
Learn2Assemble with Structured Representations
and Search for Robotic Architectural Construction

Niklas Funk, Georgia Chalvatzaki, Boris Belousov, and Jan Peters
Department of Computer Science, Technical University of Darmstadt, Germany
{niklas,georgia,boris}@robot-learning.de, mail@jan-peters.net

Abstract: Autonomous robotic assembly requires a well-orchestrated sequence
of high-level actions and smooth manipulation executions. Learning to assem-
ble complex 3D structures remains a challenging problem that requires draw-
ing connections between target designs and building blocks, and creating valid
assembly sequences considering structural stability and feasibility. To address
the combinatorial complexity of the assembly tasks, we propose a multi-head
attention graph representation that can be trained with reinforcement learning
(RL) to encode the spatial relations and provide meaningful assembly actions.
Combining structured representations with model-free RL and Monte-Carlo plan-
ning allows agents to operate with various target shapes and building block
types. We design a hierarchical control framework that learns to sequence the
building blocks to construct arbitrary 3D designs and ensures their feasibility,
as we plan the geometric execution with the robot-in-the-loop. We demon-
strate the flexibility of the proposed structured representation and our algorith-
mic solution in a series of simulated 3D assembly tasks with robotic evalua-
tion, which showcases our method’s ability to learn to construct stable struc-
tures with a large number of building blocks. Code and videos are available
at: https://sites.google.com/view/learn2assemble

Keywords: Structured representations, Autonomous assembly, Manipulation

1 Introduction

Construction and manufacturing are becoming increasingly automated in the last decades. However,
there is an essential need for sustainable autonomous architectural assembly [1], where a game-
changer would come with intelligent robot assembly abilities that optimally decide over plans, ac-
tions, execution, and efficiency [2]. In this work, our main focus is the combinatorial optimization
problem of autonomously assembling complex structures with robotic manipulators without an a
priori defined task plan and goal poses for the sequential picking-placing actions. For constructing
abstract target designs, we must consider the combinatorics of the growing action space w.r.t. the
number of available modules and the size of the structure. Therefore, an effective representation of
the assembly problem is essential. Moreover, the geometric execution of the picking and placing
actions by the robot imposes constraints to the assembly sequence, as those actions are subject to
the kinematic feasibility in the robot’s workspace. Eventually, the problem of assembling structures
lies in the area of long-horizon manipulation tasks, where most methods in the literature consider a
known task plan, and focus on fine manipulability and structural stability, or learn action sequences
from demonstrations [3, 4, 5, 6, 7, 8].
In this paper, we propose a novel algorithmic solution for robotic assembly that combines high-
level decision-making on the construction sequence with the geometric execution by the robot that
should ensure feasibility and stability. We propose a graph-based representation that captures the
relations between target shapes and available building blocks. Notably, we design a multi-head atten-
tion-based graph neural network (GNN) architecture with a purposefully induced inductive bias for
encoding the structural representation of the assembly task. The GNN is trained through reinforce-
ment learning (RL) to explore feasible actions, resulting in an expressive and flexible representation.
When combined as prior to Monte Carlo Tree Search (MCTS), it extrapolates to out-of-distribution
(OOD) assembly tasks, i.e., tasks with a higher number and different types of blocks and vari-

5th Conference on Robot Learning (CoRL 2021), London, UK.

https://sites.google.com/view/learn2assemble

able target shapes. Ultimately, we provide a solution for the motion generation of the sequential
picking-placing actions when having the robot-in-the-loop to ensure reachable and feasible actions,
which do not disrupt the assembly process. The proposed learn2assemble algorithm provides a
flexible, autonomous robotic assembly agent for constructing 3D shapes using more than ten blocks.

Figure 1: Simulated assembly environ-
ment with a 7-DoF manipulator and
two sets of blocks: the unplaced white
ones on the left and the “base” red
block with some already placed blocks
by the robot in the centre. The yel-
low silhouette denotes the target shape.
The goal is to place the available
blocks to fill the overall 3-dimensional
target shape.

Our main contributions are threefold. (1) We propose a multi-
head attention-based graph representation for the 3D as-
sembly problem that is flexible enough for representing arbi-
trary, stable structures and their relations to different building
blocks. (2) We design an integrated long-horizon manipula-
tion algorithm that learns through exploration, which com-
bined with model-based search leads to generalizable skills.
Our method considers the robot-in-the-loop, integrating high-
level action planning with low-level motion generation for
learning policies that ensure the kinematic feasibility and sta-
bility of the constructed structure. Finally, (3) we developed
a novel benchmarking environment for 3D robot assembly,
which is modular for testing with and without the robot, for ar-
bitrary target designs, and with adjustable types and number of
objects. Our empirical results on a series of representative ex-
periments showcase the generalization power of the proposed
algorithmic solution, drawing interesting insights on the com-
bination of integrated learning and planning for long-horizon
manipulation that can apply to a range of robotic applications.
Related works. Autonomous robotic assembly is essential for
manufacturing and construction, and therefore, many works
tried to tackle the problem of automatizing task execution and
fine manipulation. Autonomous assembly is a long-horizon
manipulation task with multiple stages of decisions and sub-
task executions to be made alongside controlling the dynamic
execution of the assembly process. Thus, researchers proposed
methods for Task and Motion Planning (TAMP) [9], and RL [10] to address the challenges of com-
binatorial optimization over high-level action sequencing and low-level motion generation.
In [11, 12] a TAMP method is proposed for robotic architectural construction and extrusion, requir-
ing though exact domain specifications to find an assembly sequence; TAMP with logic-geometric
programming is proposed by [13] where the focus lies in optimizing the structure’s stability. In [14],
the authors propose a hierarchical planner using hybrid dynamics models for the “toy-airplane” as-
sembly task. The authors of [15] optimize the assembly sequence of complex interlocking blocks
through RL assuming a single fixed design. A method based on neuro-symbolic planning is pro-
posed by [16] for learning to predict sequences of actions for stacking. The authors of [17] propose
an end-to-end approach for sequential pick-and-place tasks using shape correspondences and learn-
ing to assemble by collecting demonstrations from a human operator disassembling. Conversely, we
learn2assemble arbitrary designs from scratch, learning both the sequence of actions and discover-
ing goal positions per building block.
Autonomous assembly appeals to the machine learning community due to its combinatorial com-
plexity, which, depending on the structure’s size and availability of building blocks and their possible
combinations [18], can by far surpass the state-action combinatorics of problems like chess and Go
[19, 20]. The relational representation [21, 22] and generalization power of GNNs was thoroughly
explored in solving combinatorial optimization tasks [23], with successful applications in 2D assem-
bly [24] when combined with RL. In robot learning, earlier works use deep RL for short-horizon
challenges like peg-in-a-hole [10, 25, 26]. In [27] the use of structured representations in model-free
RL is proposed to induce inductive biases in different stages of a curriculum for executing assembly
tasks of building towers of variable heights. While the general motivation of this work is close to
ours, [27] does not learn the sequence of the building blocks for constructing arbitrary structures, but
it is essentially a goal-based method for learning pick-and-placing manipulation with known goal
object positions. In a similar direction, the authors of [28] use learning from demonstrations to train
two GNNs, one that selects objects in the scene and another one that selects a suitable goal state
from a set of possible goal positions.

2

2 Proposed Method

The main research question we pose in this work is “how can a robot perform combinato-
rial assembly tasks of abstract architectural designs?”. Fig. 1 depicts a typical setup con-
taining a 7DoF manipulator robot, a varying number of building blocks, and one possible ar-
chitectural target design. We formalize the task of autonomous construction of abstract target
shapes given some available building blocks as a Markov decision process (MDP) [29]. As il-
lustrated in Figs. 1 & 4 we can build one- up to four-sided structures. The overall desired
structure is given by each side’s target topology, which is in turn defined by the coordinates of
the target points spanning the area to be filled (see illustrative example in Fig. 2). The de-
sired shape is thus parameterized by the set of target points ST = {xTi

|i ∈ Ni} (yellow).

Figure 2: Setup with
a one-sided triangular
target shape defined
by three points (yel-
low), three unplaced
blocks (gray) and two
placed blocks (red).

The state also contains a set of blocks that are already placed in the scene
SP = {xPj

|j ∈ Nj} (red) and a set of unplaced blocks SU = {xUk
|k ∈ Nk}

(gray) that need to be added. The vector x ∈ R5 includes the 3D position
and two booleans indicating the element’s properties (placed/unplaced, target
point/building block). The state st at any time step t is thus given by the
three sets s = (ST ,SP ,SU) and has N = Ni + Nj + Nk elements. The
objective is to use the available blocks to construct a stable structure that
fills the desired target design. We use a discrete action space and define five
relative placement actions, i.e., any unplaced block can be put on top, on
the left, on the right, behind, in front w.r.t. any already placed block. In
the robot experiments, however, the action space is augmented to also allow
the specification of the manipulator’s orientation during grasping and placing.
For most experiments, we choose over two possible grasping and placing orientations, resulting in
four grasp-place combinations. Together with the placement actions, this yields Na = 4 × 5 = 20
actions when placing one block w.r.t. another. Since the possible actions at depend on the number
of placed and unplaced blocks, we end up with a time-varying action space of size Nj ×Nk ×Na.
We assign a positive reward r(st, at) on all actions that increase the filling of the target structure
while preserving its stability. Given the problem’s combinatorial complexity of discovering the
optimal high-level action plan that will allow the assembly of complex 3D structures which are stable
and kinematically feasible, we decompose it into three main problems: (i) finding an expressive
representation for our state space, (ii) decoding states into meaningful actions, and (iii) ensuring
stability and kinematic feasibility. Our research provides a thorough study of how we can tackle
these problems, and we provide a novel 3D assembly algorithm with the robot-in-the-loop through
combining a learned multi-head attention (MHA) representation with MCTS.

