
Preprint - Article published in IFAC Journal of Systems and Control 1

LearningEvent-triggeredControl fromData

throughJointOptimization

Niklas Funk a, Dominik Baumann c,a, Vincent Berenz b, Sebastian Trimpe c,a

aIntelligent Control Systems Group, Max Planck Institute for Intelligent Systems, Stuttgart, Germany

bEmpirical Inference Department, Max Planck Institute for Intelligent Systems, Tübingen, Germany

cInstitute for Data Science in Mechanical Engineering, RWTH Aachen University, Aachen, Germany

Abstract

We present a framework for model-free learning of event-triggered control strategies. Event-triggered methods aim to achieve
high control performance while only closing the feedback loop when needed. This enables resource savings, e.g., network band-
width if control commands are sent via communication networks, as in networked control systems. Event-triggered controllers
consist of a communication policy, determining when to communicate, and a control policy, deciding what to communicate. It
is essential to jointly optimize the two policies since individual optimization does not necessarily yield the overall optimal so-
lution. To address this need for joint optimization, we propose a novel algorithm based on hierarchical reinforcement learning.
The resulting algorithm is shown to accomplish high-performance control in line with resource savings and scales seamlessly
to nonlinear and high-dimensional systems. The method’s applicability to real-world scenarios is demonstrated through ex-
periments on a six degrees of freedom real-time controlled manipulator. Further, we propose an approach towards evaluating
the stability of the learned neural network policies.

Key words: Event-triggered Control; Reinforcement Learning; Stability Verification; Neural Networks

1 Introduction

In modern control systems, control commands often
need to be transmitted over (wired or wireless) com-
munication networks [1,2]. Examples of such networked
control systems include swarms of drones, where com-
munication is needed for drones to fly in formation; au-
tonomous cars, where exchanging information between
vehicles may increase traffic throughput and reduce fuel
consumption; or smart homes, where distributed sen-
sors, actuators, and computing units need to cooperate
to regulate the indoor climate. In all examples, multiple
systems utilize the same network for communication.
If all systems transmit their information at high pe-
riodic rates, this can easily overload the network and
result in an increased probability of message loss and
longer transmission delays [3]. Further, in many appli-
cations, distributed sensors and computing units should

Email addresses: nwfunk@gmx.net (Niklas Funk),
dbaumann@tuebingen.mpg.de (Dominik Baumann),
vberenz@tuebingen.mpg.de (Vincent Berenz),
trimpe@dsme.rwth-aachen.de (Sebastian Trimpe).
1 DOI: https://doi.org/10.1016/j.ifacsc.2021.100144

TrajectoryStart

End

Fig. 1. Performing event-triggered control on the Apollo
robot. The overlayed frames coincide with the time instants
in which a new control command is computed and applied.
The robot successfully avoids the obstacle with only a few
recomputations of the control signal and thus saving 90 % of
communication.

be untethered and thus battery-driven. In these cases,
limiting communication can significantly improve bat-
tery life. Event-triggered methods have been developed
explicitly to serve this need of controlling systems at
reduced communication rates, see for instance [4,5,6,7]
for an overview.

1

ar
X

iv
:2

00
8.

04
71

2v
4

 [
ee

ss
.S

Y
]

 2
3

A
pr

 2
02

1

https://doi.org/10.1016/j.ifacsc.2021.100144

In event-triggered control (ETC), closing the feedback
loop and, thus, transmitting information, is triggered by
the occurrence of certain events, e.g., an error growing
too large. Practical investigations have shown that ETC
can significantly reduce the amount of communication
while still achieving high-performance control [8,9,10].
In most event-triggered approaches, the design of the
control and communication strategy is based on a known
mathematical model of the system [4]. Yet, for com-
plex systems, an accurate description may not be readily
available. Further, the majority of results only consider
linear and low-dimensional systems. Available results for
nonlinear systems mostly optimize the communication
and control policies separately or fix one of both [11,12].
This is problematic as in ETC, the separation principle
does not hold in general [13]. That is: even if both poli-
cies are individually optimal, their combination does not
necessarily yield the overall optimal solution. For opti-
mal ETC, the control and communication policy need to
be optimized jointly. In this article, we propose an algo-
rithm based on model-free reinforcement learning (RL)
that jointly learns the control and communication poli-
cies from data. By exploiting model-free algorithms, we
mitigate the need for an accurate dynamics model, and
since we do not make any assumptions on dimensionality
or linearity, the resulting framework can equally be ap-
plied to linear and nonlinear, low- and high-dimensional
systems.

