.

Systems like the motion capturing system Optitrack [2] provide real-time pose estimation

of an object, but therefore an inflexible tracking system containing multiple cameras

is needed. Furthermore, tracking an object with this system requires markers on the

to be tracked object. Hereby, both prerequisites for the use in assembly tasks cannot

be guaranteed, since assembly applications are not fixed to one environment, whereby

inflexible systems are disadvantageous. In addition, as described before, robotic assembly

is about stacking parts to construct more complex structures. Therefore systems that track

the object by markers on it e.g. Optitrack [2] and Apriltag [3] either change the structure

of the object or the markers are no longer visible due to the assembly of objects. Therefore

our goal is to develop an object tracking algorithm that is independent of additional

markers on the to be tracked object. Here many approaches attempt to determine the pose

of an object using depth cameras. These cameras have the advantage of being compact

and therefore very suitable for flexible use in many application areas. To determine poses

from depth images, learning- and model-based approaches exist. In the field of learning-

based approaches, current research like [4, 5, 6] propose to use neural networks to learn

the object representation and then predict the pose of the object in a scene. Hereby, it

is beneficial that high process frame rates can be reached. However, these approaches

are mostly limited to tracking the object that they were trained on. In contrast, model-

based approaches have the benefit to track a wide range of objects. Nevertheless, these
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approaches are mostly computationally demanding. Here, similar research to Radowski

[7] uses Point Set Registration (PSR) methods to predict the pose of an object in a scene.

In this thesis, we propose an efficient object tracking algorithm based on the PSR algorithm

stated in [1] and extend it to be able to track moving objects in partially observable

environments. Furthermore, we propose extensions like pre-processing steps or additional

color features to reach further improved tracking results. Moreover, we evaluate our object

tracking algorithm on a dataset [8], which has been recorded in a robotic assembly setup.

Hereby, we focus on the evaluation of the tracking accuracy and especially on real-time

capability, which we assume to be given if the tracking algorithm can handle at least an

input frame rate of 30Hz.

The structure of this thesis is as follows. In Chapter 2, we present related work and

foundations on which we base our proposed object tracking algorithm. Here we discuss

mainly the Iterative Closest Point (ICP) algorithm and how it relates to our utilized PSR

algorithm, which is presented in the FilterReg paper [1]. Then in Chapter 3 we present

our object tracking method and describe the experiments, as well as the corresponding

setup, with which we evaluate our object tracking algorithm concerning tracking accuracy

and real-time capability. Hence, in Chapter 4 we present the experimental results and

discuss their impact and meaning. Finally, in Chapter 5 we summarize our results and

give an outlook on promising future work.
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2 Foundations

In this chapter, we present related work and foundations on which we develop our object

tracking algorithm. First, we give an overview of general approaches to object tracking,

followed by a deeper insight into PSR methods. Finally, we describe the method presented

in [1] on which we establish our object tracking algorithm and provide the mathematical

background of it.

2.1 Object Tracking

The task of tracking objects in partially observable environments is a widely spread topic.

In this domain, Wu et al. [9] state core challenges like occlusion, scale variation, fast

motion, and rotations, which complicate object tracking as information about the envi-

ronmental state is lost. Common methods that tackle these challenges are based on the

Kalman Filter [10, 11, 12], the Unscented Kalman Filter [12, 11, 13], or the Particle Filter.

These approaches try to predict the pose of an object, considering the poses of an object

in the past. Many object tracking algorithms require depth information to track an object

reliably, which is often captured via RGB-D cameras.

Approaches like the Se(3)-TrackNet [4] or PoseRBPF [6] propose neural networks to

predict the pose of an object in a scene. These approaches are able to handle highly oc-

cluded scenes at real-time frame rates and have produced promising results. Furthermore,

model-based approaches exist [7, 12, 14], which register a point cloud of the to be tracked

object with a point cloud of the scene provided by a ranged camera and estimate the

pose of the object using the register result. State-of-the-art implementations of these PSR

methods are provided in the FilterReg [1] and Coherent Point Drift (CPD) [15] papers. In

the next section we provide a deeper insight into PSR.
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2.2 Point Set Registration

As described in [16], the task of PSR is to find the transformation between two point

clouds through matching. A fundamental approach of PSR is the ICP algorithm. This

algorithm is an approach to find parameters that describe the transformation between

two point sets X and Y. ICP can be separated into two steps:

1. Find corresponding points between both point sets.

2. Compute the optimal transformation with respect to the found correspondences.

In step one, there exist many approaches to find correspondences between both point

clouds. The classic ICP algorithm stated in [17] first subsamples both point sets andweights

each point correspondence e.g. by the point-to-point or point-to-plane distance. Several

methods for sub-sampling the point clouds and extensions like outlier rejection which

can improve correspondence results are available. Finding truly correct point-pair corre-

spondences, however, is often not easy, since in partially observable environments noise

influences the correspondence decision, leading to poor results. Probabilistic approaches

in the correspondence finding try to address this challenge by computing probabilities that

express how probable it is for each point in the first point cloud to match the other points

in the second point cloud. Using these probabilities, correspondences for each possible

point pair are computed. We describe this approach in more detail in Section 2.3.

In the second step, the optimal transformation to align both point sets given the corre-

sponding points from step one is computed. The optimal transformation between both

point sets minimizes the squared error

E(R, T ) =
∑︂

(i,j)∈C

∥xi −Ryj − T∥2 (2.1)

where xi describes a point of the first and yj of the second point cloud. We denote the first

point cloud asX and the second as Y . Here E(R, T ) is the squared distance error between

X and Y , where R and T describe a possible shift of point cloud Y . Here C describes the

found point correspondences from the first step through the introduction of index pairs. In

the ongoing work, we assume that the pairs of indices have been aligned with each other

and thus one index fully describes the correspondence. To find the optimal transformation,

equation 2.1 must be minimized, which leads to the minimization problem:

(R, t) = argmin
n
∑︂

i=1

wi∥(Ryi + t)− xi∥
2 (2.2)
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It is important to mention that here an additional weight wi is added. This extension

enables additional weighting of point correspondences, whereby good point correspon-

dences can be weighted more and bad correspondences less. Gradient-based methods

enable us to solve this squared error minimization problem, but these approaches are

iterative processes that do not guarantee convergence. An alternative is singular value

decomposition as stated in [18]. This approach provides a closed-form solution to the

optimization problem. In Section 2.5 we discuss this approach in detail.

2.3 Iterative Closest Point With Expectation Maximization

The classic ICP implementation uses features like the point-to-point or the point-to-plane

distance to find one point correspondence for each considered point. Many real-world

applications are partial observable environments where inaccuracies and noise play a

fundamental role, which is why the point-to-point or the point-to-plane error metric could

lead to incorrect point correspondences. These potential misleading assignments will

influence the result of the ICP algorithm. A probabilistic view of the correspondence

finding problem tries to handle noise and inaccuracies. Therefore for each possible point

correspondence, based on given features, e.g. positional or color features, it is computed

with which probability a point of point cloud X belongs to a point of point cloud Y. This

different approach can help to improve the result since in next steps also locally unlikely

points potentially due to noise or inaccuracies are considered, which can lead to globally

better results. Against this background, we can state the probabilistic approach as a

generalization of the ICP algorithm. [15, 1, 19] utilize the probabilistic view of ICP where

each of them induce an own probabilistic model.

One similarity between these approaches is that each of them uses a Gaussian Mixture

Model (GMM) to compute the probability of one point corresponding to another. [19]

showed that finding the alignment between two point sets using such soft probability

assignment is equivalent to Expectation Maximization (EM) for GMMs. EM is an approach

that attempts to find the most likely parameters that best describe the given observation.

