
Preprint

Graph-based Reinforcement Learning meets Mixed Integer Programs:
An application to 3D robot assembly discovery

Niklas Funk, Svenja Menzenbach, Georgia Chalvatzaki, and Jan Peters

Abstract— Robot assembly discovery (RAD) is a challenging
problem that lives at the intersection of resource allocation
and motion planning. The goal is to combine a predefined set of
objects to form something new while considering task execution
with the robot-in-the-loop. In this work, we tackle the problem
of building arbitrary, predefined target structures entirely
from scratch using a set of Tetris-like building blocks and a
robotic manipulator. Our novel hierarchical approach aims at
efficiently decomposing the overall task into three feasible levels
that benefit mutually from each other. On the high level, we
run a classical mixed-integer program for global optimization
of block-type selection and the blocks’ final poses to recreate
the desired shape. Its output is then exploited to efficiently
guide the exploration of an underlying reinforcement learning
(RL) policy. This RL policy draws its generalization properties
from a flexible graph-based representation that is learned
through Q-learning and can be refined with search. Moreover,
it accounts for the necessary conditions of structural stability
and robotic feasibility that cannot be effectively reflected in the
previous layer. Lastly, a grasp and motion planner transforms
the desired assembly commands into robot joint movements.
We demonstrate our proposed method’s performance on a set
of competitive simulated RAD environments, showcase real-
world transfer, and report performance and robustness gains
compared to an unstructured end-to-end approach.

I. INTRODUCTION

A common desire amongst many industry sectors is to
increase resource efficiency. The construction industry is a
key sector that could significantly reduce its environmental
impact by re-using existing material more efficiently, moving
towards the ideas of circular economy [1]. There is a
fundamental need for combining intelligent algorithms for
reasoning on how existing material can be recombined to
form something new, with autonomous execution [2].

Herein, we are concerned with the problem of autonomous
robotic assembly discovery (RAD), where a robotic agent
should reason about abstract 3D target shapes that need to
be fulfilled given a set of available building blocks (cf. Fig.
1). Unlike other assembly problems with known instructions,
in RAD, the agent does neither have any prior information
about which blocks to use and their final poses, nor about
the execution sequence. Contrarily, the RAD agent should
discover the possible ways of combining the building blocks,

*This work is supported by the AICO grant by the Nexplore/Hochtief
Collaboration with TU Darmstadt, and the Emmy Noether DFG Programme
(No. 448644653). Calculations for this research were conducted on the
Lichtenberg high performance computer of the TU Darmstadt.

Department of Computer Science, Technical University of Darmstadt,
{niklas,georgia,jan}@robot-learning.de

This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version may
no longer be accessible.

Fig. 1. Simulated RAD environment (left) and all three components
of our proposed hierarchical approach (right). On the highest level,
we solve an MILP to determine the building blocks’ poses to
optimally fill the voxelized, desired target shape (visualized in
pink/green). Next follows a learned GNN policy determining which
block to move next based on the scene information and MILP
solution. Lastly, we run a GAMP to determine how to grasp the
chosen block and realize the robot movement on the joint level.

find appropriate action sequences, and put them into practice.
RAD can thus be structured into two difficulty levels. On the
high level, a goal-defined resource allocation problem has
to be solved, which is typically NP-complete for discrete
resources, and can be viewed as a real-world version of
the Knapsack Problem [3]. The low level requires solving a
constrained motion planning problem, considering kinematic
feasibility and structural stability.
One way of approaching this problem are end-to-end ap-

proaches that directly map from problem definition to low
level actions [4], [5]. Such approaches are typically straight-
forward to design, and draw their generalization properties
from learned graph-based representations. Yet, they often
require extensive training due to the huge combinatorial
action space, and are typically hard to debug and interpret.
On the other end of the spectrum are Task and Motion
Planning (TAMP) approaches [6], [7], which naturally rep-
resent the problem’s hierarchical nature and necessitate full
prior knowledge of geometry and kinematics. Yet, they
are usually unsuitable for real-time reactive control, as the
full joint optimization suffers from combinatorics and non-
convex constraints.

We propose a novel hierarchical and hybrid method for
3D RAD that addresses both, resource allocation and motion
planning. Namely, on the high level, a model-based mixed-
integer linear program (MILP), handling the process of
block-type selection and optimizing the blocks’ final poses



for optimally resembling the desired target shape, is solved.
The MILP’s solution is then used as a guiding exploration
signal in a graph-based Reinforcement Learning (RL) frame-
work. We define a graph neural network (GNN) for capturing
the geometric, structural, and physical relationships between
building blocks, robot, and target shape, thereby incorpo-
rating all effects that have not been modelled on the higher
level. The GNN is trained through model-free Q-learning and
can, therefore, efficiently reason about the action sequencing,
besides enabling the integration with tree search for improved
long-term decisions [8]. To put the previous reasoning into
practice, at the lowest level, we rely on a simple grasp
and motion planning (GAMP) method [9] jointly optimizing
grasp pose selection and end-pose motion generation.

To summarize, our proposed approach (i) benefits from
the combination of global structural reasoning together with
local, sequential decision-making, (ii) deals efficiently with
the huge action space by skipping the complexity of deter-
mining the assembly sequencing on the high level, though
inducing a strong inductive bias for the RL problem while
exploiting GAMP at the lowest level, (iii) allows transfer and
generalization to instances with different target shapes and
types/numbers of blocks, as all levels are invariant to problem
size, and (iv) provides the flexibility of adding search to
further increase reliability and robustness. We present an
empirical evaluation of our proposed approach in a set of
competitive simulated RAD tasks and demonstrate real-world
transfer. The results show superior performance against both
empirical and learned baselines, thereby underlining its ef-
fectiveness.