2.1 Multi-head attention graph representation

Graph-based representations [30] are an effective tool when dealing with combinatorial problems
[31, 32, 33]. Compared to classical satisfiability solvers, their main advantage lies in their real-time
capabilities, while their architectural properties allow generalization to problems of different sizes
in contrast to most standard neural network architectures, which operate on fixed-size inputs and
outputs. As those are essential properties for learning to assemble structures of combinatorial com-
plexity, we will introduce below our proposed GNN model that is inspired by the combination of
graphs and attention [34, 35]. GNNs receive as input a graph G = (N , E), and return a high-level
encoding over nodes and edges to be further exploited for deciding which action to take. In our case,
the set of nodesN = {ST ,SP ,SU} = {ni}i=1..N is given by the current state, and the connectivity
information E is defined as a matrix of size N × N . If there is an edge connection between nodes
ni and nj entry E(i, j) equates to 1, otherwise it is 0.
Attention mechanisms [34] were introduced in GNNs [35] to enable nodes to attend over their
neighbours’ features and learn different weights for different nodes without requiring costly ma-
trix operations. We want to exploit this flexibility as solving the assembly task necessitates drawing
connections on multiple levels, i.e., between nodes of the same type to encode the already existing
structure or the target shape, as well as between all nodes to come up with a meaningful represen-
tation for action-decision. In the following, we will introduce the proposed MHA architecture, that
naturally reflects the necessary multi-level decision process of the assembly task, and has proven to
be effective when combined with policy search for solving combinatorial problems, like the travel-
ling salesman [32]. In the first step of MHA, the initial node embeddings n(0)

i = xi are projected
into a higher dimensional space by

n
(1)
i = g(n

(0)
i) = ReLU(FC(n

(0)
i)), (1)

3

Single attention head per node

Input: partially-connected graph

M heads

 rounds of message passing Encoded graph

Action decoding
 per node

Figure 3: GNN architecture illustration, mapping from the input graph to Q-values. The coloring follows Fig.
2. After an initial projection into a higher dimensional space follow l rounds of message passing using MHA.
This results in an encoded version of the graph, which is then exploited for action selection.
using a fully-connected (FC) layer followed by a rectified linear unit (ReLU) activation function.
Note that the function g will be used repeatedly as we progress with the graph update, yet, as-
suming different weights on each further appearance. Next follow L rounds of message passing,
i.e.,applying (2) L times to obtain the final embedding for each node i according to

n
(l)
i = h(g(h(MHA(N (l−1), i)))), (2)

with a skip connection layer h(f(x)) = x + f(x), the current round of message passing l, all
node embeddings from the previous round N (l−1), and a MHA mechanism introduced below. As
illustrated in Fig. 3, for a single out of the M attention heads with index o, we first compute three
values – the key k, query q, and value v – using three different weight matrices Wk,o, Wq,o, Wv,o,
respectively (ki,o = Wk,oni

(l−1), qi,o = Wq,oni
(l−1), vi,o = Wv,oni

(l−1)). Multiplying the key
and query of all nodes results in a compatibility score ci,j for the ith-to-jth node connection

ci,j,o =

{
1
d
qTi,okj,o, if E(i, j) = 1,
−∞, otherwise, (3)

with d a normalizing constant. From this score, we can then compute the attention weights using
a softmax ai,j,o = e

ci,j,o∑
j′ e

c
i,j′,o to aggregate the values for each node, resulting in the output message

mi,o =
∑
j′ ai,j,ovj,o. A weighted sum of all messages yields the final result of the MHA module

MHA(N (l−1), i) =

M∑
o=1

Wm,omi,o, (4)

with weights Wm,o controlling the influence of each one of the single attention heads. Fig. 3 depicts
a simplified example of the encoding performed by the MHA architecture.

2.2 Learning assembly policies

MHA-GNNs can only unfold their potential when combined with algorithms that refine their weights
to form expressive representations exploited herein for action selection (Fig. 3). The GNN should
thus be shaped based on the reward signal, resulting in a RL setup with the goal of obtaining per-
formant policies. This powerful combination results in agents that (i) can be applied to different
problem instances due to the representation’s flexibility, (ii) are reactive, despite the problem’s com-
binatorial complexity, and (iii) can be trained directly in simulation environments which include the
nonlinearities of the robot and the contacts. Due to the problem’s combinatorial complexity and its
discrete, time-varying action space, we use model-free Q-learning, [36] which has been successfully
applied to complex tasks such as playing Atari games from images. Moreover, we investigate its in-
tegration with model-based planning, as the addition of search can counteract the overoptimism of
the Q-function approximation and result in more robust behaviour [19, 37].
Action Decoding. The encoded graph representation from Sec. 2.1 needs further processing to de-
cide on the next action to take. As actions are defined relatively between unplaced and placed blocks
(i.e., nodes) we can directly assign a value to all available actions

Q(ni, nj , Na) = g

(
ni

(l), nj
(l),FC

(
1

N

∑
j′nj′

(l)

))
∀ni ∈ SU , nj ∈ SP (5)

with the total number of N nodes in the graph. Note that the Q-value does not only depend on the
two nodes’ embedding, but also on a global feature based on averaging over all embeddings. As all
the operations are defined over the set of nodes, this encoding-decoding architecture can seamlessly
generalize to different problem sizes, i.e.,different number of blocks or target shapes.
DQN: For our setting, we define the loss function as the smooth L1 loss between the current action-
value estimate of the GNN, noted as Q(ni, nj , as) and the value obtained from the rollouts using a

4

target network, noted as QT , i.e., Q̂(ni, nj , as) = r(st, at) + γmaxni∈SU ,nj∈SP QT (ni, nj , as) with
discount factor γ and the selected action as ∈ Na.
MCTS: MCTS [38] has proven effective for solving tasks with discrete action spaces [39], hence,
suitable for our problem. Contrary to model-free RL, MCTS relies on a model of the environment
to perform tree search for action selection and does not require any form of function approximation.
However, in scenarios with significant branching factors or expensive model evaluations, the time
complexity quickly increases, and the use of MCTS becomes intractable. Consequently, [19, 20]
exploit Q-learning for estimating the value of the nodes in MCTS and show impressive results in
solving tasks of great complexity, like the game of Go. Also, in the context of accelerating and
generalizing skill-learning, the combination of learning and planning has received increasing atten-
tion [20, 37, 40, 41]. In this work, inspired by these advantages, we explore different algorithmic
variations of the interplay between Q-learning and planning, as described below. Pseudocode for all
variants is given in Appendix B.
1) DQN+MCTS: Inspired by [19], we propose a variant of AlphaGo, that uses a pretrained Q-
network as a prior for evaluating the leaf nodes of MCTS, leading to increased efficiency. As we
seek to effectively combine learning and planning for autonomous assembly with the robot-in-the-
loop, we use small search budgets for which the prominent solution for MCTS expansion - the
exploration strategy of UCT [19, 42] - is unsuitable because it becomes over-optimistic [43]. There-
fore, we use an ε-greedy expansion strategy during search, that allows better exploration than UCT.
2) Q-MCTS: We follow a generalization of Q-learning using samples based on planning. As in
[20, 37], we combine DQN with MCTS during training to perform an informed exploration and
collect good samples through search. However, as motivated previously, due to small search bud-
gets, our approach uses an ε-greedy expansion strategy over unexplored states, instead of UCT.
Let QS(st, at) = QS(st, at) + r(st, at) + γmaxa′

t
Q(s′t, a

′
t) be the updated value of an expanded

node, where s′t is the new state arriving during search. The resulting Q-MCTS methods augments
the DQN learning objective with a cross-entropy loss defined on the values explored during search,
i.e.,loss = −softmax(QS(st, at))

T log(softmax(Q(st, at))) which is intended to regularize and
improve the Q-function estimate based on the experience collected while searching.
3) ε-MCTS: This implementation follows [37] more closely. The main differences w.r.t. the Q-
MCTS policy are that first, there is an ε-greedy decision on whether to do search or uniformly sam-
ple a random action, whereas Q-MCTS always conducts search. Secondly, during search, ε-MCTS
follows the UCT expansion strategy. The Q-learning objective remains the same as with Q-MCTS,
however, the cross-entropy loss is computed only on the samples where search has been conducted.
In essence, the method’s difference is in the way of collecting the model-based samples.

2.3 Integrated learning and planning for robotic assembly

All previous components can now be combined to obtain an algorithm capable of training agents
to build desired target shapes, i.e., a robot capable of abstracting the sequence of actions for build-
ing arbitrary stable target structures from individual elements while executing feasible actions in its
workspace. Note that the only control component we assume given is a point-to-point control strat-
egy based on the robot’s inverse kinematics. To enable this combined decision-making strategy that
touches on the ground of TAMP literature, we propose the combination of the previously described
graph representations and learning algorithms to provide a novel learn2assemble method. Briefly, a
single step of a learning episode starts with selecting actions (with or without tree-search depending
on the learning algorithm), i.e., the next object to be placed, the grasping pose, the goal position, and
orientation. A path from the picking to the placing position is computed, and the robot executes the
placement, for which it receives a reward. Consequently, we store the current graph’s state, action,
reward, and new state in the replay memory to be later used for learning.

3 Experimental Results

For evaluating the different components of the proposed method and their respective contribution,
we designed specific experimental scenarios. We start with an investigation over graph architectures,
continuing with the different learning methods in environments for 3D assembly without including
a robot yet. Selecting the best settings from the previous tests, we experiment with the robot-in-the-
loop for our final empirical evaluations of the proposed algorithm.

5

(a) (b) (c) (d) (e) (f)
Figure 4: (a) Illustration of the single-sided 3D assembly environment, (b) the two-sided 3D assembly environ-
ment, (c) the four-sided 3D assembly environment with the robot-in-the-loop, (d) the two-sided 3D environment
with the unplaced blocks placed at random, (e) the two-sided environment with different building blocks, and
(f) the result of transferring a policy trained in simulation (a) to the real world and even a different manipulator.

Table 1: Comparison of different architectures on the single-sided environment without the robot and only one
type of block. R is the cumulative discounted return, f the ratio of runs that ended with failure, i.e., the structure
colliding, and b the ratio of runs that ended without success and no more blocks remaining. The star(*) marks
the environment where the agents were trained in.