The EM algorithm is used when the given data is incomplete, latent data exist or noise

influences the data. The EM algorithm [20, 21]is an iterative concept, which tries to

maximizes the Maximum Likelihood estimate. This approach consists of two steps, the

expectation or E-step and the maximization or M-step. In the E-Step missing data is

calculated, using the current model parameters and the given observation. The M-step

maximizes the likelihood function using the data found in the E-Step.
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We present a deeper insight to the papers CPD [15] and FilterReg [1], since both methods

utilize the EM concept in the context of PSR. For further explanation, we state point

cloud X as model and point cloud Y as observation. The distinction between model and

observation is very important since we assume that we have one model point cloud that

describes a certain structure that we want to align in an observation point cloud. Hereby,

the observation can be disturbed by noise or inaccuracies.

In the E-Step the probabilities for each possible point correspondence are computed.

Both methods have their underlying model, but both calculations are based on Gaussian

mixture models, using a Probability Density Function (PDF) to express the correspondence

probability. Next, the M-Step tries to maximize the maximum likelihood of the underlying

probability model by finding the optimal transformation between model X and observation

Y.

The main difference between CPD and FilterReg is the mentioned underlying probability

model. CPD states that model X implies the GMM. Here each model point is taken as

a GMM centroid with a given variance. The points of observation Y are treated as data

points, on which the GMM centroids should be fitted. On a high level, this method tries

to explain the observation given the model. Contrary FilterReg utilizes model X as data

points and the observation points as GMM centroids. Here the model data points are

matched to the observation centroids. Thereby the FilterReg approach describes the model

in the observation. The advantage of this approach is that we only consider parts in the

observation which fit the model. The following section provides a deeper insight into the

FilterReg method.

2.4 FilterReg

We propose an object tracking algorithm based on the PSR algorithm stated by FilterReg

[1]. In this section, we describe the mathematical background in more detail. As stated in

Section 2.3 FilterReg [1] uses Y and X as input, including observation points y1, ..., yN
and model points x1, ..., xM . Furthermore, as described in Section 2.3 FilterReg [1] views

the problem of PSR from a probabilistic perspective. Therefore FilterReg [1] proposes

a GMM where each point of the observation Y induces a Gaussian distribution. The

mean of each distribution is the 3D position of each point in the environment. To fully

describe the GMM a diagonal matrix is used as covariance since it is assumed that all

dimensions are independent and do not correlate with each other. Each point of model

X is treated as a data point whose position is controlled by the motion parameters θ.
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Here these motion parameters θ induce a rigid transformation T (θ) ∈ SE(3). The task of

point set registration is to find an optimal transformation Topt(θ) that aligns observation
Y and model X. To solve this optimization problem FilterReg [1] suggests maximizing

the log-likelihood function,

L =
M
∑︂

i=1

log

⎛

⎝

N+1
∑︂

j=1

P (yj) p (xi(θ) | yj)

⎞

⎠ (2.3)

which consists of a prior probability P (yj) that describes how likely any model point

corresponds to the observation point yj and a probability p (xi(θ) | yj)which describes how

likely model point xi correspond to the observation point yj . The likelihood p (xi(θ) | yj)
is calculated by using the previously introduced Gaussian distribution for each observation

point yi, which is here,

p (xi(θ) | yj) = N (xi(θ); yj ,Σxyz) (2.4)

whereby Σxyz is a given covariance matrix. To maximize the log-likelihood 2.3 the EM

procedure is used. As mentioned in Section 2.3 the EM procedure consists of two steps.

Therefore in the E-Step probabilities for each possible correspondence are computed using

the Gaussian distribution stated in Equation 2.4,

E-Step: Compute for each xi in model X

M0
xi

=
∑︂

yk

N
(︂

xi

(︂

θold
)︂

; yk,Σxyz

)︂

M1
xi

=
∑︂

yk

N
(︂

xi

(︂

θold
)︂

; yk,Σxyz

)︂

yk
(2.5)

where M0
xi

is computed for each model point xi and consists of the summarized results

of the PDF
∑︁

yk
N
(︁

xi
(︁

θold
)︁

; yk,Σxyz

)︁

. M1
xi

is a vector with the same dimension as the

point vectors xi and yk. Here M1
xi

describes the sum of each observation point multiplied

by the result of the PDF. The next step takes the computed soft correspondences M0
xi

and

M1
xi

and tries to minimize the function:

M-Step: Minimize the function

∑︂

xi

M0
xi

M0
xi
+ c

(︄

xi(θ)−
M1

xi

M0
xi

)︄T

Σ−1
xyz

(︄

xi(θ)−
M1

xi

M0
xi

)︄

(2.6)
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In equation 2.6M0
xi
/(M0

xi
+c) is a weighting factor for each model point to detect potential

outliers. Here c describes a constant,

c =
ω

1− ω

N

M
(2.7)

where in Equation 2.7 0 ⩽ ω ⩽ 1 is a parameter called outlier ratio, which is adjustable

depending on the tracking scenario. This parameter is used to set the weighting factor of

the M0
xi
/(M0

xi
+ c) depending on the application. The larger ω is selected, the stronger

the weighting factor influences the result of the tracker and thus more points are marked

as outliers. In addition, M and N describe the number of points in the model and the

observation. Here Σ−1
xyz represents the inverse of the given diagonal covariance matrix.

Furthermore, both terms xi(θ) − M1
xi
/M0

xi
in equation 2.6 form the squared error of

each model point to value M1
xi
/M0

xi
, which individual components are calculated in the

E-Step. Minimizing the squared error in equation 2.6 leads to the optimal transformation

Topt(θ), which maximizes the log-likelihood in equation 2.3. FilterReg [1] proposes a

Twist parameterization method that attempts to find Topt(θ) with gradient based methods.

Furthermore, a permutohedral lattice filter is used in E-Step to reduce computation time.

Since we do not consider both of these specific implementations, we refer to FilterReg [1]

for further insight. In the following Section we describe our implementation for solving

the minimization problem in Equation 2.6, which is based on the closed from solution

provided by Singular Value Decomposition (SVD).

2.5 Singular Value Decomposition

As mentioned in Section 2.2 [18] proposes SVD to solve the minimization problem

(R, t) = argmin
n
∑︂

i=1

wi∥(Ryi + t)− xi∥
2 (2.8)

in closed form. This minimization problem is equivalent to the minimization of Equation

2.6 in the M-Step of FilterReg, which leads to the equation

(R, t) = argmin

n
∑︂

i=1

M0
xi

M0
xi
+ c
∥xi(θ)−

M1
xi

M0
xi

∥2 (2.9)

where wi is replaced by the weighting factor M0
xi
/(M0

xi
+ c). (Ryi + t) describes the rigid

transformation Topt(θ) that is induced by xi(θ) in Equation 2.6. Finally xi is similar to
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M1
xi
/M0

xi
. The output of both equations 2.8 and 2.9 is the optimal transformation to

align two points given the probabilistic point correspondences. In the next part of the

section, we describe SVD using the general Equation 2.8. This procedure can be applied

analogously to Equation 2.9.

To find the optimal transformation, first the weighted center of mass for each point set is

computed, which is then used to center each point set on the origin.

x̄ =

∑︁n
i=1wixi
∑︁n

i=1wi

ȳ =

∑︁n
i=1wiyi
∑︁n

i=1wi

pi = xi − x̄

qi = yi − ȳ

(2.10)

Herein xi , yi are points of both point sets and wi is the weighting factor from Equation

2.8. x̄,ȳ describe the weighted center of mass of both point sets, from which then points

pi and qi follow. These points represent the weighted centered points of each point in

point set X and Y. Next the d× d covariance matrix

S = PWQT (2.11)

is computed. In equation 2.11 P and Q represent a d x n matrix having in each column

point pi and point qi. Matrix W is a n x n diagonal matrix containing all weights for

each point correspondence w1, ..., wn. From matrix S the singular value decomposition

S = UΣV T is computed. U and V are then used to compute the optimal rotation R,

R = V

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1

. . .