II. RELATED WORKS

Due to their practical relevance, assembly and resource
allocation tasks are studied amongst a wide area of commu-
nities. Researchers have proposed methods based on TAMP
[6], [7] to solve the problem of motion generation for long-
horizon tasks [10]. The tasks involve the combination of
multiple manoeuvres, such as handovers, tool use, or even
multi-robot coordination [11], [12]. Yet, TAMP suffers from
a combinatorial barrier in the search space and high compu-
tational costs as TAMP attempts the full optimization of a
hybrid problem, in which the high level variables influence
the lower level through constraints. Thus, TAMP approaches
rely on full prior knowledge about geometry, kinematics,
and desired goal state. To reduce the combinatorial barrier,
recently, methods combining learned heuristics with classical
optimization were proposed [13], [14], [15], [16]. In contrast
to TAMP problems, RAD comes at the additional complexity
of not only having to decide on the sequencing of the
placement actions and generating feasible motions, but also
requires the optimization for the part placement poses.

Another line of research exclusively investigates the prob-
lem of optimal part placement [17], [18], [19] due to its
practical relevance in logistics. A common theme along these
works is the main focus on placing rectilinear objects into a
convex domain for which they present MILP formulations.
There are two types of formulations: position-based ones

in which all objects can be placed at continuous positions,
and grid-based ones based that voxelize the packing volume.
The latter formulations are usually more practical as their
relaxed solutions are tighter, simplifying the challenge of
finding an integer feasible solution [17]. The authors of
[17] introduce formulations for both cases and provide a
discussion on how irregular items can be approximated with
Tetris-like shapes, while [19] presents extensions for incorpo-
rating additional constraints. Recently, [20] investigated the
problem of bin-packing irregular-shaped objects arriving in a
nondeterministic order. While they present effective heuristic
strategies, taking time and sequencing into account, they do
not consider the physical action execution with a robot.

Reasoning about how to combine elements to resemble
a given structure is also a crucial challenge amongst the
machine learning community [21]. Variants of this problem
have been explored in the context of RL, e.g. in [22],
[23], [4]. In particular, GNNs in RL frameworks are very
promising. Due to their ability to learn relational encodings
[24], [25] and invariant representations, they can overcome
combinatorial barriers [26], and be combined with search
for improved generalization and robustness [5], [4], [8].
Indeed, in our prior work [5], we proposed a novel multi-
head attention GNN, that when trained with Q-learning
and combined with Monte Carlo Tree Search (MCTS), can
effectively learn to solve RAD instances in an end-to-end
fashion. Yet, the action-space combinatorics induce a very
hard exploration problem and thus limit end-to-end RAD.
Apart from our own work, the previous methods do not
consider 3D scenarios and robotic part placement.

Contrarily, [27] proposes a method for local assembly
from camera images through template prediction. Similarly,
[28] focuses on building block towers of variable heights
through structured representations and model-free RL. The
authors of [29] also address block-stacking but use learning
from demonstrations to train two GNNs to split the tasks
of selecting the next object and the respective pre-defined
goal location. [30] learn an end-to-end policy from human
demonstrations for executing sequential picking and placing
given shape correspondences. A method for next-best pose
estimation for stone stacking is presented in [31]. While these
works all consider robotic execution, they do not consider the
additional challenge of placing versatile blocks to achieve a
desired global goal configuration, which is only specified on
an abstract level and does not reveal how the individual parts
need to be arranged.

To the best of our knowledge, only our previous work
[5] addresses RAD from a robot learning perspective. Yet,
herein, we explore a different direction through proposing
a novel structured, hierarchical approach by fusing global
MILP optimization with learning local graph-based RL as-
sembly policies, that combined with low level GAMP can
reliably deal with complex RAD instances.

III. PROBLEM DEFINITION

We formulate the problem of having to combine a set of
rectlinear, Tetris-like blocks into a desired target shape (cf.



Fig. 2. Simplified 2D RAD scene with one placed block consisting of
two primitive units (underlined by additionally visualizing them in brown
and blue in the top right). Those two primitive units form the set of placed
elements SP . In yellow, we showcase the area that is to be filled, which is
discretized through a grid. The grid cells are visualized through their centre
points. The pink points correspond to the set of target grid-cells (TF ), i.e.
the set of cells that should still be filled as they are part of the desired shape,
while the green points represent the so-called non-target grid-cells (TE ) that
should ideally remain unoccupied as they are not part of the target shape
and as another goal is to also avoid unnecessary placements.

Fig. 1) as a Markov Decision Process (MDP) (S,A,P, r, γ)
[32] with state and action space, S,A, transition probabilities
p, reward function r, and discount factor γ. To capture the
assembly scene’s current configuration, the state s is given
by the combination of four sets, s = (SU ,SP , TF , TE),
with |SU |=NU , |SP |=NP , |TF |=NF , |TE |=NE , where the
set SU encodes the unplaced primitive units that are still
available for construction, SP the primitive units that have
already been used, TF and TE contain the so-called target
grid-cells and non-target grid-cells, respectively. As shown
in Fig. 2, we voxelize the building area around the desired
target shape and, thus, end up with these grid-cells, which are
parameterized through their respective 3D center coordinate
x ∈ R3, i.e. TF={xi, i ∈ NF }, TE={xi, i ∈ NE} (visu-
alized in pink and green). While the target grid-cells (pink)
are part of the target shape and should ideally all be filled
during RAD, the non-target grid-cells (green) should remain
unoccupied. By projecting all grid-cells centre coordinate xi

into the yellow target shape, we decide whether it should be
occupied or remain unoccupied during RAD.