A key hurdle of learning ETC with RL is the hybrid
action space of such controllers. At each time step, the
controller takes a discrete decision, whether or not to
communicate. In case of communication, a continuous
control input is transmitted. Hierarchical RL [14] natu-
rally captures this hybrid decision structure. It provides
a top-level policy that decides which action to take (in
our case, whether or not to communicate). Depending on
this choice, the corresponding low-level policy is evalu-
ated, which, for instance, yields the control input in case
of communication. To the best of our knowledge, hierar-
chical RL has not yet been used for learning ETC. How-
ever, to successfully learn event-triggered controllers, it
is not sufficient to apply the existing hierarchical algo-
rithms. This is mainly because the ETC setting restricts
exploration. Unlike in periodic control, in ETC, vary-
ing the control action for exploration is only possible
on communication instances. Thus, exploration directly
conflicts with the goal of saving communication. We ex-
tend the hierarchical algorithms accordingly, which re-
sults in the first method that successfully derives ETC
strategies through joint optimization in nonlinear and
high-dimensional environments.

One of the drawbacks of learning-based approaches, es-
pecially those based on neural networks (NNs), is that
they often do not provide stability guarantees. However,
such statements are crucial when deploying the con-
trollers at scale in potentially safety-critical, real-world
applications. We approach this challenge by proposing

a verification framework, capable of checking the sta-
bility of the learned policy and refining it if necessary.
The framework combines output range analysis of the
learned control policy with model knowledge. That way,
we can utilize a popular NN verification framework [15]
to provide stability guarantees based on control invari-
ant sets for linear systems.

Contributions. We make the following contributions:

• Leveraging and extending hierarchical RL algorithms
to obtain resource-aware, event-triggered controllers;

• Presenting an algorithm, capable of end-to-end learn-
ing of the control and communication policy through
joint optimization for high-dimensional nonlinear sys-
tems;

• Demonstrating the algorithm’s practical significance
by applying learned ETC strategies on a real robotic
system, as illustrated in Fig. 1;

• Presenting an algorithm to check the stability of lin-
ear event-triggered systems controlled by NN policies
with rectified linear unit (ReLU) activations. We also
provide a method for refining the NNs in case of initial
instability.

Outline. We start with an overview of related work
before we provide the problem formulation and nec-
essary background. Next, we introduce the developed
algorithm and present results in challenging, high-
dimensional simulation environments and on a real
robotic system. Lastly, we discuss the stability verifica-
tion procedure and conclude with a discussion.

2 Related Work

ETC overview. For a general introduction and
overview of ETC, we refer the reader to [2,4,5,7].
While [4] focuses on linear systems, the other references
also discuss approaches for event-triggered control of
nonlinear systems. All methods, regardless of whether
they are designed for linear or nonlinear systems, rely
on an accurate model of the system’s dynamics. In prac-
tical applications, especially when considering complex
nonlinear systems, such a model may not be available.
We address the more general and more challenging
problem of learning event-triggered control and com-
munication policies without assuming any knowledge of
the system dynamics.