1

det(V UT )

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

UT (2.12)

where R consists of the multiplication of V , U and a diagonal matrix with ones as entries.

The last entry of this diagonal matrix is the determinant of V UT , since each rotation

matrix must have a determinant of one, which is achieved by using the value det(V UT ),
as the last value of the diagonal matrix. One is able to compute the translation t using the

resulting rotation R from Equation 2.12, which is given by:

t = x̄−Rȳ (2.13)
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Here x̄, ȳ are the weighted center of mass, which then result using rotation R in the

translation t. Each step is described in [18]. Moreover we reference to [18] for the exact

derivation, as well as for a deeper insight. The advantage of this solution is that it is a

closed-form solution that does not require iterative calculations. After having depicted the

foundations we base our work on, we present in the next section how we implement our

object tracking algorithm using these foundations.
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3 Object Tracking Implementation &
Experiments

Our goal is to implement an object tracking algorithm that reliably tracks the pose of an

object in a partially observable environment. We focus especially on robotic assembly

setups, where objects are manipulated by robots. In this section, we first introduce our

environmental setup where our object tracking algorithm is used. Then we present the

implementation of our object tracking algorithm and describe the experiments we propose

to test the tracking algorithm on several properties.

Figure 3.1: Robotic assembly setup at DDU, where the SL-BLock is grasped by the UR10
robot arm [22].The pose of the SL-Block is recorded with Optitrack [2] sensors.
The scene is recorded by the camera Intel Realsense L515 LIDAR [23]. Our
utilized dataset consists of trajectories where the robot arm moves the SL-
Block in the scene.
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3.1 Environmental Setup

As stated before our focus is to introduce a robust algorithm for tracking an object in

the domain of robotic assembly. Figure 3.1 shows the robotic assembly setup at the

Digital Design Unit at TU Darmstadt (DDU). This setup focuses on robotic assembly by

using a robot arm with an attached gripper, which consists of a UR10 robot arm [22]

and a RH-P12-RN gripper [24], to interact especially with SL-Blocks [25]. These blocks

have a unique shape that provides self-interlocking properties, which are beneficial for

robotic assembly. In our case, we track this SL-BLock in the scene of Figure 3.1. To

receive information about the environment, like RGB-values and depth information, we

use an Intel Realsense L515 LIDAR camera [23]. To evaluate the tracking algorithm

we need ground truth information about the tracked SL-Block, which is provided by the

motion capturing system Optitrack [2]. We present detailed information about our used

experiment in Section 3.3.1.

Object-Tracker

FilterReg loop
E-Step
M-Step

Get Model 
pose

Read cloud

Load cloud 

Calling class

Point-cloud
from camera

Estimated
pose

Memory 

synchronization

For each input frame

Own Thread

Pre-Processing
Of point cloud

Figure 3.2: Structure of the implemented Object Tracker. The tracker is implemented
in one class. The class has 4 main functions. The Object tracker uses an
extra thread for the Point Set Algorithm and has therefore simultaneous data
access protection.
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3.2 Implementation

We implement an object tracking algorithm based on the PSR method presented by the

FilterReg paper [1]. To receive the pose of an object in an environment our implementation

requires a point cloud from the environment and a point cloud of the object which should

be tracked. For each new input, both point clouds are matched and the computed rigid

transformation between both clouds is then returned as the pose of the object in the scene.

We state the input point cloud of the RGB-D camera as observation point cloud and the

to be tracked object point cloud as model point cloud, whereby the nomination here is

similar as in Section 2.4.

Figure 3.2 shows the structure of our object tracking algorithm. As the computation

speed of our PSR method relies on the number of points in the point cloud we filter the

observation point cloud. Our filtering methods are described in Section 3.2.1. As visualized

in Figure 3.2 the pre-processing of the observation point cloud is done in the calling class.

Next, we use the PSR approach of FilterReg [1] to estimate the rigid transformation which

matches the model point cloud on the observation point cloud. To guarantee constant

transformation results we run this algorithm in an endless and thread separated loop. In

Figure 3.2 this loop is called FilterReg loop. The load and read cloud functions in Figure

3.2 contain memory synchronization methods, since as mentioned before we run the

actual tracking loop in a separated thread. We have chosen this structure of our code to

provide it as a black-box implementation. As a result, the algorithm can be easily applied

to different tracking scenarios in many tracking domains. We present each step of the

algorithm in the next sections.

3.2.1 Pre-Processing

The complexity of the presented E-step in Section 2.5 depends on the number of points

of the observation and the model, which is why pre-processing of these point clouds is

important. We propose two steps to minimize the number of points in both point clouds.

In general, ICP algorithms rely on a good initial pose of the object to be tracked. Therefore,

we propose to use a region-based filter for the given observation. In our implementation,

we use the given initial pose of the block, which is described by a reference point near

the center of mass of the block, and filter out points that are further away than 10 cm in

each spatial dimension. In our setup, we assume this region-based filter is valid, since the

dimension of the SL-Block is 12cm× 6cm× 9cm. As a reasonable filter range depends on
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(a) Before filtering (b) After filtering

Figure 3.3: Observation point cloud before filter usage and point cloud after usage of
region based filter and voxelization filter

the given observation and tracking scenario it can be adapted. To further decrease the

number of points in the point cloud, we voxelize the observation point cloud. Therefore

we use an already implemented function provided by the Point Cloud Library [26]. For

voxelization, a three dimensional grid is put over the point cloud and all points lying in

one cell are used to compute one new point, which coordinates and color values are the

mean of all points in this cell. In the further part of this work, we name the size of one

grid cell in each spatial dimension voxel grid size.

Figure 3.3 visualizes our proposed filtering methods, with which we can reduce the number

of points in the point cloud from nearly 200,000 to 2,000 points, which is a reduction

factor of 100. Since voxelization reduces the number of points by summarizing points

to one new point shape information of the SL-Block is lost. Therefore we test our object

tracking algorithm on several voxel grid sizes. In Figure 3.3 we use a cell size of three

millimeters in each spatial dimension. Furthermore, we convert the point cloud from the

data structure provided by the Point Cloud Library [26] into our structure, which is based

on an Eigen Matrix [27]. Here each column represents one point and the rows consist of

XYZ coordinates and potential features in addition. For example, we propose additional

color features, which we describe in Section 3.2.2.
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3.2.2 FilterReg Implementation

In this section, we describe one iteration of the FilterReg loop, in which the observation

point cloud and the model point cloud are matched. Our implementation is based on the

foundations stated in Sections 2.4 and 2.5. As described in these sections FilterReg [1]

views the PSR problem as an EM problem. Hereby, the approach consists of the E-Step

and the M-Step.

E-Step

For our implementation, we use the Equations 2.5 of the E-Step from the FilterReg [1]

paper and extend these equations to a general form which is able to use as input not only

a vector containing XYZ-coordinates, but also a general feature vector.

M0
xi

=
∑︂

yk

N (f(xi(θ
old)); fyk ,Σf )

M1
xi

=
∑︂

yk

N (f(xi(θ
old)); fyk ,Σf )fyk

(3.1)

Hereby Equation 3.1 is equivalent to Equation 2.5, however with the extension to general

features. That explains the vectors fyk and fxi
because they not only describe the XYZ

position but in our case extend it with color features, fromwhichwe expect more robustness.

We describe these features in Section 3.2.2. In our stated point cloud data structure, which

we described in Section 3.2.1, these vectors correspond to one column of each point cloud

matrix.