In this work, we assume that all building blocks are
a combination of primitive units. More specifically, we
consider that there is only one type of primitive unit: a
unit cube uc = 13. Thus, all the blocks in the scene are
a combination of primitive units (cf. Fig. 2), i.e., block i is
defined by the union of Nbi primitive units, bi =

⋃Nbi
j=1 uc.

Representing blocks as concatenations of primitives allows
for a universal interface with graph-based representations,
as any Tetris-like block can be easily represented. Simply
put, each primitive unit induces a node in the graph, and
the connectivity information encodes whether or not multiple
primitive units form a lager block (cf. two leftmost frames in
Fig. 3). This choice also allows us to describe the placed and
unplaced blocks through the primitive units’ 3D positions
xk, and connectivity information yk = [yk,1, ..., yk,NU

], i.e.,
SU={(xk, yk), k ∈ NU}. If primitive unit k is connected
with primitive unit 1 to form a larger block yk,1 equals 1,
otherwise yk,1=0. We follow the same procedure for the set
of already placed elements SP .

For placing blocks in the scene, we use a discrete, time-

varying action space. In particular, every primitive unit
which is at the moment unplaced, can be placed w.r.t. all
available grid-cells. As more complicated blocks might also
require rotations, we augment all placement actions with
four rotational actions, i.e. rotating the block by 0,±90, or
180 degrees around the upward-pointing z-axis. Furthermore,
we add one termination action that enables the agent to
indicate that the current assembly is finished or not possible
to continue, as there are no feasible actions left. Thus,
the resulting action space contains Na = NU × (NF +
NE) × 4 + 1 actions. Note that the MDP is focused on
high level decision making. It does not account for the
low level motion generation, namely grasp selection and
robot motion planning, as this would further increase the
already large action space. Nevertheless, given the action,
the motion generation problem is well defined as it specifies
the block that is to be moved, the required relative change in
orientation, and its placement location. After every placement
action, all primitive units belonging to the moved block are
transferred from the set of unplaced elements to the set of
placed ones. We also update the set of grid-cells by removing
all cells that are now occupied.

On every successful placement action, we assign a reward
of r(st, at) = 0.2(NFt − NFt+1 + NEt+1 − NEt), thereby
giving a positive signal when the action reduced the number
of target grid-cells, while also penalizing unnecessary filling
of non-target grid-cells, therefore actively enforcing resource
efficiency. The conditions for a successful placement action
are that the block can be placed by the robot without moving
or colliding with any other block, and that it is placed in a
stable configuration (i.e. the resulting structure is not falling
apart due to gravity). If the agent acting in the environment
decides upon an invalid action, the episode is terminated
and a reward of −1 is assigned. Otherwise, the episode
is terminated upon the events of i) the agent choosing the
termination action, ii) no more available building blocks, or
iii) the completion of RAD, i.e., the filling of all target grid-
cells. As the last case corresponds to the desired behaviour,
we increase the final reward by +1 upon this event. Finally,
to reflect the long-horizon of the considered task, we set the
discount factor γ to 0.999.

IV. METHOD

To reliably solve RAD, we introduce our proposed tri-level
hybrid approach that efficiently handles the huge action space
and combines global decision-making, considering the over-
all goal, with local decision-making regarding the assembly
process and sequence (cf. Fig. 1). Those requirements are
also inspired by the findings of our previous work [5] in
which we discovered increasing difficulties when attempting
to solve more complex RAD instances with different block
types and bigger target shapes in an end-to-end fashion. As
we attribute the difficulties to the fact that the combined
learning of the global and local policy renders a challenging
exploration problem, in this paper, we propose to address
these issues through our novel structured hierarchical ap-
proach. In the following, we will describe the method’s



all three levels, starting with the MILP formulation for
resolving the global resource assignment problem, followed
by a flexible, learned GNN for task sequencing, and conclude
with the low level GAMP module for handling the robotic
execution on the joint level.

A. MILP for optimal geometric target filling (high level)

In the first step, we solve an MILP which is targeted at
optimizing the blocks’ placing poses to optimally fill the
desired shape in light of the problem’s combinatorial com-
plexity. However, to render the problem tractable, we do not
consider the sequencing and robotic constraints, therefore,
only reasoning on the geometric level. MILP formulations
have been successfully applied for solving related tasks
such as the container loading problem [17], thus, in the
following, we present a formulation suitable for RAD. Based
on the grid-based parametrization of the target shape and the
definition of the reward (Sec. III), we can define the objective
function of the MILP that is subject to maximization as