Learning ETC – imposing structure. Recently,
there have been several other works that learn event-
triggered communication and control policies in a
model-free way. In [11], the authors propose to use RL to
learn a scheduling strategy for controlling a multi-agent
system. The approach focuses on arbitrating the con-
strained communication bandwidth among the agents,
while the agents’ control strategy is fixed beforehand

2

and not subject to active optimization. Vamvoudakis et
al. [12] exploit concepts from Q-learning, and propose
a model-free algorithm that comes up with an ETC
strategy for linear systems in continuous time. In their
approach, the general triggering condition is predefined.
Therefore, the optimization algorithm only operates on
the triggering threshold of the communication strategy
(i.e., when to trigger). The authors of [16] and [17] also
use the same predefined triggering condition, but de-
rive ETC strategies for nonlinear systems. While [16]
uses an adaptive dynamic programming approach, [17]
relies on an identifier-critic architecture, actively iden-
tifying the unknown system dynamics. The authors of
[18] use NNs to parametrize the control policy, while
the triggering condition depends on the state and the
weights of the controller. Further, the NN is updated in
an aperiodic fashion, i.e., only on triggering instances.
The method proposed herein is more general. We jointly
learn the control and communication strategy from
scratch without imposing any additional structure, e.g.,
concerning the triggering condition. This is especially
crucial as the separation principle does not hold in
general for ETC [13]. Moreover, we showcase the perfor-
mance of our algorithm in substantially more complex
and higher-dimensional simulation environments than
those presented in the above references, as well as on
a real 6 degrees of freedom (DoF) real-time controlled
manipulator.

Learning ETC – without imposing structure.
There are only few other approaches [19,20] that learn
ETC without a-priori restrictions on the triggering
condition. Baumann et al. [19] discuss both a joint opti-
mization of control and communication and a separate
optimization procedure. However, only the separate
optimization can be applied to high-dimensional tasks.
The authors of [20] propose to use Gaussian processes
to learn a model of an unknown system, which is then
exploited to derive an optimal, self-triggered control
strategy through approximated value iteration. Due to
the computational complexity, this approach is limited
to low-dimensional systems, and a maximum inter-
communication time needs to be fixed a priori. Thus,
neither of those approaches can jointly optimize the
control and communication policy in high-dimensional
settings, as we do herein. Further, neither work provides
any stability guarantees or results on real hardware.

Deep RL for learning control. Learning control
policies from data for high-dimensional and nonlin-
ear systems has been studied extensively in recent
years [21,22,23,24,25]. However, all these works con-
sider periodic communication and are, therefore, not
applicable to the problem considered herein. ETC is a
challenging problem in that it leads to a hybrid action
space. Approaches that deal with such hybrid action
spaces will be discussed next. In [26,27], the authors
propose to rephrase the problem using continuous vari-

ables following the concept of a parameterized action
space Markov decision process. This approach has been
used to jointly learn communication and control policies
in [19]. Yet, it has only been shown to be successful in
low-dimensional tasks. More recently, [28] introduced a
hybrid RL algorithm that can optimize such problems
without reformulation. So far, this has not been applied
to ETC. Hierarchical RL frameworks [14,29,30] repre-
sent a third approach to address the hybrid problem
setting. Originally, the hierarchical structure stems from
the concept of temporal abstraction. However, it also
naturally captures the structure of ETC. The discrete
high-level decision on which sub-policy to execute next
coincides with the communication decision in ETC,
while the sub-policy yields the continuous control com-
mand. We are not aware of any other work that extends
hierarchical RL algorithms to make them applicable for
ETC, as we do herein.

Stability analysis. Due to the nonlinear activation
functions and many parameters involved, it is usu-
ally difficult to provide stability guarantees for learned
policies parametrized by NNs. Thus, this problem is
typically not addressed. Two recent exceptions related
to the approach herein are [31] and [32]. In [31], the
authors guarantee input to state stability of long short
term memory NNs. This can effectively be exploited
when using NNs for modeling or system identification.
Its use for controller design has not yet been demon-
strated. Karg et al. [32] examine the stability of NN
controllers via output range analysis. This way, they
can model the closed-loop behavior of the controlled
system and define requirements for asymptotic stability.
To achieve this property, they propose to refine the final
layer of the NN, based on a predefined linear quadratic
regulator policy. Our approach is more general in that it
refines the entire network instead of only the final layer
and is not restricted to a particular type of controllers.
Further, compared to both approaches, we provide re-
sults for larger networks and present an approach for
checking the stability of ETC policies, which is generally
more challenging due to the sporadic updates, triggered
by the communication policy.