As each operation in the E-step is very time consuming, we implement the computation

of the probability N (f(xi(θ
old)); fyk ,Σf ) manually. M1

xi
is a 3 × n matrix and M0

xi
is a

n× 1 vector. We implement two functions with different input feature vectors. The first

function takes a 4×1 feature vector and a 4×4 co-variance matrix. These inputs represent

XYZ-feature with an additional feature value for potential outlier recognition. The second

function takes a 6× 1 feature vector and a 6× 6 covariance matrix, which consists of the

first four dimensions from the first function but extends these feature values by two color

features. These feature values are based on the HSV-color space and are described in the

next section.
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Figure 3.4: Visualisation of the exponential term of the PDF for our proposed color fea-
tures. A value of 1 describes the mean and a value a of 0 an infinitely distance
to mean.

Features

As stated in Section 3.2.2 we extend the 4× 1 feature vector. The observation point cloud

provides RGB values for each point, which is visualized in Figure 3.3. In the domain

of robotic assembly illumination changes is a challenge for object tracking. Therefore

we propose to transform the RGB values into HSV-color space, where the v-component

describes how color appears if pure white light shines on it. This representation of color

is beneficial for us since we can decouple this value from our features from which we

expect a more robust tracking regardless of lighting conditions. To receive illumination

independent color features we ignore the v-value color component. The remaining h- and

s-color values describe a circular plane, where each color is described in polar coordinates.

Here the h-value describes the angle and the s-value describes the distance from origin

to the desired color. As this representation of color is nonlinear we transform this polar
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coordinate representation into a Cartesian representation

color = S · cos(H)

color = S · sin(H)
(3.2)

and use color1 and color2 as entry five and six in our 6× 1 feature vector.

A visualisation of our proposed color features can be seen in Figure 4.2. In this figure, the

filtered observation point cloud from Figure 3.3b is shown, where the color of each point

describes the exponential term of the PDF computed in the E-Step, stated in Equation

3.1. Here we only consider our proposed color features in the PDF. As mean we choose

for both color1 and color2 features the value 0.3. Furthermore, we assume for both color

features a variance of 0.075, which leads to a 2 × 2 diagonal matrix with 0.075 as the

entry for both diagonal elements. However, we received the mean values by evaluating

the tracking algorithm on various color feature means. Based on Figure 4.2 we assume

our found color features as valid since the wooden parts of the block are very likely to our

proposed means. Nevertheless, at the upper left and the lower right, there are locations

where the exponential term is between 0.2, and 0.4, which derives from Apriltag [3]

and Optitrack [2] markers on the SL-Block. We assume that these locations disturb our

object tracking algorithm, and for a more uniform SL-Block even better results can be

achieved. Furthermore, the points which describe the gripper in the scene are recognized

and classified as not likely to the means. We derived the covariance matrix entries by

computing the variance of the color features in the filtered observation matrix.

3.2.3 Adapting Variance

Since in our method each point in the observation point cloud induces a Gaussian distri-

bution a covariance matrix is needed. This matrix is a hyperparameter, which has to be

tuned manually. To reach better results FilterReg [1] proposes an adapting covariance

matrix from which we state the computation

σ2 =

(︄

Σi

M0
xi
f(xi)

T f(xi)− 2f(xi)
TM1

xi
+M2

xi

M0
xi
+ c

)︄

/

(︄

Σi

M0
xi

M0
xi
+ c

)︄

M2
xi

=
∑︂

fyk

N
(︂

xoldi | fyk ,Σxyz

)︂

fT
yk
fyk

(3.3)

for the adapting variance. Hereby we receive M0
xi

and M1
xi

from the E-Step computation,

depicted in Equation 3.1. Next, fyk and f(xi) describe again the feature vector for each
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point in every point cloud. We further add the computation of M2
xi

to the E-Step. The

computation of a new covariance matrix in each step, should lead to a smoother likelihood

function, stated in Equation 2.3. Therefore less local optima should exist and the tracking

results should be improved.

3.2.4 M-Step

In the E-Step we compute the correspondences for each model point to the observation

point. In the M-Step, our objective is to find the optimal transformation between the

current model point cloud pose and the computed corresponding points from the E-Step.

This procedure maximizes the log-likelihood function, stated in Equation 2.3. Maximizing

the log-likelihood function is equivalent to minimizing the function

∑︂

xi

M0
xi

M0
xi
+ c

(︄

xi(θ)−
M1

xi

M0
xi

)︄T

Σ−1
f

(︄

xi(θ)−
M1

xi

M0
xi

)︄

(3.4)

which we presented in Section 2.4. We solve this minimization problem equivalent to the

procedure stated in Section 2.5, which leads to the equation

(R, t) = argmin

n
∑︂

i=1

M0
xi

M0
xi
+ c
∥(Rxi + t)−

M1
xi

M0
xi

∥2 (3.5)

where the optimal motion parameters θoptimal are described by a rotation R and a transla-

tion t. As described in section 2.5 we propose SVD to solve this equation.
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3.2.5 Memory Synchronization

As stated in Section 3.2 we implement the FilterReg loop in a separated thread, which

allows a constant output of estimated poses that is independent of the specific arrival time

of new observation point clouds, since until new observations are read the computation is

done on the old observation. This implementation is beneficial as in real object tracking

applications sensors do not provide new point clouds at a constant rate. A major challenge

of this implementation is to synchronize the shared memory on which the observation

point cloud is stored.

Algorithm 1: Algorithm to load a new observation into the tracking algorithm

1: function load_cloud(point_cloud)

2: lock shared memory

3: next_observation← point_cloud
4: next_written← true
5: unlock shared memory

6: return

Algorithm 2: Algorithm to read the newest observation into the tracking loop

1: function read_cloud( )

2: if next_written is true then

lock shared memory;

tmp← next_observation;
next_observation← current_observation;
current_observation← tmp;
next_written← false;
unlock shared memory

return current_observation

To prevent simultaneous access on the observation point cloud by both threads we pro-

pose a memory synchronization method stated by Algorithm 1 and 2. These algorithms

show how we implement the load_cloud() and read_cloud() functions from Figure 3.2.

The load_cloud function gets called by an outer thread and its purpose is to load new

observation point clouds into the object tracking class. The read_cloud() function is called

at the beginning of each iteration of the FilterReg loop. Here the newest point cloud that

is fully written into memory is loaded, which is then used for estimating the model pose
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in the observation.

To synchronize both functions we propose the usage of pointers where each of them points

to one point cloud. The current_observation pointer points to the observation point cloud

which is currently used by the FilterReg loop. The next_observation pointer is mainly used

in the load_cloud() function, where for each new observation cloud next_observation
is set to point to the new observation. Algorithm 1 shows the code of the load_cloud()
function, which consists of three main steps. First, we lock the memory where the point

cloud is stored, then we set the pointer next_observation to the new observation which is

given by the function call. After this step, we set the Boolean next_written to true, which

indicates that the new observation point cloud is referenced by pointer next_observation
and unlock the shared memory.

As laid out before the read_cloud() function is called at the beginning of each iteration

of the FilterReg loop. Here Algorithm 2 shows the structure of this function. First, the

function checks if a new point cloud is completely loaded into the tracking algorithm

by checking the Boolean next_written. If next_written is true, then the shared memory

is locked, which prevents simultaneous access. Next, the addresses of both pointers are

switched and next_written is set to false. Finally the current_observation pointer is

returned. Using this implementation we ensure that only if a new observation point cloud

is fully loaded, the point cloud is used in the FilterReg loop. If there is no new observation

point cloud the current point cloud is returned by the read_cloud() function.

With describing the memory synchronization we stated the structure and core imple-

mentations of our object tracking algorithm. In the next section, we give an overview of

the setup we use to evaluate our object tracking algorithm and which experiments we

perform.

3.3 Experimental Setup

To guarantee safe interactions between robots and objects the error of the estimated pose

of the object can only be in a narrow range depending on the application. Furthermore, to

deal with applications in real world, the computation must be real-time capable. Therefore

we test the proposed algorithm for pose accuracy and computation speeds. To evaluate

our algorithm on these properties we test our object tracking algorithm in the environment
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presented in section 3.1 Therefore we utilize a dataset, which was created in a previous

Robot Learning Integrated project [8]. We present this dataset in the following section.