OMILP = maxg c
Tg, (1)

where vector g represents the grid-state, and c contains
weighting factors that indicate whether a grid-cell should
be filled or not. This step necessitates flattening the three-
dimensional grid into a vector. For the exemplary 2D prob-
lem displayed in Fig. 2 (grid dimensions nx × ny), the
indices of all points can be flattened to a single index j
through j = dx + dynx with the discrete coordinates of
every grid-cell, dx, dy . Therefore, the first three entries of c
are set according to c[0]=c[1]=− 1 and c[2]=1, as the two
leftmost lowest grid-cells should not be occupied, whereas
the neighboring cell on the x-axis should be. Adapting this
flattening process to the 3D case is straightforward, i.e.
j = dx + dynx + dznxny , with the additional grid index for
the z coordinate dz . As every grid-cell can only be occupied
at maximum by one primitive unit, we add the constraint

g[i] ≤ 1 ∀g[i] ∈ g. (2)

Next, we need to determine how every potential positional
and rotational placement action influences the grid-state.
Therefore, for each type of building block (i.e., without
disambiguating between the same blocks that are just placed
in a different initial pose in the environment), we first attempt
placing it with all available actions and determine how the
placement affects the grid-state. For example, placing the
horizontal block from Fig. 2 in the lowest left position with-
out changing the rotation results in a grid state of pT

i=1,k=1 =
[1, 1, 0, ...., 0], with block type index i and placement action
k. By additionally assigning an integer decision variable wi,k

and taking all object types into account, we can define the
change in the grid-state according to

g =
∑P

î=1

∑K (̂i)

k̂=1
wi=î,k=k̂pi=î,k=k̂ (3)

with a total of P different block types and K(i) admissi-
ble placement actions. Note that the number of admissible
placement actions is block-type-dependent, as we require that
upon any placement action all primitive units stay within the

grid boundaries. Considering Fig. 2, it is for instance possible
to place a block consisting of a single primitive unit in the
lower right-hand corner, whereas this action is not admissible
for the horizontal block, as the block’s right primitive unit
would then end up outside the grid boundaries.

While the integer decision variables prohibit any partial
block placement by definition, we still have to restrict
that any block type can only be placed depending on its
appearance in the current environment (Ni), i.e.∑K(i)

k̂=1
wi,k=k̂ ≤ Ni, ∀i ∈ P. (4)

This constraint concludes the MILP formulation (optimize
(1), with constraints (2-4)), which boils down to optimizing
the integer decision variables wi,k through Gurobi [33].
Thus, the solution contains the quantity and final poses for
every block type and is guaranteed to optimally fill the
desired target shape. Yet, it neither resolves the challenge
of determining the assembly order nor the combinatorial
ambiguity regarding which block to use for each placement,
as the scenes typically contain multiple blocks of same type.

B. GNN for task sequencing (medium level)

The high level MILP only partially resolves the com-
binatorial aspect of RAD. It lacks the placement actions’
sequencing and the exact assignment of which block to use
for each placement. Further, the MILP does not consider
robotic feasibility, the blocks’ initial positions, and neither
structural stability during assembly. We thus require another
level, capable of efficiently incorporating the MILP’s prior
knowledge, and deciding upon either executing one of the
proposed actions or terminating the current assembly if none
of the proposed actions is feasible. This can either be due to
robotic constraints or due to stability considerations (e.g.,
robot colliding with the structure while placing a block
/ creating an unstable structure). Still, having the MILP’s
solution allows for efficiently shrinking the action space that
has to be considered on this level and thus allows for using
an approach based on guided exploration and model-free
RL, capable of reflecting all real-world constraints without
requiring any further simplifications.

Thus, we propose to employ an approach based on a
combination of GNN and Q-learning [4], [5], for the fol-
lowing reasons. The graph-based representation is capable
of providing the required flexibility on the representation
level and invariance to the problem size, while performing
the action selection based on Q-learning is desirable as i)
the herein considered action space is discrete, but remains
tractable for exploration due to the prior knowledge from
the MILP solution, ii) the state-action-based formulation
allows to efficiently incorporate the prior knowledge by
masking out all actions that are not inside the MILP solution,
iii) potential multimodalities in the MILP solution are not
problematic and do not erroneously bias this Q-function
estimator, and iv) it allows easy and time-effective combina-
tion with search-based methods, such as MCTS to improve
robustness and performance despite the combinatorial action-
space [8]. Moreover, since the overall method only requires



Fig. 3. Illustrating the process of action selection using the GNN. First, the current scene is transformed into a graph. Note that we only visualize a
subset of the target (pink) and non-target (green) grid-cells. The white nodes depict the primitive units-to-be-placed. Next follow the 3 rounds of message
passing in which all the nodes’ features are updated using the attention mechanism (see [5] for details), which results in an encoded version of the graph.
Finally, we perform action selection by predicting the Q-values for all the actions that are part of the MILP solution (visualized through the red arrows).
The Q-values are predicted based on the nodes’ features of the respective primitive units-to-be-placed and the grid-cells using a feedforward NN.

running the potentially time-consuming process (depending
on problem size) of solving the MILP once, this level should
be reactive w.r.t. changes in the blocks’ positions.