3-by-3 grid, 20-24 blocks* 3-by-3 grid, 30-34 blocks 4-by-4 grid, 20-24 blocks
Method R b f R b f R b f

MHA (FC) 3.22 (0.04) 0.01 0.15 3.44 (0.04) 0.00 0.21 3.66 (0.05) 0.18 0.41
S2V (FC) 2.36 (0.08) 0.49 0.47 2.15 (0.10) 0.08 0.87 2.75 (0.20) 0.45 0.55

Simulation environments. The assembly environments are depicted in Fig. 4. We investigate, one-,
two- and four-sided setups with each side of the target shape defined by the position of 3 (see Fig.
2), 4, or 5 target points. The number of target points and their locations are sampled randomly from
grids of different sizes, ranging from 3-by-3 (i.e., the sampled target points can at maximum span
an area of height and width of 3 times the cube’s edge length) to 6-by-6. Due to the relative action
space, every scene is always initialized with one initially placed element, marked in red, serving
as the building base. For evaluating the assembly progression, we use depth cameras, placed on
each side of the specified target structure. By projecting the target points into the images after each
action, we obtain the change in the target shape’s filling. The reward functions endorse actions that
lead to improvement in the filling (cf. Appx. C.2). The construction process is finished, once the
total coverage exceeds a threshold, whenever there are no more unplaced blocks available, or upon
executing an invalid action, i.e., an action resulting in an unstable configuration, in destructing the
current structure, or if it is kinematically infeasible. In all environments without the robot, the plac-
ing is done by directly specifying one of the five placement actions, resulting in a reduced action
space of Na = 5. If not stated differently we use partially connected graphs (see Fig. 3), inducing
a stronger inductive bias on the structured representation compared to fully connected (FC) graphs
(cf. Appx. A.3 & D.3). In the following tables, for evaluating the agent’s performance, we report the
cumulative discounted return R, the ratio of runs that ended with failure, i.e., upon an invalid action
f , the ratio of runs that ended without success and no more blocks remaining b, as well as the mean
number of actions conducted per run ā. The star(*) marks the agents’ evaluation in the same setting
as in training, while the rest are OOD experiments, i.e., exclusively evaluating the agents in settings
with previously unseen target shapes or number of blocks. For more details, see Appx. C.
Graph architectures. We evaluate the proposed MHA representation against the commonly used
Structure2Vector (S2V) architecture [24, 31] (cf. Appx. A.1) in a simple environment (see Fig. 4a)
only considering one type of object but omitting the robot. The learning is conducted with DQN.
Results. As shown in the first column of Table 1, already in the original training environment, the
MHA approach outperforms S2V significantly. The high rates of failure and exceeding the number
of available blocks indicate that S2V cannot draw the connection between the target shape and the
current structure. This might be due to S2V’s different message passing, which cannot weigh the
importance of different nodes as with the attention mechanism. When increasing the number of
available blocks and the size of the structure to be built (columns 3 & 4), we see an evident advan-
tage of MHA in handling OOD tasks. In Appx. D.2.1, we provide additional results when using
only a single attention head, which confirm that using attention is advantageous, and MHA yields
the best performance. We, thus, continue our experimentation using the MHA architecture.
Learning algorithms. To investigate the performance of the learning algorithms (Sec. 2.2), we will
use the two-sided environment shown in Fig. 4b without the robot, thus using the reduced action
space.
Results. Table 2 summarizes the results, starting without any search budget (i.e., no tree search)
to evaluate the learned Q-functions. The DQN and ε-MCTS agents perform similarly, with DQN
slightly outperforming ε-MCTS through lower failure rates across tasks. Moreover, DQN can solve

6

Table 2: Combining Q-learning and MCTS in the two-sided environment without the robot.

Search 3-by-3, grid 20-24 blocks* 3-by-3 grid, 30-34 blocks 4-by-4 grid, 30-34 blocks 5-by-5 grid, 40-44 blocks
Budget Method R ā f R ā f R ā f R ā f

0 DQN 3.21 (0.05) 7.93 0.16 3.44 (0.08) 8.65 0.17 3.61 (0.06) 12.02 0.51 3.63 (0.08) 13.66 0.93
ε-MCTS 3.18 (0.03) 8.57 0.22 3.37 (0.10) 9.30 0.30 3.54 (0.09) 12.53 0.62 3.50 (0.13) 12.75 0.95
Q-MCTS 2.80 (0.15) 7.33 0.51 2.89 (0.09) 7.60 0.64 2.66 (0.08) 7.47 0.92 2.34 (0.17) 6.45 0.99

10 DQN+MCTS 3.47 (0.02) 8.16 0.05 3.66 (0.03) 8.96 0.06 3.96 (0.04) 13.92 0.31 4.08 (0.09) 17.33 0.87
ε-MCTS 3.21 (0.03) 8.48 0.20 3.37 (0.11) 9.10 0.31 3.60 (0.09) 12.65 0.61 3.63 (0.16) 13.16 0.93
Q-MCTS 3.24 (0.04) 8.56 0.27 3.39 (0.08) 9.24 0.41 3.42 (0.07) 10.99 0.76 3.41 (0.13) 11.27 0.96

1000 UCT 0.54 4.00 1.00 - - - - - - - - -

the task with fewer actions. Contrarily, the Q-MCTS agents perform significantly worse. We believe
that this difference in performance is due to the constant cross-entropy regularization in Q-MCTS
from the beginning of the training, especially when search samples might be bad, while for the ε-
MCTS agent the regularization is only slowly added as training proceeds and less random actions are
taken (search is better), which seems to be beneficial. Note that without the addition of search, in-
creasing the number of blocks, as well as the target size, results in a quick increase of the failure rate
for all methods. Adding a search budget of 10 already counteracts this trend, especially considering
the DQN agent, where the rates of failure can be reduced for all the tasks by using DQN+MCTS at
test time. For the Q-MCTS agent, the same trend is noticed, while the gains of the ε-MCTS agent
are marginal. This suggests that the ε-MCTS agent is overoptimistic and seems to choose similar ac-
tions as to when not using search at all. Overall, combining MCTS with a pretrained DQN results in
the best performance in our experiments. The last row of the table underlines the problem’s combi-
natorial complexity, illustrating that performing pure UCT without any prior and a search budget of
1000 performs significantly worse for the simplest experimental setting (more details in Appx. D.4).
Learn2assemble with the robot-in-the-loop. Next, we evaluate the DQN agent combined with
tree-search in our target environments, including the robot manipulator. The task’s difficulty in-
creases, as also the grasping and placing poses have to be specified while ensuring action feasibility
by the robot and the structure’s stability. We start with constructing single-sided designs (Fig. 4a) to
illustrate the necessity of training with the robot-in-the-loop before evaluating the proposed method
with multi-sided designs (Fig. 4b & 4c).
Results. We first compare two policies, one trained with, and the other without the robot us-
ing plain DQN without any search in a single-sided environment (Fig. 4a). The agent trained
with the robot-in-the-loop outperforms the other one resulting in a significantly reduced failure
rate of 15 % and consistently higher rewards (cf. Appx. D.5). This shows the necessity of in-
cluding geometric planning during training for obtaining high-level decisions that are compati-
ble with the low-level execution. It is thus not sufficient to only figure out where to place the
parts; the kinematic constraints and robot motion have to be considered. In the subsequent exper-
iments, we build 3D structures with the robot as shown in Figs. 4b & 4c. Our results in Tables 3

Table 3: Comparing policies with and without tree search
on the four-sided robotic environment.

3 by 3 grid 10-18 blocks* 3 by 3 grid 16-24 blocks
Method R ā f R ā f

DQN 2.67 (0.06) 6.91 0.30 2.55 (0.06) 7.25 0.35
DQN+MCTS 3.08 (0.06) 7.59 0.16 2.90 (0.07) 8.00 0.20

and 4 show that MCTS (search budget of 10)
consistently improves performance in terms
of higher returns and lower failure rate. In
particular, the experiments demonstrate that
our proposed pipeline can execute multiple
sequential pick-and-placing actions, with a
maximum of 17 correctly placed blocks for the 5-by-5 grid in the two-sided environment and up to
22 correct placements in the four-sided environment, using DQN+MCTS with the robot-in-the-loop.
Compared to the previous experiments, without the robot-in-the-loop, the failure rate is higher, in-
dicating the task’s increased difficulty, and the need of adding a soft-placing controller.
Generalization w.r.t. randomized scenes. To evaluate our algorithm’s robustness w.r.t. changes
in the scene, we transfer the previously trained policies and evaluate them in scenarios where the
unplaced blocks are placed randomly around the structure to be built, as shown in Fig. 4d.
Results. Rows 3 & 4 of Table 4 reveal that the policies indeed generalize to these novel scenarios,
as the percentage of unsuccessful experiments only increases at maximum by 11 % for the most
complex scenario, compared to their performance in the original environment (rows 1 & 2). This
confirms that our proposed method does not overfit the exact layout or geometry, but rather builds
meaningful features that allow to successfully transfer the behaviour to scenes that are substantially
different from those encountered during training.

Table 4: Comparing policies on the two-sided robotic environment. Rows 1&2 correspond to evaluating in the
original environments (Fig. 4b), while rows 3&4 are the evaluation in randomly initialized scenes (Fig. 4d).

Environment 3 by 3 grid 10-14 blocks* 3 by 3 grid 14-18 blocks 5 by 5 grid 14-18 blocks
Method initialization R ā f R ā f R ā f

DQN fixed 2.16 (0.06) 4.89 0.20 2.10 (0.05) 5.27 0.24 2.54 (0.15) 7.53 0.56
DQN+MCTS fixed 2.41 (0.05) 5.32 0.09 2.32 (0.03) 5.64 0.15 3.19 (0.11) 9.38 0.36
DQN random 2.06 (0.10) 4.93 0.24 1.88 (0.13) 5.02 0.32 2.28 (0.11) 7.52 0.64
DQN+MCTS random 2.33 (0.06) 5.38 0.10 2.14 (0.12) 5.54 0.20 2.85 (0.14) 9.31 0.47

7

Table 5: Evaluating the trained policies in the environments with multiple different objects available (Fig. 4e).
The results in the first row correspond to using a modified environment without including the robot.