3.3.1 Dataset

The stated dataset [8] consists of trajectories where a robot arm moves an SL-Block.

Hereby, 12 different trajectories, which differ in translation and rotation are provided.

Furthermore, some trajectories include environmental changes, like background variation,

illumination changes, and occlusion. The dataset provides RGB-/depth-images, pcd-files,

robot joint states, and the ground truth pose of the SL-Block, where the ground truth is

recorded by the motion capturing system Optitrack [2]. Therefore, the ground truth is

represented as a reference point on the SL-BLock, which consists of a translational and a

rotational part.

The core challenge in this dataset [8] is that the Optitrack [2] system and the lidar camera

RealSense L515 [23] interfere with each other, which leads to bad depth values and

prohibits to run both sensing modalities in parallel. To solve this problem each trajectory

has been recorded twice, where firstly only the lidar camera records the trajectory and

secondly Optitrack [2] records the ground truth pose of the SL-BLock. Here the largest

error component of the provided ground truth consists of the error of replaying the same

trajectory twice. We call the error resulting from this double recording reproduction error.

In [8] it is stated that this reproduction error for most trajectories is in the magnitude

of millimeters. We assume this error to be tolerable but it should be kept in mind for

evaluating our proposed algorithm. To give a better understanding of our used data,

videos of each trajectory with additional visualisation of the ground truth can be found

here. For a deeper evaluation of the dataset we refer to [8].

To test our object tracking algorithm we focus on three trajectories of the dataset,

• Spiral

• Square

• Random-Bridge

as each of them differs in movement and structural visibility of the SL-BLock.
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Experiments Color features Adaptive variance Frame-rate [Hz] Initial pose diff [m] Voxelization Outlier ratio ω [m] Section

Color Feature Comparison ✓/- ✓ - 0 0.003 0 4.1

Variance Comparison ✓ ✓/ - - 0 0.003 0 4.2

Initialization Pose ✓ ✓ - 0.05 0.003 0 4.3

Outlier Ratio Comparison ✓ ✓ - 0 0.003 0.05, 0.25 4.4

Voxelization Comparison ✓ ✓ - 0 [0.001− 0.005] 0 4.5

Frame Rate Comparison ✓ ✓ 40, 100 0 0.003 0 4.6

Table 3.1: Overview of which parameters are used for each experiment. The color fea-
tures column indicates if additional color features are used or not. If adaptive
variance is set an adapting covariance matrix is used by the tracking algo-
rithm. Frame-rate is important for testing the multi-thread implementation
and specifies in which time intervals new observations are loaded into the
tracking algorithm. Initial pose difference indicates if an initialization pose is
used which diverges from the ground truth pose at the beginning. Voxelization
states which voxel grid size is used to down-sample the observation point
cloud. The outlier ratio ω is a parameter which is used to detect potential
outliers. Section references the location in the Results chapter where these
parameters are used.

3.3.2 Experiments

To evaluate our proposed object tracking algorithm sufficiently we test it in six different

experiments, where we evaluate the tracker on accuracy and run-time performance of the

tracking loop. To evaluate our tracking approach on accuracy we run two EM iterations

of our proposed method for each incoming observation. Hereby, we store the resulting

estimated pose of the second run and use the provided time of each observation input as

the timestamp. Therefore, we ignore the actual calculation time of the algorithm and only

consider the accuracy of our tracker for each observation input. The tracking results are

then compared to the ground truth provided by the dataset presented in Section 3.3.1.

Furthermore, we evaluate in another experiment the run-time performance of one EM

iteration by computing the mean and standard deviation for all iterations of the tracking

algorithm. Since the run-time performance of the computation depends on the used

hardware, we state that we used a setup with an Intel(R) Core(TM) i7-6700K CPU and

16GB RAM. These experiments are done with the mentioned trajectories Spiral, Square

and Random-Bridge.

Table 3.1 depicts our experiments by which we test our object tracking algorithm and
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the parameters used during these experiments. We focus on evaluating our extensions,

as proposed in Section 3.2. Therefore, in each experiment we evaluate one parameter,

leaving all other parameters constant.

As laid out in Section 3.2.2, we propose to use additional color features from the HSV-

space. To test our approach we evaluate for each trajectory the accuracy of the tracking

algorithm with XYZ-features and XYZ-features plus color features. Furthermore, we

name the algorithm with XYZ-features implementation as without color features and the

algorithm with XYZ-feature plus color feature as with color features.

In Section 3.2.3 we state an additional adapting variance, which should lead to better

results. We test our object tracking algorithm on this property and run for each trajectory

the tracking algorithm with and without adapting variance.

As ICP related point set registration approaches mostly rely heavily on good initial poses of

the to be tracked object, we evaluate our tracking algorithm by varying this initialization.

Since we assume that an initial pose can be provided that is at most 5cm away from

the actual ground truth pose, we test the behavior of our tracker at this distance from

the initial pose. We vary the translational part of the initial pose by sampling randomly

selected positions around the actual initial pose. Therefore, we consider a sphere with a

radius of 5cm (see. Table 3.1) around the initial pose. We then randomly select a position

from the surface of this sphere and assume this position as the new translational part of the

initial pose. Furthermore, we sample 20 different positions for each radius and evaluate

the mean and the standard deviation of the results. To consider rotational variations, we

compute a random initial rotation and complement with this new rotation the used initial

pose of the object.

As stated in Section 2.4, the M-Step (see Equation 2.6) includes the weighting factor

M0
xi
/(M0

xi
+ c) that is used to detect potential outliers. Since in the computation of the

constant c, which is shown in Equation 2.7, the outlier ratio ω must be provided, we

evaluate our algorithm for different values of ω. As stated in Table 3.1, we use for all

experiments the outlier ratio of ω = 0 except in Section 4.4. Setting the outlier ratio

to ω = 0 causes the weighting factor M0
xi
/(M0

xi
+ c) to become 1 and thus no outlier

detection is used. However, in Section 4.4 we evaluate the influence of the outlier ratios

ω = 0.05 and ω = 0.25 on the tracking result, and if it potentially can increase the accuracy

of the tracking algorithm.

We voxelize the observation point cloud to provide real-time results. Because voxelization

reduces the number of points in the observation point cloud information about the envi-

ronmental state is lost. To keep a balance between fast computation speed and accuracy
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we analyze our object tracking algorithm with different voxel grid sizes of the voxelization

method. Here we consider voxel grid sizes between 1mm and 5mm(see Table 3.1).

In all previous experiments, we use the implementation of the tracking algorithm where

we compute two iterations of the tracking algorithm for each new input point cloud,

whereby the results are independent of the computation time of the tracking algorithm.

This implementation is beneficial to evaluate the tracking algorithm for accuracy but does

not analyze the threaded implementation stated in Section 3.2.5. Since our tracking

algorithm has a certain computation time we expect the tracking results should be slightly

shifted to the ground truth. To analyze this potential offset we evaluate our proposed

threaded implementation. As our object tracking algorithm should be able to deal with

real-time input speeds we test our algorithm on new input point cloud frame-rates at 40Hz
and 100Hz., which is stated in Table 3.1. Hereby, we simulate the input frame rates of

40Hz and 100Hz by loading new observation point clouds at a frame rate of 40Hz/100Hz
into the object tracking algorithm. Furthermore, it is important to mention that the

observation point clouds of the dataset were not recorded at a frame rate of 40Hz/100Hz.
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4 Results & Discussion

After presenting each experimental setup in Section 3.3.2, we visualize and discuss the

results of each experiment in this section. The structure of this section follows the structure

of Table 3.1, which shows all parameters chosen for each experimental setup. At first,

we evaluate our in Section 3.2.2 stated color features. Next, we evaluate the influence

of the additional adapting variance discussed in Section 3.2.3 during the tracking. Then

we evaluate the influence of shifted initial poses followed by analyzing the influence of

different voxel grid sizes. Thereupon, we evaluate the importance of the weighting factor

to detect potential outliers. Finally, we evaluate the multi-thread implementation of our

object tracking algorithm, which is also our proposed implementation of the tracking

algorithm.