We now briefly describe the process of action selection,
as also visualized in Fig. 3, but refer to our previous
work [5] for the additional details. We first transform the
environment’s current state into a graph, by creating nodes
for all primitive units and grid-cells (cf. Sec. III). The nodes’
features contain the respective nodes’ 3D position, as well
as 2 indices that indicate the node type, i.e. placed/unplaced
primitive unit, target/non-target grid-cell. Almost all nodes
of the graph are fully-connected with each other – we only
omit the connections in-between the unplaced primitive units
if they do not belong to the same block for the purpose
of explicitly encoding different blocks. Note that the edges
solely define in between which nodes there is exchange of
information. Upon graph creation follow three rounds of
message passing using an attention mechanism [5], [26]. This
process updates the nodes’ values based on their neighbors’
and can also be seen as building a meaningful graph encoding
due to the flow of information. The obtained, updated node
values are then used as the basis for computing Q-values
for all available actions. Particularly, as we can place any
unplaced primitive unit w.r.t. every grid-cell, for this final
step, we use a standard feedforward NN that takes as input
the encoded node values of i) the primitive unit-to-be-placed,
and ii) the grid-cell, and outputs the Q-values for all the four
rotational-placement actions in between these nodes. That
way, we predict the quality of moving the primitive unit to
the grid-cell, including the potential re-orientation. Note that
this action moves the entire block that the primitive-unit-to-
be-placed is part of. This process is repeated for all pairs
of unplaced primitive units and grid-cells. To compute the
Q-value for the termination action, we feed the average of
all nodes’ features through a different NN.

Action selection is done using an ϵ-greedy strategy, yet,
only allowing to choose actions from the MILP solution and
the termination action. Originally, the MILP’s result only
contains the final poses and quantities per block type (cf. Sec.
IV-A). To make this information compatible with the current
level, we infer all the translational and rotational actions w.r.t.
the primitive units that will put the respective block into
all the desired final poses. This ensures that all blocks of
each type are considered for every placement, and it also
directly yields the allowed actions between primitive units

and grid-cells (cf. Fig. 3). After every placement, all actions
that would put another block in the same pose are removed.
Note that the MILP’s prior knowledge is not considered at
an earlier stage, as we view the message passing process as
creating an holistic understanding of the RAD scene. Thus,
we only exploit it on action selection.

The graph’s weights are refined through temporal-
difference learning. In particular, we minimize the smooth
L1 loss between the current Q-value prediction of the
GNN and the estimated value based on collected rollouts
and a target network QT , i.e. Q̂(st, at) = r(st, at) +
γmaxã QT (st+1, ã), where the reward is defined according
to Sec. III. While this Q-learning procedure by itself already
results in good policies that can directly be used for action
selection, at test time, we can additionally consider action
selection based on the combination of Q-learning and MCTS
(DQN+MCTS). This combination has proven very effective
when dealing with combinatorial action spaces, and, in
particular, improves policy performance, transferability and
robustness [8], [4]. The combination is especially attractive,
as the Q-function allows bootstrapping the depth of the
Monte Carlo rollouts, which in turn allows exploring the
effect of different actions without requiring costly simulated
deep rollouts until episode termination. Again, following [5],
we start the search from the current state by choosing an
action according to an ϵ-greedy strategy and terminate every
rollout directly after the first action, and estimate the next
state’s quality using the Q-function.

To conclude, in this intermediate level, we make use
of a policy based on the combination of GNN, RL, and
eventually add MCTS during test time. The policy benefits
from the reduced combinatorial action space, determines the
sequencing, and assigns the blocks to the placements, while
considering all the environmental constraints. The last part
that is missing, is a policy that turns these commands into
joint-level signals to actually move the robot and the blocks.

C. Robot grasp and motion planning (low level)

The lowest level is tasked with converting the previous
level’s actions into robot joint commands, thereby handling
the final robot execution of block grasping and placing.
While it would be possible to add those decisions to the
previous level, we consider motion generation separately, as
it heavily depends on the actual robot manipulator, and we
do not want to further increase the previous level’s action
space. Due to the scenes’ layout (Fig. 1), i.e., the blocks



being close together initially and during the final placement,
we first check the feasibility of a predefined set of top-down
grasping poses and subsequently check if this grasp results
in a feasible final placement pose. An action is feasible if
the requested grasping/placement pose can be reached by
the robot, i.e., considering the joint limits, and that there
are no collisions with the other blocks in the scene in this
configuration (which is computed using inverse kinematics
(IK)). If there exists a pair of feasible grasping and placing
poses, we move the robot by approaching the grasping pose
from the top, then move to a position that is slightly above the
placing location, and finally, approach the placement pose.
Again, all intermediate waypoints are computed based on IK.

V. EXPERIMENTAL RESULTS

We now present the experimental evaluation of our pro-
posed MILP-DQN method and potentially adding MCTS
with a search budget of 5 (MILP-DQN-MCTS), as in [5].
We first evaluate in simulated RAD environments (using
PyBullet [34], cf. Figs. 4 & 5) for answering two questions:
1) Does the MILP’s guiding exploitation signal help to ef-
fectively boost the proposed method’s performance compared
to employing an end-to-end approach without any prior, i.e.,
is the high level MILP really needed? 2) How effective is
the GNN policy of the medium level compared to using a
heuristic approach for task sequencing, i.e., is the medium
level GNN required? Lastly, we investigate whether our
policies can be transferred to the real world.

Before diving into the results, we quickly explain the
training procedure. As the training of our proposed approach
requires knowledge of the MILP solution for every RAD
scene, we decided to create a dataset prior to training.
This dataset contains 50, 000 different scenes, describing
the environment’s initial state, upon which the agent is
subsequently acting, modifying its state through the actions.
For the experiments that do not consider the robot, we train
all agents for 1, 000, 000 steps, while we train for 1, 500, 000
steps in the robot experiments. For all methods we train 5
agents using different seeds [35]. We describe the difficulty
of our two-sided RAD environments (i.e., two target shapes
must be filled) by specifying the maximum height and width
of the admissible target shapes, e.g., Fig. 2 shows a potential
one-sided target shape of height and width 3.