Environment 5 by 5 grid 20-24 blocks* 5 by 5 grid 30-34 blocks 6 by 6 grid 30-34 blocks
Method w/wo robot R ā f R ā f R ā f

DQN+MCTS wo robot 2.20 (0.02) 5.05 0.06 1.89 (0.03) 5.96 0.15 1.48 (0.09) 7.27 0.27
DQN+MCTS w robot 1.42 (0.05) 3.53 0.21 0.77 (0.09) 3.27 0.52 0.61 (0.08) 4.38 0.61

Generalization w.r.t. different building blocks. We finally investigate our method’s performance
when using more complex objects (Fig. 4e). This makes the task significantly more difficult, as the
agent has to not only learn each part’s admissible grasps but also differentiate the building blocks to
select and place the correct object type. All novel objects are a combination of primitive boxes which
allows keeping the relative action space, i.e., placing an unplaced primitive box belonging to a larger
object w.r.t. a placed primitive box results in moving the entire object. For the experiments without
the robot, we adjust the action space to enable changing the object’s orientation (cf. Appx. D.9).
Results. The results in Table 5 illustrate the representation’s flexibility and ability to successfully
deal with the different building blocks. Despite the increased complexity, we achieve similar perfor-
mance in the scenes without the robot as in previous experiments (Table 2). When training with the
robot, we can still handle the task’s complexity with a∼ 80% success rate in the simplest setting, but
observe a drop in performance with a larger number of objects and bigger target shapes. While one
cause for the performance drop is the setting’s increased complexity, there are also several place-
ment actions that would require 3D gripper orientation control allowing for a smooth insertion of the
complex blocks. As our current top-down placing controller only offers planar orientation control,
some placement actions cannot be executed appropriately resulting in increased failures.

Remarks. We have conducted extensive experiments to show the superiority of our proposed MHA-
GNN approach for solving combinatorial assembly tasks with the robot-in-the-loop. The results
demonstrate how strong inductive biases combined with attention can shape meaningful relational
representations. When combined with deep Q-learning, this representation allows us to take deci-
sions over long horizons despite an increasing action space. Adding search at test time improves
performance across all experiments, demonstrating that the proposed method can generalize w.r.t.
different target shape sizes, number of building blocks, and different scenes. The policies can also
be transferred to the real world and to different manipulators, by initializing the simulation to mirror
the real scene and executing the obtained actions both in simulation and reality (see Fig. 4f). While
we show very promising results in combining learning high-level action decisions with planning ge-
ometric executions, we can see a combinatorial barrier in the decision-making that might be tackled
with a more informed search in the graph space. Our experiments on using different objects under-
line the representation’s flexibility, but also reveal current limitations in the definition of the action
space, especially considering the robotic execution, which may be mitigated by enriching the action
space through 6D grasping and placing. Moreover, several assemblies failed due to “rough” robot
actions, meaning that a more sophisticated motion generator might be needed for finer placement.

4 Conclusion

We presented a new learn2assemble algorithm for learning autonomous robotic 3D assembly from
scratch without prior knowledge of any task plan. For addressing the problem’s combinatorial com-
plexity while maintaining adaptability to different scenarios, we propose a graph-based multi-head
attention representation that captures the spatial relationships between target construction designs
and unplaced blocks, and is trained through deep Q-learning. The powerful representation forms the
basis for our hierarchical controller that jointly conducts high-level learning over action sequences
and goal specifications together with low-level path planning, ensuring the execution of long-horizon
tasks. Our extensive experiments confirm the representation’s effectiveness and show extrapolation
to environments with previously unseen target shapes, larger numbers of available elements, and
different object types. When combining the learned Q-network with MCTS with computationally
tractable small search budgets, we manage to improve performance and reliability across all tasks.
Notably, we resolve the sequential long-horizon character of the assembly task by including the
robot-in-the-loop to decide over feasible grasps and placing actions that ensure the stability of the
construction. Our algorithm manages to correctly build structures using up to 22 building blocks
with good success rates. In the future, we want to extend the algorithm to allow for a richer set of
6D grasping and placing poses, learn fine-placing or even in-hand manipulation controllers on the
low level, and investigate the implementation of an assembly/disassembly strategy, so that the robot
can potentially re-use wrongly placed blocks or reconfigure existing structures.

8

Appendix
Learn2Assemble with Structured Representations
and Search for Robotic Architectural Construction

Niklas Funk, Georgia Chalvatzaki, Boris Belousov, and Jan Peters
Department of Computer Science, Technical University of Darmstadt, Germany
{niklas,georgia,boris}@robot-learning.de, mail@jan-peters.net

In the following sections, we provide additional background information and implementation details
concerning the methods and results presented in the paper. We start by describing the graph represen-
tations, before presenting the pseudocode for all learning algorithms and outlining the experimental
setup in greater detail. Lastly, we provide hyperparameters, learning curves and additional material
for all the experiments.

A Graph representations

In this section, we introduce the Structure2Vec architecture, how to obtain every node’s initial en-
coding and the two possibilities for defining the graph’s connectivity. All these details are used in
the experimental evaluation in Sec. 3.

A.1 Alternative encoding - Structure2Vec (S2V)

Structure2Vec Encoding (S2V). S2V is one popular GNN architecture applied to combinatorial
optimization algorithms [31]. In the first step of this method, the initial node embeddings n(0)

i = xi
are projected into a higher dimensional space via

n
(1)
i = g(n

(0)
i) = ReLU(FC(n

(0)
i)), (1)

using a fully-connected (FC) layer followed by a rectified linear unit (ReLU) activation function.
Note that the function g will be used repeatedly as we progress with the graph update, however, on
each further appearance we assume a different set of weights.

For discovering where a block needs to be placed next in our assembly problem, solely relying on
the individual node encodings is not sufficient. We also need to take the topology of the graph into
account. Thus, for each node, another feature ei is computed which accumulates the features of all
its neighbors as follows

ei(ni)
(1) = g

 1

c(ni(0))

∑
E(i,j)=1,∀j∈1..N

g(nj
(0))

 , (2)

where c(ni) is the connectivity count of the node ni, indicating how many edges are connected to
this node. Based on these two initial embeddings, for each node, we obtain high level features by
performing l rounds of message passing, i.e. updating each encoding l times, according to

n
(l)
i = g

ni(l−1), g

ei(ni)(1), 1

c(ni(0))

∑
E(i,j)=1,∀j∈1..N

nj
(l−1)

 . (3)

This high-level representation ni(l) will be used subsequently to define our agent’s action.

A.2 Insights for the node encoding

To encode both the available and the already placed blocks, as well as the points representing the
target structure to be built, we use the following initial representation

n
(0)
i =

[
xpos

placed
target

]
(4)

5th Conference on Robot Learning (CoRL 2021), London, UK.

Partially-connected graph Fully-connected graph

Figure 1: Illustrating the two different connectivity implementations. Note: The two nodes shaded in light blue
illustrate one object made up of two primitive blocks. In the partial connectivity setup on the left, there are no
connections in between the unplaced elements visualized on the left-hand side. Only the connection between
the light blue nodes reveals them forming one object. On the contrary, in the fully-connected setup on the right,
all nodes irrespective of their type are connected.

with the respective object’s position (xpos ∈ R3), and the booleans placed and target. placed takes
a value of 1 for target elements and already placed blocks, and -1 otherwise. target equates to 1 for
target elements only, and to -1 otherwise. This initial representation forms the basis for obtaining
the graph’s higher-level encoding using either the MHA or the S2V architecture.

A.3 Graph connectivity

In Fig. 1, we illustrate the different connectivities investigated in this work. Namely, the partially-
connected and the fully-connected setup. Whereas in the fully-connected setup all nodes are simply
interconnected with each other, in the partially-connected setup, there are no connections in between
the unplaced objects. We reason that message passing between the unplaced objects can be omitted,
as it should be more crucial to make the connections between the placed elements and the target
shape in order to figure out where to next place an unused block. Further, the partial connectivity
also has the advantage to clearly mark objects formed from multiple boxes, by adding connections
between the individual primitive elements without requiring any further one-hot encoding or similar
representation.

B Learning algorithms - Pseudocode

This section provides the pseudocode of all the algorithms presented in Sec. 2.2. Alg. 1 represents
the standard framework in which the learning is conducted, i.e. periodically collecting experience
and updating the current Q-function which forms the basis for action selection. The difference be-
tween the algorithms lies in the action selection mechanisms and loss functions. Apart from that, all
of them make use of a replay buffer during training and exploit the same simulation environments.
For implementing the learning algorithms, we have used the mushroom reinforcement learning li-
brary [44].

The standard Q-learning algorithm, without conducting any model-based search, is provided in Alg.
2. Alg. 3 is an extension to Alg. 2 by adding tree search during test time. For expanding the initial
node, it uses an epsilon-greedy expansion strategy. Algs. 5 and 4 differ from the others as also
search is conducted while training the models. Whereas Q-MCTS conducts the tree search on every
sample and uses an epsilon-greedy expansion, ε-MCTS first has the decision whether to do search
or not and then eventually uses a UCT expansion strategy. Thus, the loss function of ε-MCTS is
also more adaptive, since the cross-entropy loss term is only active when search has been conducted
during training starting from the current state. As ε decreases over time, the influence of the cross-
entropy term in ε-MCTS is increasing. Contrarily, Q-MCTS does not have this decision and the
cross-entropy term is active throughout the whole training process, as for every sample search is
conducted.

2

Algorithm 1 Learn2Assemble
1: for i in 1..NumberEpochs do
2: /* Collect experience
3: j = 0, Buffer B = []
4: /* Define number of samples to collect
5: Γ = 100
6: while j < Γ do
7: Sample unplaced elements SU , initially placed box SP , target shape ST
8: finished=False
9: while finished==False do

10: Sample action [a,QS , ae] = act(Q, s) using Q-function approximator Q
11: Move robot to pick and place the part - Update: SU , SP , obtain r(s, a)
12: Receive next state s′

13: B.append([s, a,QS , ae, r(s, a), s′])
14: j = j + 1
15: s = s′

16: if |SU | = 0, or robot destroyed the structure, or F (st+1) > ∆, or j == Γ then
17: finished=True
18: /* Update weights of Q-function
19: π = update(Q,B)

Algorithm 2 DQN
1: Number of update steps χ
2: procedure act(Q, s)
3: if RandomVariable < ε then
4: a = RandomChoice(AllPossibleActions(s))
5: else
6: a = maxa′ Q(s, a′|a′ ∈ AllPossibleActions(s))

return a
7: procedure update(π,B)
8: Add B to Replay Memory
9: for i in 1..χ do

10: Sample random subset from Replay Memory
11: loss = smoothL1(Q(s, a)− (r(s, a) + γmaxa′ QT (s′, a′|a′ ∈ AllPossibleActions(s))))
12: Update Q-function approximator Q with parameters θ
13: θ = θ − α ∂loss

∂θ

14: return Q

Algorithm 3 DQN + MCTS
1: /* Note, this is only during evaluation, for training see Alg. 2
2: Rollout Depth η = 1 if not stated otherwise
3: Search Budget τ
4: Number of update steps χ
5: procedure act(Q, s)
6: Given: state s, set containing the explored actions SA = {}
7: ∀a, Initialize W (s, a) = 1, QS(s, a) = Q(s, a)
8: for i in 1..τ do
9: if RandomVariable < ε then