4.1 Color Features

In Section 3.2.2 we introduced additional color features to increase the robustness of the

object tracking algorithm. Firstly, we evaluate the accuracy by comparing the Euclidean

distance for each tracking implementation to the ground truth pose and then compare

the rotational difference for each Euler angle between ground truth and estimated pose.

Furthermore, we take a closer look at how the Euclidean error is composed, for which

reason we analyze the course of each XYZ coordinate. Finally, we evaluate the computation

time needed for both implementations regarding real-time capability. An overview of the

used parameters can be seen in the row Color Feature Comparison of Table 3.1.
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(c) Random Bridge Trajectory

Figure 4.1: Euclidean Distances between the estimated pose of our object tracking algo-
rithm and the given ground truth pose by the dataset for each trajectory

4.1.1 Accuracy

Figure 4.1 shows the Euclidean distance between the ground truth position and the pose

estimated by our proposed object tracking algorithm plotted against each time step of

the viewed trajectory. In each trajectory, our proposed color feature implementation

outperforms the standard XYZ-feature implementation. Figure 4.1b depicts that the

estimated pose of the color feature implementation is about 2cm closer to the ground truth

pose, which is a reduction by half compared to the standard XYZ-feature implementation.

This improvement can nearly be seen for each trajectory. In Figure 4.1a between the

timestamps 20s − 40s the color feature implementation performs as good as the XYZ
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Figure 4.2: Segment of the square trajectory coordinate course of the groundtruth as well
as the estimated pose from the color feature and XYZ-feature implementation.

features. However, between 0s − 20s and 45s − 50s the color feature implementation

outperforms the without color implementation. In Figure 4.1c it is depicted that without

the color features the object tracking algorithm is unable to follow the SL-Block and loses

it after 5s. In this context, only with our proposed color feature extension, the algorithm

can track the object.

Next, we compare the course of each dimension of the ground truth to the estimated

pose by the tracker, to understand how the distance error is composed. In Figure 4.2

the ground truth and estimated course of both tracking implementations are displayed.

The Y-coordinate course of both estimations shown in Figure 4.2b is nearly identical,
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(c) Z-Euler angle of square trajectory

Figure 4.3: Euler angle differences between estimated Euler angles of object tracking al-
gorithm and given ground truth Euler angles by the dataset for each trajectory

where both are around 2cm off from the ground truth Y-coordinate course. This offset

is near constant over time and could derive from the fact that the global Y coordinate

is in the same direction as the depth values of the depth camera. For this reason, only

the front side of the SL-Block is visible and all other geometric properties behind the

front of the block are hidden, which could be the reason why the model in this dimension

cannot be perfectly fitted to the block in the observation. Comparing the results of the

X-coordinate courses shown in Figure 4.2a, we can observe that between 10.5s and 12.0s,
both implementations have an offset of about 6mm. In this respect, we observe that the

color feature implementation underestimates the ground truth X-coordinate course and

the XYZ-feature implementation overestimates it. Nevertheless, after 12s the color feature
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implementation aligns better with the ground truth course. The main difference between

both implementations can be seen in Figure 4.2c, where the Z-coordinate course is visual-

ized. Here the color feature implementation outperforms the XYZ-feature implementation

by over 2cm. This behavior is seen in almost every trajectory indicating that the color

features manage to stay closer to the actual block and are less irritated by the gripper

hanging over it.

After comparing the translational part of the estimated pose of the object tracking algorithm

in the next step we compare the rotational difference between the ground truth pose

and the estimated pose. As difference metric, we use the Euler angles, given that the

meaning of this metric is intuitive to understand. The results of this comparison are

depicted in Figure 4.3. Looking at the X-Euler difference between the ground truth and

the estimated results depicted in Figure 4.3a we observe for both implementations an error

between 15° and 20°, which let us derive that both implementations perform equally. In

Figure 4.3b, the Y-Euler angle difference is stated. Here we can see that the color feature

implementation outperforms the XYZ-feature implementation as the maximum error of

the color features is about 5° and the maximum error of the XYZ-feature implementation is

about 25°. Comparing the Z-Euler angle difference of both implementations (See. Figure

4.3c), no different behavior of both implementations can be observed. and the error of

both estimations is about 5°.
Evaluating these results we conclude that our proposed color features enhance the tracking

result since for some trajectories the tracking algorithm is only able to track the SL-Block

with additional color features e.g. in Figure 4.1c. Even for trajectories that can be tracked

with both implementations, we can observe an improvement in the result using our

proposed color features, which is displayed in Figure 4.1b. This improvement is mainly

due to the z part of the trajectory, where the color features implementation significantly

outperforms the XYZ implementation. We can also observe a strong improvement in the

estimation of the Y-Euler angle of the SL-Block. These results suggest that our proposed

color features provide a more robust and accurate tracking result, which makes them a

useful extension. Moreover, we see additional potential to improve the color features to

describe the SL-Block even more accurately. In addition, our proposed color features are

perturbed by Apriltag [3] and Optitrack [2] markers on the SL-Block, which indicates

that the tracker result for an unmarked SL-Block could enhance the tracking performance.

Considering, these results we conclude that the color feature implementation is valid and

an important improvement to the standard XYZ features.
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Figure 4.4: Computation time comparison between color-features and only xyz-features
following the Square trajectory. The bar visualizes the mean computation
time and the error bar visualizes the standard deviation.

4.1.2 Computation Time

In this section, we compare the mean computation time of one iteration of the tracking

algorithm for the color feature and the XYZ-feature implementation. In Figure 4.4 the

mean computation times for color features and XYZ-features are shown. We cannot

observe a major difference between both implementations since both mean computation

times are about 0.029s. Furthermore, the standard deviation of implementations is also

quite similar. We observe this behavior for all trajectories where both implementations

can track the SL-Block.

These results let us conclude, that there are no significant computation time variations,

from which follows that our color feature implementation leads to a more accurate and

robust result, without having to deal with a longer runtime of one iteration.
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4.2 Variance Comparison

In Section 3.2.3, we proposed to update the covariance matrix for each iteration of the

tracking loop, which should lead to a more smooth log-likelihood function. This smoothing

should then lead to a better computation result. We check this assumption by comparing

the results of the object tracking algorithm with and without updating the covariance

matrix. The experimental setup is stated in the row Variance Comparison in Table 3.1.

0 10 20 30 40 50
time [s]

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045

Eu
cli

de
an

 d
ist

an
ce

 [m
]

Euclidean distance between ground-truth and tracker estimation
With adapting variance
Without adapting variance

(a) Spiral Trajectory

0 5 10 15 20
time [s]

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045

Eu
cli

de
an

 d
ist

an
ce

 [m
]

Euclidean distance between ground-truth and tracker estimation
With adapting variance
Without adapting variance

(b) Square Trajectory

0 5 10 15 20 25
time [s]

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040
0.045

Eu
cli

de
an

 d
ist

an
ce

 [m
]

Euclidean distance between ground-truth and tracker estimation

With adapting variance
Without adapting variance

(c) Random Bridge Trajectory

Figure 4.5: Comparison of Euclidean distance to groundtruth with updating co-variance
matrix and without updating covariance matrix
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Figure 4.6: Computation time comparison between updating co-variance matrix and
constant co-variance matrix

4.2.1 Accuracy

Figure 4.5 shows the resulting Euclidean distance of both implementations. Looking at

the trajectories Spiral (Figure 4.5a), and Square (Figure 4.5b) we cannot observe any

improvement due to the additional adapting covariance matrix. Both implementations

have nearly the same error course, only with some slight deviations. However, we can

observe a strong improvement of the result between 5s−10s and 12s−18s at the Random
Bridge trajectory, as depicted in Figure 4.5c. Hereby the Euclidean distance error is

reduced in the first interval from nearly 5cm to 2.75cm and in the second interval from

about 4.5cm to under 1cm.