We will use a star(*) to denote the agents’ evaluation in
their training conditions, i.e., using target shapes of similar
size, yet, using different initial environment states (i.e. blocks
and poses) compared to training. The other experiments
are even further out-of-distribution, as the target shapes are
guaranteed to be bigger compared to the ones seen during
training. As bigger shapes require more blocks, the number
of initially placed blocks is also increasing. The results
are obtained by averaging the agents’ performance in 200
scenes. We report the discounted reward R, the fraction
of runs that ended i) upon perfectly recreating the target
shape d, ii) with selecting the termination action e, iii)
upon failure f , i.e., trying to execute an action that is not
feasible with the robot, or placing the block in an unstable

TABLE I
COMPARING OUR PROPOSED METHOD WITH TWO LEARNED

BASELINES IN THE TWO-SIDED ENVIRONMENT WO ROBOT.
Grid Size Method R e d ā

3* DQN 0.63 (0.02) 0.59 0.27 0.71
DQN-REL [5] 0.67 (0.01) 0.7 0.23 0.68
MILP-DQN 1.22 (0.01) 0.31 0.53 0.87

4 DQN 0.71 (0.08) 0.53 0.2 0.69
DQN-REL [5] 0.75 (0.08) 0.65 0.14 0.66
MILP-DQN 1.56 (0.03) 0.25 0.47 0.87

5 MILP-DQN 1.92 (0.05) 0.17 0.42 0.85

configuration, or destroying the already existing structure,
while differentiating between failing on grasp selection fg ,
i.e., no feasible grasp exists, and on block placement fp for
the robot experiments. Finally, we report the desired target
grid-cell coverage ā, i.e., the fraction of target grid-cells
that were initially supposed to be filled and have actually
been filled. We also provide videos of the experiments at
https://sites.google.com/view/rl-meets-milp.
A) Is the high level MILP needed?
We consider a scenario without the robot-in-the-loop, which
reduces the complexity as GAMP can be omitted. Thus, the
task reduces to placing the blocks in a stable configuration
while trying to optimally fill the desired shape. We compare
our approach against two baselines that do not consider the
MILP. The first one (DQN) can place any of the available
blocks at all currently unoccupied grid-cells. The second one
(DQN-REL) follows our previous work [5], in which the
blocks can only be placed next to the already placed ones,
thereby reducing the action space. In the first step only, we
allow placing the blocks at any target grid-cell.
The results in Table I reveal that the MILP provides a strong

inductive bias that is effective in guiding the exploration, as
the agents trained using our proposed MILP-DQN approach
outperform the two baselines. The baseline agents exhibit
very similar performance, with DQN-REL yielding slightly
higher rewards. Actually, the smaller action space of the
DQN-REL agents results in better performance at the be-
ginning of the training. Compared to the baseline agents, the
agents trained using MILP-DQN achieve an increase in the
success rate and discounted reward by a factor of 2 (grid size
of 3, 4). These results confirm the task’s combinatorial com-
plexity. Performing an ϵ-greedy exploration without using an
informed prior does not allow for discovering good action
sequences. Therefore, the baseline agents learn to terminate
more frequently and achieve significantly lower successes
and rewards. The results also reveal that the MILP-DQN
agents generalize well to the out-of-distribution environments
as the desired target grid-cell coverage remains high at 0.87
and 0.85 (grid size of 4,5), despite the significant increase in
task complexity, i.e., the average target grid-cells that should
be filled increase from roughly 5 to 12 while increasing the
grid size from 3 to 5. We also want to point out that some
desired shapes contain configurations of target grid-cells and
non-target grid-cells, such that the MILP’s solution does not
contain all the actions that would be needed to achieve ā=1.0
as the MILP optimizes a tradeoff between optimal coverage
and resource efficiency. When correcting for this effect in
the computation of ā, the values increase to 0.97, 0.91 &
0.87 for MILP-DQN (grid sizes of 3, 4 & 5).

https://sites.google.com/view/rl-meets-milp


TABLE II
COMPARING OUR PROPOSED METHOD WITH A HEURISTIC IN

THE TWO-SIDED ENVIRONMENT WITH THE ROBOT-IN-THE-LOOP.
Grid
Size Method R e fg fp ā

4* HEUR (wo robo) - - - - 0.81
HEUR 0.57 (0.04) 0.36 0.24 0.16 0.62
MILP-DQN 1.03 (0.04) 0.49 0.08 0.08 0.7
MILP-DQN-MCTS 1.24 (0.03) 0.57 0.02 0.03 0.75

5 HEUR (wo robo) - - - - 0.78
HEUR 0.34 (0.02) 0.29 0.34 0.24 0.47
MILP-DQN 0.98 (0.06) 0.53 0.1 0.15 0.58
MILP-DQN-MCTS 1.38 (0.04) 0.65 0.02 0.06 0.65

B) How effective is the GNN policy for robotic execution?
We now consider scenarios with the robot-in-the-loop (Figs.
4, 5) and investigate the effectiveness of the medium level
GNN policy. For this purpose, we compare the learned GNN
with a heuristic (HEUR). The agents using HEUR perform
action selection as follows: based on actions proposed by
the MILP, the heuristic only considers those for which the
block’s placement will result in a stable configuration, i.e.,
all grid-cells below the block-to-be-placed are already filled.
Subsequently, the HEUR selects one action from this subset
at random. If there is no action available that satisfies these
conditions, the termination action is selected. Additionally,
we report the performance of the heuristic agent on the same
problem instances, however, without using the robot for part
placement (HEUR wo robot). We consider this agent as an
oracle, as it is acting in a substantially simpler environment
without having to consider any robotic constraints.