10: a = RandomChoice(AllPossibleActions(s)|W (s, a) = 1)
11: else
12: a = maxa′ Q(s, a′|a′ ∈ AllPossibleActions(s),W (s, a′) = 1)

13: Add a to SA, collect r(s, a)
14: for j in 1..η − 1 do
15: a = DQN− act(Q, s) (Alg. 2, Line 2), collect current single step reward r̃
16: Update: r(s, a) = r(s, a) + γj r̃

17: Update: W (s, a) = W (s, a) + 1, QS(s, a) = 1
2
(QS(s, a) + r(s, a) + γη maxa′ Q(s′, a′))

18: if RandomVariable < ε then
19: ar = RandomChoice(SA)
20: else
21: ar = maxa′ QS(s, a′|a′ ∈ SA)

22: return ar, {QS(s, a|a ∈ SA)}, {a|a ∈ SA}

3

Algorithm 4 Q-MCTS
1: Rollout Depth η = 1 if not stated otherwise
2: Search Budget τ
3: Number of update steps χ
4: procedure act(Q, s)
5: Given: state s, set containing the explored actions SA = {}
6: ∀a, Initialize W (s, a) = 1, QS(s, a) = Q(s, a)
7: for i in 1..τ do
8: if RandomVariable < ε then
9: a = RandomChoice(AllPossibleActions(s)|W (s, a) = 1)

10: else
11: a = maxa′ Q(s, a′|a′ ∈ AllPossibleActions(s),W (s, a′) = 1)

12: Add a to SA, collect r(s, a)
13: for j in 1..η − 1 do
14: a = DQN− act(Q, s) (Alg. 2, Line 2), collect current single step reward r̃
15: Update: r(s, a) = r(s, a) + γj r̃

16: Update: W (s, a) = W (s, a) + 1, QS(s, a) = 1
2
(QS(s, a) + r(s, a) + γη maxa′ Q(s′, a′))

17: if RandomVariable < ε then
18: ar = RandomChoice(SA)
19: else
20: ar = maxa′ QS(s, a′|a′ ∈ SA)

21: return ar, {QS(s, a|a ∈ SA)}, {a|a ∈ SA}
22: procedure update(π,B)
23: Add B to Replay Memory
24: for i in 1..χ do
25: Sample random subset from Replay Memory, including the actions taken during search
26: loss = 1

2
smoothL1(Q(s, a)− (r(s, a) + γmaxa′ QT (s′, a′|a′ ∈ AllPossibleActions(s))))

− 1
2
softmax(Q(s, ae))

T softmax(QS(s, ae))
27: Update Q-function approximator Q with parameters θ
28: θ = θ − α ∂loss

∂θ

29: return Q

C Additional details on experimental setup

All the simulation environments have been implemented using PyBullet [45]. Every environment is
characterized by the size and number of all the target shapes, as well as the number of blocks that
are available. As most of the components used for the learning algorithms are implemented with
fixed-size arrays, we decided that during training, every graph has a fixed size, i.e. a fixed number of
nodes. However, as per side, the number of points describing the target shape is variable (3, 4 or 5),
the number of available blocks is adapted accordingly. Thus, despite the choice of fixing the number
of nodes during training, the algorithms still encounters a versatile set of graphs as the distribution
over the node types changes depending on how many nodes are required for describing the desired
shape.

C.1 Sampling target shape

For every side of the environment, we initially define its size. In this work, we experimented with
grids ranging from size 3-by-3 up to sizes of 6-by-6. Exemplarily, a grid sized 3-by-3 has a maxi-
mum width of 3 blocks and a maximum height of 3 blocks. We assume to place the initial element
(red block) always in the bottom center of this grid. If there are multiple sides to be built, the initial
block is placed by randomly selecting one of them. From inside these grids, we sample 3, 4 or 5
points. Two out of these points are always sampled on the bottom, one to the left of the initial block
and one to the right of it. For the upper points, we just sample points at a random height and width
from inside the available grid.

4

Algorithm 5 ε-MCTS
1: Rollout Depth η = 1 if not stated otherwise
2: Search Budget τ
3: Number of update steps χ
4: procedure act(Q, s)
5: if RandomVariable < ε then
6: a = RandomChoice(AllPossibleActions(s))
7: return a
8: else
9: Given: state s, set containing the explored actions SA = {}

10: ∀a, Initialize W (s, a) = 1, QS(s, a) = Q(s, a)
11: for i in 1..τ do
12: a = maxa′ Q(s, a′) + 2

√
log(

∑
a′′ W (s,a′′))
W (s,a′) |a′ ∈ AllPossibleActions(s),W (s, a′) = 1

13: Add a to SA, collect r(s, a)
14: for j in 1..η − 1 do
15: a = DQN− act(π, s) (Alg. 2, Line 2), collect current single step reward r̃
16: Update: r(s, a) = r(s, a) + γj r̃

17: Update: W (s, a) = W (s, a) + 1, QS(s, a) = 1
2
(QS(s, a) + r(s, a) + γη maxa′ Q(s′, a′))

18: ar = maxa′ QS(s, a′|a′ ∈ SA)
19: return ar, {QS(s, a|a ∈ SA)}, {a|a ∈ SA}
20: procedure update(Q,B)
21: Add B to Replay Memory
22: for i in 1..χ do
23: Sample random subset from Replay Memory, including the actions taken during search
24: /* Note: If the sample is collected without conducting search, then, for this sample, the cross entropy

regularization term is omitted and instead equates to 0.
25: loss = 1

2
smoothL1(Q(s, a)− (r(s, a) + γmaxa′ QT (s′, a′|a′ ∈ AllPossibleActions(s))))

− 1
2
softmax(Q(s, ae))

T softmax(QS(s, ae))
26: Update Q-function approximator Q with parameters θ
27: θ = θ − α ∂loss

∂θ

28: return Q

C.2 Reward and reset function

Our method’s objective is to use the available blocks to construct a stable structure that fills the tar-
get design up to a desired filling threshold ∆ for which we view the experiment as successful. This
results in a reset of the environment, i.e., sampling a new instance with new target points and blocks.
The environment is also reset when there are no more unplaced blocks available, or if an invalid
action has been taken. An action is invalid if it results in an unstable configuration, in destructing
the previously built structure, or if it is not executable by the robot due to kinematic constraints.
The outcome of every action is checked through the simulator as explained in Sec. C.5. To refine
the stacking policies, we therefore have to provide a meaningful reward signal to incentivize the
successful completion of the construction tasks. We have used two different reward definitions in
this work, depending on the simulation environment. In the simple block stacking environments
with only one type of block available, we made use of a discrete reward as introduced in Sec. C.2.1.
However, in the more complicated environments with multiple different blocks available, we defined
another reward function (see Sec. C.2.2) which not only returns a binary signal but actually encour-
ages to fill the shape as efficiently as possible by providing a reward proportional to the increase in
the filling.

C.2.1 Reward function in simple block stacking environments

In the simple environments with only one type of blocks available, we define the reward as

r(st, at) =

 1 if F (st+1)− F (st) > 0,
−1 if an invalid action,

0 otherwise,
(5)

5

where an invalid action is defined as described above in Sec. C.2. The coverage F (st) is computed
by first summing over the intersection areas for each side, i.e. the areas for which the target shape
and current structure overlap, and divide it by the total area of the target shapes. The intuition behind
this reward function is to provide an ”intrinsic” motivation for actions that lead to improvement in
the filling of the desired area, punish actions that disrupt the execution, and to not reward any actions
that do not promote the assembly (e.g., placing blocks outside the desired area).

C.2.2 Reward function in environments with multiple different blocks

In environments with multiple different blocks available we want to incentivize filling the target
shape using the different available modules as effectively as possible, and thus assign a slightly
modified reward function according to

r(st, at) =


c1(F (st+1)− F (st)) + 1 if F (st+1)− F (st) > 0 and F (st+1) > ∆,

c1(F (st+1)− F (st)) if F (st+1)− F (st) > 0,
−1 if an invalid action destroying the structure,

0 otherwise.

(6)

The coverage F (st) is computed as introduced in Sec. C.2.1 and the hyperparameter (scaling con-
stant) c1 is set to 3. The constant has been determined empirically and is required to scale the reward
signal to facilitate the learning of the action-value function. For example, setting this constant to 1
might make it difficult to differentiate an action that results in only marginally improving the filing
from another one that does not improve it at all. Since exceeding the filling threshold ∆ corresponds
with successfully completing the experiment, we provide an additional bonus of +1 to the agent.

C.3 Populate environment without (wo) robot

Depending on the choice of target shape, as well as the number of available blocks, we have Nk

blocks remaining that need to be placed. To ensure an equal spacing in between the blocks, we
use Sobol sequences [46] to sample where the unplaced blocks are to be placed. Note that in the
experiments without the robot, we did not enforce any measures to avoid collisions between the
unplaced blocks, as they are not modelled by the physical simulator. They are only added to the
simulated scene the moment they are placed.

C.4 Populate environment with (w) robot

In the environment with the robot, the unplaced parts are added to the physics simulator from the
very beginning, as the parts have to be grasped by the robot. To ensure graspability, we place them
in rows with sufficient spacing.

C.5 Checking stability of overall structure

To check the stability of the overall structure, we track the velocities of all the parts in the scene. If
blocks are colliding or falling down, the accumulated velocity will exceed a threshold, which will
signal that the action has been invalid. This will reset the entire environment. In all non-robotic
scenarios, this threshold on the velocity is also active for the block that is being placed, ensuring that
the controller will not drop any block from above, as this will result in more inaccurate placements
compared to just positioning it exactly at the right place. In the robot scenarios, and especially in the
multidimensional ones, dropping a cube from a higher position is sometimes required as otherwise,
the construction of enclosed shapes is impossible. Therefore, we only keep track of all the placed
elements, ignoring the block that is currently being placed.

C.6 Robotic environment - Moving the robot

For moving the robot, we use trajectories that are defined by multiple waypoints. To map from
the Cartesian space to joint coordinates, we use the Pinocchio library [47]. For grasping as well as
placing the cubes, the respective goal positions are approached from the top, without running any
additional obstacle avoidance module. As shown in Fig. 2, the objects are grasped from the top
and there are two grasping poses, as well as two placing poses available. These four grasp-place

6

(a) (b) (c) (d)

Figure 2: Illustrating the different available grasping and placing poses in the four-sided robotic environment.
(a)&(b) Two grasping poses. (b)&(c) Two placing poses.