We conclude that the adapting variance extension can improve the tracking results, de-

pending on the viewed trajectory. We infer that the strong improvement in the Random

Bridge trajectory could derive from the unique course of this trajectory. In addition, we

conclude that the results are not worsened by the additional adaption of the covariance

matrix and that it can lead to a better result for some trajectories. Therefore, we find that

this extension is reasonable especially if it does not lead to significantly longer computation

times, which we evaluate in the next section.
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4.2.2 Computation Time

As stated before it is important to evaluate which influence the adapting variance has

on the computation time of one iteration of the tracking loop. Figure 4.6 visualizes the

mean computation time and the standard deviation for each tracking implementation. We

observe that the adapting variance implementation is about 0.0015s faster than without

adapting variance.

We reason that this deviation is negligibly small. Thus, we conclude that the additional

adapting covariance matrix does not have a significant effect on the computation time,

which makes this extension of the tracking algorithm very useful as it can potentially

improve the estimation of the pose for some trajectories without increasing the computation

time.
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4.3 Initial Pose Variation

Good results of standard ICP-related algorithms are bound to a good initial pose of the

object in the scene. We evaluate our tracking algorithm on this property by running the

tracking setup as displayed in Table 3.1 20 times with randomly selected initial poses

as described in Section 3.3.2, and evaluate the mean Euclidean distance and standard

deviation of it. Figure 4.7 depicts the mean and standard deviation of the Euclidean error,
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Figure 4.7: Mean Euclidean distance of 20 randomly selected poses to the ground truth of
the Square trajectory. The initial translational shift is sampled from a sphere
around the initial point with 5cm radius. Furthermore, a random initial rotation
of the block was chosen

which derives from the randomly selected initial poses. In Figure 4.7 the Euclidean error

for a correct initial pose is visualized, which we use as a baseline to evaluate the result of

the randomly selected initial poses. We observe that the mean Euclidean distance error is

about 5mm higher compared to the baseline. We also state that the standard deviation of

the random initial poses is quite small. Furthermore, it is important to point out that in

this plot the initial error of 5cm is not visualized, since in this plot we only visualize the

tracking result after the first tracking loop is executed.

In the next step, we also evaluate the influence on the rotational side of the computed
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(c) Z-Euler angle

Figure 4.8: Euler angle differences between mean of 20 randomly selected initial poses
and the ground truth. The base-line are the Euler angle differences between
the tracking result with correct initial pose and ground truth

poses. Therefore, we view the Euler angle difference between the ground truth and the

random poses similar to the color feature experiment in Section 4.1 which is shown in

Figure 4.8. Here for each Euler angle difference, the mean and the standard deviation

of the 20 viewed initial poses are visualized. Also, we visualize the tracking result with

a correct initial pose as a baseline. In Figure 4.8a we observe that the X-Euler angle

average of the random initial pose experiments is similar to the baseline. Furthermore, the

standard deviation is between 2° and 3°. For the Y-Euler angle visualized in Figure 4.8b

the mean between 10s and 12.5s is at most 6° off the baseline and the standard deviation

is between 1° and 2°. Figure 4.8c shows the Z-Euler angle difference, where the mean
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is nearly similar to the baseline with slight divergences over the course. The standard

deviation is again between 1° and 2°.

From these results, we conclude that a Euclidean error degradation of 5mm in the positional

part of the estimated pose is acceptable but not negligible. Further, the X-Euler and Z-Euler

angles seem to be robust against varying initial poses. On the contrary, we observe a

maximum offset of 6° at the Y-Euler angle. The results for other trajectories support

the hypothesis that the Y-Euler angle is most likely to be affected by the random initial

pose. However, we assume a maximum offset of 6° due to a random initial rotation of the

SL-Block as relatively low. In summary, the initial pose can affect the tracking behavior,

but within an acceptable range, and the tracking algorithm can track the SL-BLock despite

this random initial position.
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4.4 Outlier Ratio Comparison

As stated in Section 2.4, the outlier ratio ω determines the constant c = ω/(1− ω) N/M ,

which then determines the weighting factor M0
xi
/(M0

xi
+ c). Since ω is a hyperparam-

eter, it is required to evaluate the influence of it on the tracking behaviour. Figure 4.9
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Figure 4.9: Comparison of different outlier ratios. Outlier ratio 0 is equivalent to a weight-
ing factor of 1.

visualizes the Euclidean distance error between the ground truth and the estimate of

tracker implementations with varying outlier ratios. We observe that between outlier-ratio

0.05 and outlier-ratio 0.25 no difference is identifiable, which is why the 0.05 outlier-ratio

implementation is not visible in Figure 4.9. A minor difference between the outlier-ratio

of 0 and both other outlier-ratio implementations can be noted. From this result, we

conclude that the outlier ratio does not influence our object tracking scenario. We derive

this behavior from the fact that we filter out all points around the last estimated pose

that are further away than 10cm as described in Section 3.2.1. This filtering filters out

many potential outliers and leaves only points that are considered similar for the tracking

scenario, which results in values for the weighting factor that is close to 1. Therefore, the

algorithm returns an almost identical result as if all weighting factors are set to 1. Since

the weighting factors for the 0.05 and 0.25 outlier-ratio implementations are only close to

1, both of them diverge slightly compared to the 0 outlier-ratio implementation.
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4.5 Voxelization

In our proposed tracking setup we reduce the number of points in the observation point

cloud by voxelizing it. The resulting number of points depends on the cell size of the

grid which is placed over the point cloud. The larger the cell size the more points are

joined reducing the total number of points. It is important to find a trade-off where not

too much information is lost by aggregating points, while still reducing the overall amount

of points. Therefore, we test our implementation with different grid sizes on accuracy

and computation time to find this trade-off.
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Figure 4.10: Comparison of Euclidean distance accuracy with different voxel grid sizes
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4.5.1 Accuracy

We evaluate the accuracy of the voxelization distances, visualized in Figure 4.10 by

comparing the Euclidean distance error between each voxelization setup and the ground

truth pose of the SL-Block. In Figure 4.10a we can state that the implementation of the

tracking algorithm with a voxel size of 5mm reaches a maximum error of 3.5cm. In general,

we observe that with increasing voxel size the error also increases. Hereby, we witness at

around 14.5s the highest divergence between the various voxel implementations. Here

the error difference between the 5mm and the 1mm voxel implementation is about 2cm,

even if only for a short time. Viewing the Square trajectory visualized in Figure 4.10b we

cannot state a difference between any of these implementations.

As a result, we conclude that the influence of the voxel size depends on the viewed

trajectory. We expected the behavior of the tracking algorithm for the Random Bridge

trajectory as with a higher voxel size more information about the environment is lost

because more points are summarized to one new point and with that, the number of points

is further decreased. However, if a smaller cell size is chosen, a better estimation result

can be expected. To find an acceptable trade-off between tracking accuracy and run-time

performance, we evaluate in the next section the computation time for one iteration of

the tracking algorithm for each voxel implementation.
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4.5.2 Computation Time

As laid out in Section 4.5 the computation time depends on the number of points in the

point cloud. This dependency makes it important to evaluate the computation duration for

different voxel grid cell sizes. Therefore we evaluate the average duration of one iteration

of the tracking loop.
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Figure 4.11: Computation time comparison between different voxel grid cell sizes in
trajectory Square

Figure 4.11 depicts the average computation time and the standard deviation of it. It

is important to point out that the computation time results rely strongly on the used

hardware. As mentioned in Section 3.3.2, we use a setup with an Intel(R) Core(TM)

i7-6700K CPU and 16GB RAM. In our work, we observe in Figure 4.11 a steady decrease

in computation time as voxel sizes become larger. Furthermore, the standard deviation is

also reduced for larger voxel sizes.