The results from these experiments are presented in Table
II. In both versions of the environment, there is a significant
difference between the oracle heuristic (HEUR wo robo) and
the heuristic baseline (HEUR) that underlines the increased
difficulty from having the robot-in-the-loop. Moreover, our
proposed MILP-DQN & MILP-DQN-MCTS agents outper-
form the heuristic baseline (HEUR). Notably, already in the
environment with less building blocks, i.e. with the grid
size of 4, using the heuristic on the medium level results in
40% of all the rollouts terminating upon an invalid action.
Slightly more failures, i.e., 24% can be attributed to grasp
selection, i.e. the policy selecting a block for placement that
cannot be grasped or placed without collisions, while 16%
are due to collisions during placement. Such a failure is
depicted in Fig. 5, where due to bad action sequencing by
the HEUR agent, the two blocks collide. Those high rates
of failure indicate that a more informed method for action
sequencing is actually required. As can be seen in Table
II, both versions of our proposed approach are capable of
effectively reducing the percentage of failures, with MILP-
DQN decreasing the rates roughly by a factors of 3 & 2
(for grasping and placing failures, respectively), while the
addition of MCTS leads to an impressive decrease by factors
of 12 & 5. Those results show that our learned graph-based
representations are indeed capable of effectively capturing
the state of the environment and make informed decisions
regarding the action sequencing which is a crucial component
of RAD. The clear advantages also prevail for the even more
difficult scenarios, considering the grid sizes of 5, where
again, both versions of our proposed algorithm also achieve

significantly higher rewards and target grid-cell coverage
compared to the HEUR baseline. While there is a slight
drop in performance concerning the achieved coverage of the
MILP-DQN-MCTS agent with the increase in environment
difficulty, the increase in failures is marginal (only by 3%
on placing). Moreover, when relating the target grid-cell
coverage of MILP-DQN-MCTS with the performance of the
oracle HEUR wo robot agent, our proposed agents achieve
relative fillings of 0.93 and 0.83 respectively, therefore again
underlining their effectiveness. For more complicated scenes
with grid sizes of 6, the performance of MILP-DQN-MCTS
slightly degenerates. Yet, we attribute this behavior to the
combination of extremely cluttered scenes and the robot’s
limited workspace, and speculate that mobile manipulators
could circumvent these issues given the strong generalization
from the previous experiments. Overall, the experiments
show that our proposed hierarchical approach is indeed
capable of resolving the inherent difficulties of RAD, as also
illustrated in Fig. 4 where we show the successful assembly
of a desired target shape using 4 blocks of 3 different types.
C) Is real-world policy transfer possible?
Finally, we evaluate whether the obtained MILP-DQN-
MCTS policies can be transferred to real-world RAD scenes
(cf. Fig. 6). For the evaluation, we first register all of the
building blocks’ poses using OptiTrack and initialize a sim-
ulated RAD scene mirroring the real-world. The simulated
twin environment is subsequently exploited for evaluating
our policies and performing MCTS planning to decide upon
the next action which is then executed in both, simulation
and reality. As shown in Fig. 6 and in the supplementary
videos, we find that our proposed MILP-DQN-MCTS agents
can indeed be transferred to real-world RAD scenes. This
once again underlines its robustness w.r.t. different scenes,
in particular, w.r.t. scene initializations and part placements.

VI. CONCLUSION

We have presented a novel hierarchical approach for robot
assembly discovery (RAD). Our proposed approach is based
on the powerful combination of global reasoning through
mixed-integer programming, with graph-based reinforcement
learning and model-based search for local decision-making,
together with grasp and motion planning for realizing the
assembly actions on the manipulator’s joint level. The hi-
erarchy allows for the efficient decomposition of the origi-
nal problem’s huge combinatorial action space and thereby
results in robust, reliable, and effective RAD policies. The
proposed approach is validated in a set of simulated RAD
experiments and achieves an average coverage of the desired
target shape of 75% while maintaining extremely low rates
of failure (5%). We also showcase transfer to real-world
RAD scenes. In the future, we want to investigate how this
approach can be scaled to handle a wider range of objects.

REFERENCES

[1] E. Durmisevic, “Circular economy in construction design strategies
for reversible buildings,” BAMB, Netherlands, 2019.

[2] S. Tibbits, Autonomous assembly: designing for a new era of collective
construction. John Wiley & Sons, 2017.



Fig. 4. Illustration of a successful RAD sequence using our proposed MILP-DQN-MCTS approach. The agent successfully the assembly
successfully using in total 4 blocks and 3 different block types.

Fig. 5. Illustration of an unsuccessful RAD sequence using the heuristic agent (HEUR) introduced in Sec. V-B. As shown in the images,
it is important to perform informed decisions about the assembly sequence, as the wrong sequencing can result in collisions between the
block that is placed and other blocks in the scene.

Fig. 6. Real-world RAD. Given the initial configuration (left), our
proposed MILP-DQN-MCTS yields a valid assembly sequence that
ends up filling all the desired target grid-cells (right).

[3] H. M. Salkin and C. A. De Kluyver, “The knapsack problem: a survey,”
Naval Research Logistics Quarterly, 1975.