Table 1: Hyperparameters used for training the policies
Parameter Value

Number Training Epochs 5000
Discount Factor γ 0.8

Initial ε 1.0
Final & evaluation ε 0.05
Epoch final ε reached 1000

Size replay buffer 30000
Optimizer adam

Learning rate 0.001
Batch size 32

Number of update steps χ 25
Update target (epochs) 50

Target filling threshold ∆ 0.975

combinations allow to realize rotations by 0◦ (same orientation for grasping and placing), as well as
±90◦ around the z-axis.

D Additional experimental results

In this section, we will provide additional details and results underlining the main findings of our
work. To better showcase the behavior of the individual agents, we also provide videos on our
website https://sites.google.com/view/learn2assemble.

D.1 General information on training procedure

If not stated otherwise, all the results presented in the paper are based on evaluating 5 agents that
have been trained with different random seeds using the parameters shown in Table 1.

For all experimental results presented in this work, we report the mean values (and eventually the
95% confidence interval in brackets) from evaluating all the agents on building 100 randomly sam-
pled target shapes. In the result tables in Sec.3, the star(*) indicates the environment in which the
agents have been trained in, while the other experiments are OOD.

The value of ε is decreased linearly and the target Q-network QT is updated every 50 epochs, where
each epoch consists of sampling 100 state-action transitions. To speed up the training process, which
is especially crucial when search is added also during training time, we implemented a parallel
sampling strategy by combining the code from [48] and [44]. In the following, we will also show
the evolution of the discounted average return during the training process. Note that for obtaining
those learning curves, we did not average over building 100 target shapes, but use the score collected
from the 100 samples which are at the same time exploited to update the Q-function.

D.2 Evaluation of graph architectures

For evaluating the graph architectures, we used a slightly different set of parameters. Namely, the
final exploration frame has been reached after episode 2000 and the replay buffer size has been set
to 150000.

As illustrated in Fig. 3a, already throughout the training process, the discounted average return ob-
tained by the MHA agents is significantly higher compared to using the S2V architecture. This hints
that using the attention mechanism results in obtaining more powerful representations, which then
result in obtaining higher rewards as the target shape can be filled more effectively. The videos

7

https://sites.google.com/view/learn2assemble

0 2000 4000

Epoch

0

2

4

6

R

MHA

SHA

S2V

(a) Evolution of the discounted average return R
when training the MHA, SHA and S2V models
using the standard DQN algorithm (Alg. 2).

0 2500 5000 7500 10000

Epoch

0

2

4

R

pc

fc

(b) Evolution of the discounted average return R
when training the MHA in the fully-connected
(fc) and partially-connected (pc) configuration us-
ing the standard DQN algorithm (Alg. 2).

Figure 3: Learning curves for different experiments.

Table 2: Comparison of different architectures on the single-sided environment without the robot and only one
type of block, extending the results presented in Table 1 by also reporting scores for the single-head attention
encoding (SHA). R is the cumulative discounted return, f the ratio of runs that ended with failure, i.e., the
structure colliding and b, the ratio of runs that ended without success and no more blocks remaining.

3-by-3 grid, 20-24 blocks* 3-by-3 grid, 30-34 blocks 4-by-4 grid, 20-24 blocks
Method R b f R b f R b f

MHA (FC) 3.22 (0.04) 0.01 0.15 3.44 (0.04) 0.00 0.21 3.66 (0.05) 0.18 0.41
SHA (FC) 2.99 (0.09) 0.08 0.25 3.16 (0.10) 0.04 0.37 3.48 (0.08) 0.25 0.49
S2V (FC) 2.36 (0.08) 0.49 0.47 2.15 (0.10) 0.08 0.87 2.75 (0.20) 0.45 0.55

confirm these impressions and clearly show that the S2V architecture has difficulties drawing the
connection between the target shape and the already placed blocks, resulting in placing many un-
necessary blocks and failing to fill the target shape reliably. This underlines the findings presented
in Sec. 3.

D.2.1 Additional experiment - Single-head attention (SHA)

To evaluate the effectiveness of using the multi-head attention approach, we ran one additional
experiment using only a single attention head. The results are shown in Table 2. We reason that SHA
performs better compared to S2V as it can explicitly compute the compatibility score between nodes
which helps to disambiguate the different components encoded in the graph structure. Nevertheless,
the superiority of MHA hints that having multiple attention heads with different weights allows to
construct even more meaningful features which result in better performance.

D.3 Evaluation of graph connectivity

While it is quite straightforward to defined each node’s features (position, type information, cf.
Appx. A.2), there are different approaches for the graph connectivity. This choice is important as it
influences the message passing between nodes. We investigated the effect of using a fully connected
(FC) graph and compare it to using partial connections (see Fig. 1) omitting the connections between
different unplaced blocks, inducing a stronger inductive bias on the structured representation.

Figure 4

To test the generalization abilities, we test the approaches in the set-
ting of Fig. 4 with different types of blocks (i.e., rectangles of various
lengths). Those novel objects are fixed concatenations of the already ex-
isting blocks, treating the individual boxes as primitive elements. This
has the advantage of not needing any modifications to the action and ob-
servation space, while allowing us to create more complex and diverse
objects.

8

Table 3: Comparison of FC against partially connected MHA architecture on a task with variable sets of object-
types available in the setting shown in Fig. 4.

5-by-5 grid, 25-27 blocks
5-by-5 grid, 25-27 blocks * 5-by-5 grid, 35-37 blocks 6-by-6 grid, 35-37 blocks (different types)

Method R f R f R f R f

MHA (FC) 1.94 (0.12) 0.39 1.69 (0.11) 0.51 1.32 (0.10) 0.61 1.88 (0.11) 0.42
MHA (partial) 2.42 (0.03) 0.23 2.22 (0.06) 0.34 1.75 (0.08) 0.51 2.40 (0.10) 0.26

We use the same set of parameters as in the previous subsection, but we
trained the agents for 10000 epochs. Further, as this experiment considers also larger blocks, we use
the adapted reward function introduced in Appx. C.2.2. Using the larger objects necessitates two
new skills: learning to differentiate the different object types and handling them correctly.

Results. As shown in Table 3, partial connectivity outperforms the FC in all experiments. Inter-
estingly, designing a priori meaningful edge connections favors the extrapolation of the method to
unseen types of objects (last column), indicating that the chosen representation is modular and effec-
tive in solving more challenging problem settings. These results also indicate that reasoning about
different block types in the FC setting is more difficult, as this has to happen based on the blocks’
distances. Contrarily, in the partial setting, the connectivity information directly reveals the block
type. As we want to keep the flexibility of handling more complex blocks, we will exclusively focus
on the partially connected architecture.

Fig. 3b depicts the learning behaviors for the fully- and the partially-connected setup. While initially,
there is hardly any difference between the two approaches, in the long run, the partially-connected
setup clearly outperforms the fully-connected one. We reason that during the early stages of training,
the connectivity only plays a minor role, as all the agents have to figure out which actions are ad-
missible. However, as training proceeds, the partial connectivity gathers higher rewards, indicating
that providing additional structure through the graph’s connectivity facilitates learning. This trend
is also visible in the accompanying videos.

D.4 Evaluation of the learning algorithms

When comparing the performance of the different learning algorithms, we use the exact same hy-
perparameters as introduced in Sec. D.1. Compared to the experiments presented in Secs. D.2 &
D.3, we decided to decrease the size of the replay buffer and to increase the speed of decaying ε.
Those measures were intended to increase memory efficiency as well as to improve the convergence
speed. Further, for training the Q-MCTS and the ε-MCTS agents a search budget of 5 is being used.

0 2000 4000

Epoch

0

2

4

6

R

DQN

Q-MCTS

ε-MCTS

Figure 5: Evolution of the discounted average re-
turn R when training agents using the different
learning algorithms.

The learning progress is very similar for all the in-
troduced algorithms, as can be seen in Fig. 5. The
learning curves for DQN as well as ε-MCTS are
hardly distinguishable, which we think is due to the
fact that both of them are using an ε-greedy decision
whether to apply a random action or to either use
the best action according to the Q-function (DQN)
or according to the result of a quick searching pro-
cedure (ε-MCTS). Q-MCTS, in contrast, seems to
learn slightly quicker during the early phase of the
learning process due to more exploitation, as it al-
ways performs the tree search. However, this behav-
ior might actually also result in less exploration, as
always conducting tree search might result in over-
fitting to a suboptimal solution.

Table 4 provides results from running additional ex-
periments. The last two columns (most difficult
tasks) reveal that using a search budget of 10, instead of 5, slightly improves performance. While us-
ing a search budget of 5 and playing the rollout until termination yields best performance across all
tasks and methods, we still decided to use a search budget of 10 with only a single step of expansion
for the subsequent experiments. The main reason for this choice being computational efficiency.

9

Table 4: Combining Q-learning and MCTS in the two-sided environment without the robot. R denotes the
cumulative discounted return, ā, the mean number of actions conducted in this environment, f the ratio of runs
that ended with failure, i.e. the structure colliding. The double star (**) indicates that the rollout has been
played until termination.