We evaluate these results with particular attention to the ability to achieve real-time

tracking results. By real-time, we define the ability to process input observation point

cloud at least with a frame rate of 30Hz. With our hardware setup, we achieve this frame-

rate at a voxel size of 3mm as depicted in Figure 4.11 the algorithm takes on average

about 0.027s for one tracking iteration. This results in a frame-rate of 1/0.027 Hz ≈ 37Hz.
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Moreover, we can reach a frame-rate of 1/0.013 Hz ≈ 76Hz using a voxel grid size of

5mm. Therefore, we conclude that our object tracking algorithm can handle real-time

tracking applications in our experimental setup. Furthermore, we state that the voxel cell

size parameter is a well suited parameter to tune the tracking algorithm in the context of

accuracy and run-time performance.
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4.6 Multi-Thread Implementation

In this section, we test our final implementation where the tracking algorithm runs in an

infinite loop in its thread. As stated in Section 4.5, each loop iteration takes an amount

of time to return an estimated pose dependent on the grid size of the voxelization. The

parameters for the multi-thread implementation are depicted in Table 3.1.
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Figure 4.12: Multithread implementation of object tracker following the Square trajectory
at 40Hz/100Hz input frame-rate of new observation point clouds compared
to ground truth and Non-Thread version.
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Figures 4.12a and 4.12b visualize the results for two versions of our final object tracking

algorithm with different voxel grid sizes. The difference between both figures is the differ-

ent input frame-rates of new observations. Hereby in Figure 4.12a an input frame-rate of

40Hz is used. In this figure, we state that both final tracking algorithm implementations

are capable to perform nearly as well as the Non-Thread version, which we used to evaluate

the accuracy of the tracking algorithm in the previous sections. We also observe that the

5mm voxel implementation provides more results than the 3mm voxel implementation,

which is understandable from the analysis in Section 4.5 because the tracking loop with

5mm voxel size needs about half of the calculation time compared to the 3mm voxel

size implementation. In Figure 4.12b an input frame-rate of 100Hz is used. Hereby it

stands out that after 2.2s the 3mm voxel size implementation lags behind the non-thread

implementation. The 5mm voxel size implementation reaches decent results, although an

input frame-rate of 100Hz is used.
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Figure 4.13: Multithread implementation of object tracker following the Square trajectory
at40Hz input frame-rate of new observation point clouds compared to ground
truth and Non-Thread version.
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Figure 4.14: Multithread implementation of object tracker following the Square trajectory
at 100Hz input frame-rate of new observation point clouds compared to
ground truth and Non-Thread version.

In Figure 4.13 and 4.14 the estimation over the whole Square trajectory of both imple-

mentations are shown. The behavior of the tracking algorithms shown in Figure 4.13

verify that both object tracking implementations are capable to track the SL-BLock at a

40Hz input frame-rate. Furthermore, in Figure 4.14 we observe the same lag for 3mm
voxel grid size implementation stated Figure 4.12a, though this offset is constant over

time. Moreover, in Figure 4.14 we can verify the decent results of the 5mm voxel grid size

implementation, since a small offset in parts of the trajectory is observable, though it is

acceptable for an input frame-rate of 100Hz.

These experiments confirm our assumption that the object tracking algorithm has a delay

due to its computation time compared to the non-threaded implementation. Depending on

the choice of the voxel grid size the positional error due to the delay is narrower or wider.

Since this offset is unavoidable, it can be argued to keep the computation time as small as

possible to prevent the positional error from becoming too large. From this, we conclude

that depending on the application, it must be considered how temporally accurate the
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estimated pose must be and, if necessary, the resulting delay due to the computation

time must be taken into account. We have evaluated our object tracking algorithm on

several extensions we provide. Especially we focused on evaluating the accuracy and the

computation time of the object tracking algorithm. In the final section, we summarize our

results and give an outlook on potential future work.
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5 Outlook

In this thesis, we first presented the foundations on which we build our object tracking

algorithm. Next, we explained how we structured our approach to ensure reliable object

tracking. Finally, we tested our algorithm on a dataset [8] which describes tasks of robotic

assembly in a real robotics setup. Our presented implementation results in a reasonable

tracking performance with a mean translational error of 2cm and a maximum rotational

error of 20°, viewing the Euler angles. To reach this accuracy we proposed additional color

features. These color features either reduced the error of the tracking result by almost half

or allowed to reliably track the object in the scene. Furthermore, we evaluated a proposed

adapting variance in [1] to improve the tracking result, which evidenced that for some

trajectories improved tracking results could be reached at the same computation time. In

addition, we concluded that the accuracy of the provided initial pose affects the tracking

result but in an acceptable magnitude. We also stated that the computation time for one

iteration of the object tracking algorithm relies on the number of points in the observation

point cloud. Therefore we evaluated the voxelization in the pre-processing in more detail.

Hereby, we concluded that the cell size of the voxel grid is a well-suited parameter to

tune accuracy and computation time for each potential scope of application. Furthermore,

we derived that our object tracking algorithm can process real-time frame-rates. Finally,

we tested our multithread implementation of the object tracking algorithm, in which

we expected a delay of the results due to the computation time of one iteration of the

tracking algorithm. Therefore, we tested the tracking algorithm on two simulated input

frame-rates of 40Hz and 100Hz. At 40Hz we could not observe a major delay due to

its computation time, which let us conclude that our multithreaded tracking algorithm

can handle real-time input frames. Furthermore, we also concluded that higher input

frame-rates are also processable for our proposed object tracking algorithm if therefore

the pre-processing is adjusted. Finally, we suggested keeping the emerging delay in mind

and depending on the application adjusting the computation time, for example via the

voxel grid size to obtain real-time pose estimation results.
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Our results indicate that there is further potential to improve the tracking accuracy. As laid

out in Section 3.2.2, our used SL-Block has markers on it that do not map well to our color

features. Therefore, we conclude that either adjusting the color features in these areas

or using a uniformly colored block further improves the tracking result. Furthermore,

our color features can be also fine-tuned to reach better results, or other features could

help to track the object even more robustly and accurately. For example potentially

learned features could further boost the tracking accuracy, which is an extension that

would be worthwhile to investigate in future work. Furthermore, we currently achieve

the calculation speed by filtering the point cloud in the pre-processing step. To avoid

positional filters, a KD-tree could be used to achieve real-time results in a scene. Herein,

KD-trees can find points of interest in the scene which then can be used to compute the

pose of the object. Such an extension to the existing baseline is also an interesting path to

further explore in future work.

Finally, our object tracking algorithm is a model-based approach, which is why it can be

easily transferred to other application areas. This property is very useful in the domain

of robotic assembly and general pose estimation tasks and should be investigated in the

future. Furthermore, as stated in Chapter 1 the focus of our object tracking algorithm is

on the calculation of estimated poses in real-time, which we were able to achieve since we

can reach a decent accuracy of 2cm and can handle frame-rates near 40Hz. In addition,

higher frame rates are also possible to handle with our tracking algorithm, depending

on the application. Finally, we conclude that our proposed tracking algorithm indicates

promising results to reliably track an object in partially observable environments, which

can be taken as a baseline and further elaborated. The next step could be to implement

our object tracking algorithm on a setup and evaluate its long-term performance. To this

end, a link to ROS would be very useful, allowing universal tracking in a wide range of

scenarios.
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