[4] J. B. Hamrick, V. Bapst, and A. Sanchez-Gonzalez et al., “Combining
q-learning and search with amortized value estimates,” in ICLR, 2019.

[5] N. Funk, G. Chalvatzaki, B. Belousov, and J. Peters, “Learn2assemble
with structured representations and search for robotic architectural
construction,” in CoRL, 2021.

[6] M. Toussaint, “Logic-geometric programming: An optimization-based
approach to combined task and motion planning,” in IJCAI, 2015.

[7] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical planning in the
now,” in Workshops AAAI, 2010.

[8] D. Silver, J. Schrittwieser, and K. Simonyan et al., “Mastering the
game of go without human knowledge,” nature, 2017.

[9] N. Vahrenkamp, M. Do, T. Asfour, and R. Dillmann, “Integrated grasp
and motion planning,” in ICRA, 2010.

[10] M. Fox and D. Long, “Pddl2. 1: An extension to pddl for expressing
temporal planning domains,” JAIR, 2003.

[11] T. Ren, G. Chalvatzaki, and J. Peters, “Extended tree search for robot
task and motion planning,” arXiv:2103.05456, 2021.

[12] V. N. Hartmann, A. Orthey, D. Driess, O. S. Oguz, and M. Toussaint,
“Long-horizon multi-robot rearrangement planning for construction
assembly,” arXiv:2106.02489, 2021.

[13] C. R. Garrett, L. P. Kaelbling, and T. Lozano-Pérez, “Learning to rank
for synthesizing planning heuristics,” in IJCAI, 2016.

[14] D. Driess, J.-S. Ha, and M. Toussaint, “Learning to solve sequential
physical reasoning problems from a scene image,” IJRR, 2021.

[15] M. Noseworthy, I. Brand, C. Moses, S. Castro, L. Kaelbling,
T. Lozano-Perez, and N. Roy, “Active Learning of Abstract Plan
Feasibility,” in RSS, 2021.

[16] T. Silver, R. Chitnis, A. Curtis, J. B. Tenenbaum, T. Lozano-Perez,
and L. P. Kaelbling, “Planning with learned object importance in large
problem instances using graph neural networks,” in AAAI, 2021.

[17] G. Fasano, “A modeling-based approach for non-standard packing
problems,” in Optimized packings with applications. Springer, 2015.

[18] ——, Solving non-standard packing problems by global optimization
and heuristics. Springer, 2014.

[19] L. Junqueira, R. Morabito, D. S. Yamashita, and H. H. Yanasse,
“Optimization models for the three-dimensional container loading
problem with practical constraints,” in Modeling and Optimization in
Space Engineering, 2012.

[20] F. Wang and K. Hauser, “Robot packing with known items and
nondeterministic arrival order,” IEEE T-ASE, 2020.

[21] P. W. Battaglia, J. B. Hamrick, and V. Bapst et al., “Relational induc-
tive biases, deep learning, and graph networks,” arXiv:1806.01261,
2018.

[22] M. Janner, S. Levine, and W. T. Freeman et al., “Reasoning about
physical interactions with object-oriented prediction and planning,”
arXiv:1812.10972, 2018.

[23] V. Bapst, A. Sanchez-Gonzalez, and C. Doersch et al., “Structured
agents for physical construction,” in ICML, 2019.

[24] A. Vaswani, N. Shazeer, N. Parmar, and J. Uszkoreit et al., “Attention
is all you need,” in NeurIPS, 2017.

[25] P. Veličković, G. Cucurull, and A. Casanova et al., “Graph attention
networks,” arXiv:1710.10903, 2017.

[26] W. Kool, H. van Hoof, and M. Welling, “Attention, learn to solve
routing problems!” in ICLR, 2018.

[27] S. Stevšić, S. Christen, and O. Hilliges, “Learning to assemble:
Estimating 6d poses for robotic object-object manipulation,” IEEE RA-
L, 2020.

[28] R. Li, A. Jabri, T. Darrell, and P. Agrawal, “Towards practical multi-
object manipulation using relational reinforcement learning,” in ICRA,
2020.

[29] Y. Lin, A. S. Wang, and A. Rai, “Efficient and interpretable robot
manipulation with graph neural networks,” arXiv:2102.13177, 2021.

[30] K. Zakka, A. Zeng, J. Lee, and S. Song, “Form2fit: Learning shape
priors for generalizable assembly from disassembly,” in ICRA, 2020.

[31] F. Furrer, M. Wermelinger, H. Yoshida, F. Gramazio, M. Kohler,
R. Siegwart, and M. Hutter, “Autonomous robotic stone stacking with
online next best object target pose planning,” in ICRA, 2017.

[32] M. L. Puterman, Markov decision processes: discrete stochastic dy-
namic programming, 2014.

[33] Gurobi Optimization, LLC, “Gurobi Optimizer,” 2022.



[34] E. Coumans and Y. Bai, “Pybullet, a python module for physics
simulation for games, robotics and machine learning,” 2016–2021.

[35] C. D’Eramo, D. Tateo, A. Bonarini, M. Restelli, and J. Peters,

“Mushroomrl: Simplifying reinforcement learning research,” 2021.


	INTRODUCTION
	RELATED WORKS
	PROBLEM DEFINITION
	METHOD
	milp for optimal geometric target filling (high level)
	GNN for task sequencing (medium level)
	Robot grasp and motion planning (low level)

	EXPERIMENTAL RESULTS
	CONCLUSION
	References