Search 3-by-3, grid 20-24 blocks* 3-by-3 grid, 30-34 blocks 4-by-4 grid, 30-34 blocks 5-by-5 grid, 40-44 blocks
Budget Method R ā f R ā f R ā f R ā f

0 DQN 3.21 (0.05) 7.93 0.16 3.44 (0.08) 8.65 0.17 3.61 (0.06) 12.02 0.51 3.63 (0.08) 13.66 0.93
ε-MCTS 3.18 (0.03) 8.57 0.22 3.37 (0.10) 9.30 0.30 3.54 (0.09) 12.53 0.62 3.50 (0.13) 12.75 0.95
Q-MCTS 2.80 (0.15) 7.33 0.51 2.89 (0.09) 7.60 0.64 2.66 (0.08) 7.47 0.92 2.34 (0.17) 6.45 0.99

5 DQN+MCTS 3.43 (0.04) 8.20 0.03 3.67 (0.02) 8.99 0.02 3.95 (0.04) 14.05 0.35 3.96 (0.10) 16.05 0.91
ε-MCTS 3.16 (0.06) 8.38 0.23 3.34 (0.08) 9.11 0.35 3.55 (0.09) 12.45 0.61 3.51 (0.18) 12.61 0.93
Q-MCTS 3.07 (0.10) 8.03 0.40 3.20 (0.08) 8.35 0.50 3.10 (0.12) 8.97 0.85 2.85 (0.19) 8.27 0.98

5** DQN+MCTS 3.47 (0.02) 8.12 0.02 3.71 (0.02) 8.83 0.02 3.99 (0.04) 14.13 0.28 4.04 (0.06) 17.08 0.87
ε-MCTS 3.21 (0.04) 8.40 0.19 3.39 (0.06) 9.06 0.31 3.60 (0.06) 12.84 0.59 3.58 (0.12) 13.28 0.92
Q-MCTS 3.20 (0.07) 8.00 0.27 3.28 (0.10) 8.48 0.43 3.28 (0.07) 9.60 0.77 3.08 (0.18) 9.23 0.98

10 DQN+MCTS 3.47 (0.02) 8.16 0.05 3.66 (0.03) 8.96 0.06 3.96 (0.04) 13.92 0.31 4.08 (0.09) 17.33 0.87
ε-MCTS 3.21 (0.03) 8.48 0.20 3.37 (0.11) 9.10 0.31 3.60 (0.09) 12.65 0.61 3.63 (0.16) 13.16 0.93
Q-MCTS 3.24 (0.04) 8.56 0.27 3.39 (0.08) 9.24 0.41 3.42 (0.07) 10.99 0.76 3.41 (0.13) 11.27 0.96

1000 UCT 0.54 4.00 1.00 - - - - - - - - -

Table 5: Comparing policies trained with (w) and without (wo) the robot-in-the-loop.
5 by 5 grid 15-17 blocks* 6 by 6 grid 16-18 blocks

Method R ā f R ā f

w robot 2.71 (0.14) 5.40 0.25 2.93 (0.08) 6.71 0.42
wo robot 2.14 (0.27) 3.92 0.40 2.40 (0.18) 4.91 0.58

The video material that we provide along this appendix illustrates the different findings, as well as
the results from Sec. 3. Adding search to the DQN agent improves performance and results in slight
gains compared to the ε-MCTS agents, whereas the Q-MCTS agents perform worse.

D.5 Evaluation of trainings with and without the robot-in-the-loop

In this section, we provide more details on the comparison between DQN agents trained with and
without the robot-in-the-loop. Compared to the previous experiments, we decided to adapt the filling
threshold indicating when to view a shape as being built successfully. For all experiments including
the robot, we decided to lower this value to ∆ = 0.75. The reason lies in the fact that when using
the robot to actually place the cubes, there will always remain some spacing in between the parts.
Therefore, lowering the threshold is necessary.

The difference in the magnitude of the obtained rewards in Fig. 6a can thus be explained by the
two different threshold values used during training, as for the training without the robot, we still
used the previous value of 0.975. Apart from this, there does not seem to be a distinction in the
learning speed. However, when evaluating both of the policies in the environment with the robot-in-
the-loop, agents trained without the robot fail significantly more often as they do not take the robot’s
kinematics into account (see Table 5). This results in the arm colliding with the structure as shown
in the accompanying videos. Thus, as already pointed out in Sec. 3 of the main paper, for obtaining
reliable policies for assembling architectural structures, it is essential to include the robot-in-the-
loop already during training. The results also underline that the graph representations are flexible
enough to take the robot’s restrictions and nonlinearities into account while still successfully solving
the tasks. Note that for this experiment we still considered the 5-dimensional action space (only
consisting of the placement actions) as choosing a grasp perpendicular to the structure being built
will ensure to not collide with it. This choice also ensures a fair comparison between the agents.

D.6 Evaluation of building complex shapes with the robot-in-the-loop

Lastly, we investigated building even more complex shapes with the robot-in-the-loop. Building
those two- and four-sided shapes also requires grasp selection, and thus this setting is the most com-
plex investigated in this work. Fig. 6b depicts the learning curves for the DQN agents trained on
these difficult tasks. As can be seen, learning to build two-sided shapes seems to be more straightfor-
ward and results in faster training and a steeper learning curve. Nevertheless, towards the end of the
training, the agents can achieve higher rewards in the four-sided environments as those contain more
blocks to be placed. Since adding MCTS during test time improved performance throughout all of
our experiments, we showcase the behavior of DQN+MCTS agents in the accompanying videos.
Note that to better illustrate the performance of the agents, the threshold has been set to 0.9 for the

10

0 2000 4000

Epoch

0

2

4

6

R

wo robot

w robot

(a) Evolution of the discounted average return R
when training the agents on the single-sided en-
vironment with and without the robot-in-the-loop
using the standard DQN algorithm (Alg. 2).

0 2000 4000

Epoch

0

2

4

R

DQN 4-sided

DQN 2-sided

(b) Evolution of the discounted average return R
when training the agents in the two- and four-
sided environment, including the robot using the
standard DQN algorithm (Alg. 2).

Figure 6: Learning curves for different experiments with the robot-in-the-loop.

videos. As shown there, the agents are capable of building complex shapes and are successful at
placing a large number of blocks.

D.7 Illustrating search

We present a series of pictures, which depict the searching process, i.e. which actions have been
explored during search given the initial configuration shown in Fig. 7. As can be seen in Figs. 8
and 9 which show the explored grasping and placement actions respectively, the tree search explores
a versatile set of actions and attempts to grasp different objects. Some of the grasps are invalid as
the gripper fails to grasp the part due to collisions (see Fig. 8 a). The other grasps are valid but
the associated placement actions illustrated in Fig. 9 b-d result in a different filling of the target
structure. Finally, the highest reward action (grasp - Fig. 8 d, placement - Fig. 9 d)is selected and
executed in the environment.

11

Figure 7: Initial configuration on which we start the search.

(a) (b) (c) (d)
Figure 8: (a) - (d) Illustrating four different grasping configurations explored during search. Only the grasp
depicted in (a) is invalid as the gripper collides with the block.

(a) (b) (c) (d)
Figure 9: (a) - (d) Illustrating the result of executing the placement actions (including gripper orientation)
starting from the grasps illustrated in Fig. 8. For (a) no placement is executed as the grasp is already invalid.
Given the target shape, the placement action depicted in (d) results in the highest reward and is thus finally
executed after the search.

D.8 Generalization with respect to randomized scenes

For the experiments on how well our learned representations scale to different scenes, we have
used the exact same training configuration as for the results in Appx. D.6. In fact, we have simply
evaluated the agents that have been trained in the original two-sided scenario and evaluate them in
the randomized scenes. As described in the main paper, and as also shown in the accompanying
videos (filling threshold set to 0.9), the agents transfer well to the novel settings.

D.9 Generalization with respect to different building blocks

Figure 10 illustrates the environment in which multiple blocks are available. As shown, there are in
total 4 different building blocks available which are i) primitive box object (from previous experi-
ments), ii) vertical block of length 2, consisting of 2 primitive blocks, iii) L-shaped object consisting
of 3 primitive blocks, and iv) s-shaped object which is made up of 4 primitive blocks. In line with
the previous experiments, the set of objects that is available is sampled at random from this set. This
however implies that now there is no guarantee that the set of available blocks is actually sufficient
to fill the shape up to the desired threshold. Also, for the objects that are not symmetric around the
z-axis, i.e. L- and s-shaped block, we randomly choose an orientation from the set {0,±90, 180}.
In the environments without the robot, we modify the action space, as it would otherwise be impos-
sible for the agents to rotate the available blocks which might be crucial to successfully solve these
more complicated tasks. We therefore also allow the agents to rotate the respective block around the
z-axis with values of {0,±90, 180}. The combination of those four rotational actions together with
the five placement actions results in an action space of dimension Na = 4× 5 = 20.

For training the agents in those complicated settings we use the reward function from Appx. C.2.2.
We also found that applying the previous settings (cf. Table 1) results in converging to suboptimal

12

Figure 10: Initial configuration on which we start the search.

Table 6: Evaluating the trained policies in the environments with multiple different objects available. The
results in row 3&4 correspond to using a modified environment without including the robot.

5 by 5 grid 20-24 blocks* 5 by 5 grid 30-34 blocks 6 by 6 grid 30-34 blocks
Method R ā f R ā f R ā f w/wo robot
DQN 1.25 (0.03) 3.18 0.25 0.28 (0.07) 2.95 0.67 0.11 (0.11) 3.12 0.75 w robot
DQN+MCTS 1.42 (0.05) 3.53 0.21 0.77 (0.09) 3.27 0.52 0.61 (0.08) 4.38 0.61 w robot
DQN 1.44 (0.21) 4.87 0.34 1.29 (0.13) 5.91 0.43 0.94 (0.15) 6.53 0.56 wo robot
DQN+MCTS 2.20 (0.02) 5.05 0.06 1.89 (0.03) 5.96 0.15 1.48 (0.09) 7.27 0.27 wo robot

solutions. We thus increased the number of training epochs from 5000 to 10000, increased the epoch
when the final value of ε is reached from 1000 to 2000, and also increased the discount factor to 0.95.

Table 6 complements the results in the paper by also reporting the performance of the DQN agents.
As can be seen, also in those scenarios, the addition of search improves the agent’s performance.
However, in the experiments that include the robot, the addition of search is not as efficient as for the
other experiments (especially considering the first column) which hints at the fact that there might be
additional limiting factors. We reason that the action space might limit the agent’s performance by
not providing enough flexibility in terms of low-level placement actions, as well as grasp selection.

13

Acknowledgments

The authors acknowledge the support from the Artificial Intelligence in Construction (AICO) grant
by the Nexplore/Hochtief Collaboration Lab at TU Darmstadt. This project has also received fund-
ing from the European Union’s Horizon 2020 research and innovation programme under grant agree-
ment No. 640554, and the Emmy Noether DFG Programme iROSA with Grant No. 448644653.
The authors would like to thank the reviewers and metareviewer for their useful comments that
helped to substantially improve the paper, and Prof. Dr. Oliver Tessmann from the Digital Design
Unit (DDU) at the Department of Architecture at TU Darmstadt, for supporting us with the robotic
experiments.

References
[1] B. G. de Soto and M. J. Skibniewski. Future of robotics and automation in construction. In

Construction 4.0, pages 289–306. Routledge, 2020.

[2] S. Tibbits. Autonomous assembly: designing for a new era of collective construction. John
Wiley & Sons, 2017.

[3] J. O. de Haro, V. N. Hartmann, O. S. Oguz, and M. Toussaint. Learning efficient constraint
graph sampling for robotic sequential manipulation. arXiv preprint arXiv:2011.04828, 2020.

[4] S. Pirk, K. Hausman, A. Toshev, and M. Khansari. Modeling long-horizon tasks as sequential
interaction landscapes. arXiv preprint arXiv:2006.04843, 2020.

[5] T. Ren, G. Chalvatzaki, and J. Peters. Extended task and motion planning of long-horizon
robot manipulation. arXiv preprint arXiv:2103.05456, 2021.

[6] Y. Lee, E. S. Hu, Z. Yang, A. Yin, and J. J. Lim. Ikea furniture assembly environment for
long-horizon complex manipulation tasks. arXiv preprint arXiv:1911.07246, 2019.

[7] A. Mandlekar, D. Xu, R. Martı́n-Martı́n, S. Savarese, and L. Fei-Fei. Learning to general-
ize across long-horizon tasks from human demonstrations. arXiv preprint arXiv:2003.06085,
2020.

[8] A. Simeonov, Y. Du, B. Kim, F. R. Hogan, J. Tenenbaum, P. Agrawal, and A. Rodriguez. A
long horizon planning framework for manipulating rigid pointcloud objects. arXiv preprint
arXiv:2011.08177, 2020.

[9] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kaelbling, and T. Lozano-Pérez.
Integrated task and motion planning. Annual review of control, robotics, and autonomous
systems, 4:265–293, 2021.

[10] T. Inoue, G. De Magistris, A. Munawar, T. Yokoya, and R. Tachibana. Deep reinforcement
learning for high precision assembly tasks. In 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 819–825. IEEE, 2017.

[11] C. R. Garrett, Y. Huang, T. Lozano-Pérez, and C. T. Mueller. Scalable and probabilistically
complete planning for robotic spatial extrusion. arXiv preprint arXiv:2002.02360, 2020.

[12] Y. Huang, C. Garrett, I. Ting, S. Parascho, and C. Mueller. Robotic additive construction of bar
structures: Unified sequence and motion planning. arXiv preprint arXiv:2105.11438, 2021.

[13] V. N. Hartmann, O. S. Oguz, D. Driess, M. Toussaint, and A. Menges. Robust task
and motion planning for long-horizon architectural construction planning. arXiv preprint
arXiv:2003.07754, 2020.

[14] A. Jain and S. Niekum. Efficient hierarchical robot motion planning under uncertainty and
hybrid dynamics. In Conference on Robot Learning, pages 757–766. PMLR, 2018.

[15] B. Wibranek, Y. Liu, N. Funk, B. Belousov, J. Peters, and O. Tessmann. Reinforcement learn-
ing for sequential assembly of sl-blocks - Self-interlocking combinatorial design based on
machine learning. 2021.

9

[16] M. Burke, K. Subr, and S. Ramamoorthy. Action sequencing using visual permutations. IEEE
Robotics and Automation Letters, 6(2):1745–1752, 2021.

[17] K. Zakka, A. Zeng, J. Lee, and S. Song. Form2fit: Learning shape priors for generalizable
assembly from disassembly. In 2020 IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 9404–9410. IEEE, 2020.

[18] J. Huang, G. Zhan, Q. Fan, K. Mo, L. Shao, B. Chen, L. Guibas, and H. Dong. Generative 3d
part assembly via dynamic graph learning. arXiv preprint arXiv:2006.07793, 2020.

[19] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of go with deep
neural networks and tree search. nature, 529(7587):484–489, 2016.

[20] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,
L. Baker, M. Lai, A. Bolton, et al. Mastering the game of go without human knowledge.
nature, 550(7676):354–359, 2017.

[21] V. Zambaldi, D. Raposo, A. Santoro, V. Bapst, Y. Li, I. Babuschkin, K. Tuyls, D. Reichert,
T. Lillicrap, E. Lockhart, et al. Relational deep reinforcement learning. arXiv preprint
arXiv:1806.01830, 2018.

[22] T. Kipf, E. van der Pol, and M. Welling. Contrastive learning of structured world models. arXiv
preprint arXiv:1911.12247, 2019.

[23] Q. Cappart, D. Chételat, E. Khalil, A. Lodi, C. Morris, and P. Veličković. Combinatorial
optimization and reasoning with graph neural networks. arXiv preprint arXiv:2102.09544,
2021.

[24] V. Bapst, A. Sanchez-Gonzalez, C. Doersch, K. L. Stachenfeld, P. Kohli, P. W. Battaglia, and
J. B. Hamrick. Structured agents for physical construction. arXiv:1904.03177 [cs], May 2019.
URL http://arxiv.org/abs/1904.03177. ZSCC: 0000017 arXiv: 1904.03177.

[25] G. Thomas, M. Chien, A. Tamar, J. A. Ojea, and P. Abbeel. Learning robotic assembly from
cad. In 2018 IEEE International Conference on Robotics and Automation (ICRA), pages 3524–
3531. IEEE, 2018.

[26] J. Luo, E. Solowjow, C. Wen, J. A. Ojea, A. M. Agogino, A. Tamar, and P. Abbeel. Reinforce-
ment learning on variable impedance controller for high-precision robotic assembly. In 2019
International Conference on Robotics and Automation (ICRA), pages 3080–3087. IEEE, 2019.

[27] R. Li, A. Jabri, T. Darrell, and P. Agrawal. Towards practical multi-object manipulation using
relational reinforcement learning. In 2020 IEEE International Conference on Robotics and
Automation (ICRA), pages 4051–4058. IEEE, 2020.

[28] Y. Lin, A. S. Wang, and A. Rai. Efficient and interpretable robot manipulation with graph
neural networks. arXiv preprint arXiv:2102.13177, 2021.

[29] M. L. Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

[30] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural
network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

[31] E. B. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song. Learning combinatorial optimization
algorithms over graphs. In NIPS, 2017.

[32] W. Kool, H. van Hoof, and M. Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2018.

[33] T. Barrett, W. Clements, J. Foerster, and A. Lvovsky. Exploratory combinatorial optimization
with reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pages 3243–3250, 2020.

10

http://arxiv.org/abs/1904.03177

[34] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polo-
sukhin. Attention is all you need. In Proceedings of the 31st International Conference on
Neural Information Processing Systems, pages 6000–6010, 2017.

[35] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio. Graph attention
networks. arXiv preprint arXiv:1710.10903, 2017.

[36] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep rein-
forcement learning. nature, 518(7540):529–533, 2015.

[37] J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, T. Pfaff, T. Weber, L. Buesing, and
P. W. Battaglia. Combining Q-Learning and Search with Amortized Value Estimates.
arXiv:1912.02807 [cs, stat], Jan. 2020. URL http://arxiv.org/abs/1912.02807. ZSCC:
NoCitationData[s0] arXiv: 1912.02807.

[38] C. Browne, E. Powley, D. Whitehouse, S. Lucas, S. Tavener, D. Perez, S. Samothrakis, and
S. Colton. A Survey of Monte Carlo Tree Search Methods. IEEE TRANSACTIONS ON COM-
PUTATIONAL INTELLIGENCE AND AI IN GAMES, 4(1):50, 2012. ZSCC: 0002061.

[39] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Horgan, B. Piot,
M. Azar, and D. Silver. Rainbow: Combining improvements in deep reinforcement learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

[40] M. Janner, J. Fu, M. Zhang, and S. Levine. When to trust your model: Model-based policy
optimization. arXiv preprint arXiv:1906.08253, 2019.

[41] A. S. Morgan, D. Nandha, G. Chalvatzaki, C. D’Eramo, A. M. Dollar, and J. Peters. Model
predictive actor-critic: Accelerating robot skill acquisition with deep reinforcement learning.
arXiv preprint arXiv:2103.13842, 2021.

[42] L. Kocsis and C. Szepesvári. Bandit based monte-carlo planning. In European conference on
machine learning, pages 282–293. Springer, 2006.

[43] P.-A. Coquelin and R. Munos. Bandit algorithms for tree search. arXiv preprint cs/0703062,
2007.

[44] C. D’Eramo, D. Tateo, A. Bonarini, M. Restelli, and J. Peters. Mushroomrl: Simplifying
reinforcement learning research. https://github.com/MushroomRL/mushroom-rl, 2020.

[45] E. Coumans and Y. Bai. Pybullet, a python module for physics simulation for games, robotics
and machine learning. http://pybullet.org, 2016–2021.

[46] I. M. Sobol’. On the distribution of points in a cube and the approximate evaluation of integrals.
Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 7(4):784–802, 1967.

[47] J. Carpentier, G. Saurel, G. Buondonno, J. Mirabel, F. Lamiraux, O. Stasse, and N. Mansard.
The pinocchio c++ library – a fast and flexible implementation of rigid body dynamics algo-
rithms and their analytical derivatives. In IEEE International Symposium on System Integra-
tions (SII), 2019.

[48] F. Muratore. Simurlacra - a framework for reinforcement learning from randomized simula-
tions. https://github.com/famura/SimuRLacra, 2020.

11

http://arxiv.org/abs/1912.02807
https://github.com/MushroomRL/mushroom-rl
http://pybullet.org
https://github.com/famura/SimuRLacra

	Introduction
	Proposed Method
	Multi-head attention graph representation
	Learning assembly policies
	Integrated learning and planning for robotic assembly

	Experimental Results
	Conclusion
	Graph representations
	Alternative encoding - Structure2Vec (S2V)
	Insights for the node encoding
	Graph connectivity

	Learning algorithms - Pseudocode
	Additional details on experimental setup
	Sampling target shape
	Reward and reset function
	Reward function in simple block stacking environments
	Reward function in environments with multiple different blocks

	Populate environment without (wo) robot
	Populate environment with (w) robot
	Checking stability of overall structure
	Robotic environment - Moving the robot

	Additional experimental results
	General information on training procedure
	Evaluation of graph architectures
	Additional experiment - Single-head attention (SHA)

	Evaluation of graph connectivity
	Evaluation of the learning algorithms
	Evaluation of trainings with and without the robot-in-the-loop
	Evaluation of building complex shapes with the robot-in-the-loop
	Illustrating search
	Generalization with respect to randomized scenes
	Generalization with respect to different building blocks