3 Problem Formulation

System. We consider a dynamic system whose state is
monitored by sensors, and that is connected to a learning
agent (cf. Fig. 2). While the sensor measurements are di-
rectly available to the learning agent, control commands
need to be transmitted over a communication network
to the actuators. If not stated differently, we assume the
dynamics of the system to be unknown and of the form

x[k + 1] = f(x[k], u[k], v[k]) , (1)

where x[k] ∈ Rn denotes the state, u[k] ∈ Rm the input,
v[k] ∈ Rn process noise, and k ∈ N the discrete-time

3

Actuator Physical System
uac

Sensors
x

Controller / Learning Agent y

µ

δ = 0

δ = 1

π

uag

δ = 1
uag

δ = 0

Fig. 2. Schematic of the learning ETC setting addressed in
this article. An actuator is acting on a physical system. The
sensory information about the state of the system is delivered
to the learning agent. The agent then has the choice to either
communicate a control command to the actuator (δ = 1)
or to skip the current communication slot to save resources
(δ = 0). The communication decision is retrieved from NN
µ. In case of communication, the control action is computed
via NN π. During training time, the weights of the NNs are
refined via backpropagation.

index. The measurements y[k] ∈ Rp are assumed to be
given by

y[k] = g(x[k], w[k]) , (2)

with w[k] ∈ Rp representing measurement noise. For
ease of presentation and consistency with existing liter-
ature, we assume g(x,w) = x for the derivation of the
algorithm in Secs. 4 and 5. However, in the experimen-
tal evaluations in Secs. 6 and 7, we demonstrate its ap-
plicability in settings with more complex measurement
functions.

Event-triggered control. Unlike in periodic control,
in ETC the feedback loop is closed adaptively. Based on
the measurements, the agent decides whether (δ[k] = 1)
or not (δ[k] = 0) to communicate with the actuator -
i.e., whether to exploit the limited resources or to skip
the current communication slot. As is typically done in
ETC [4], we assume zero-order hold (ZOH) at the actu-
ator in between communication events. Mathematically,
this can be expressed as

uac[k] =

{
uag[k], if δ[k] = 1

uac[k − 1], if δ[k] = 0 ,
(3)

where uac denotes the control action applied at the ac-
tuator and uag represents the action calculated by the
agent (cf. Fig. 2).

Performance objective. The proposed learning algo-
rithm should result in both a control and communication
strategy that ensure that the physical system behaves in
the desired way (e.g., reaching a desired setpoint) while
the resource constraints are taken into account. Both ob-

jectives are combined in the following reward function

R =

N∑
k=0

γk(Rctrl[k] +Rcomm[k])

=

N∑
k=0

γk(Rctrl[k]− λδ[k]) ,

(4)

where λ is the weight on penalizing communication, γ
the discount factor, and Rctrl[k] the control reward. If
the discount factor γ is less than 1, it limits the horizon
up to which future rewards are reflected in the value of
the function. We express the communication savings Γ
as the percentage of the available communication slots
that have not been used, i.e.,

Γ = 1− (
N∑
k=1

δ[k])/N (5)

for a trajectory of length N . That is, Γ = 0 % means
all communication slots have been used, and Γ = 100 %
corresponds to no communication.

Problem statement. The goal of this paper is to devise
a learning algorithm that maximizes (4). To address the
drawbacks of existing methods, the algorithm shall meet
the following requirements: (i) it should be model-free
to avoid the need for an accurate dynamics model; (ii) it
should jointly optimize the control and communication
policy since the separation principle does not hold in
general for ETC; (iii) it should be applicable to linear
and nonlinear, (iv) low- and high-dimensional systems.

Towards stability. In addition to learning ETC, which
is the focus of this work, we are also concerned with pro-
viding stability guarantees for the policies. This is es-
sential for the practicability of the method, especially
considering its potential use in safety critical environ-
ments. However, this is particularly difficult when deal-
ing with learned, highly parametric, and nonlinear NN
control strategies in the ETC setting. We approach this
challenge by defining system stability through control
invariant sets, assuming known, linear dynamics, and us-
ing NNs with ReLU activations. This allows us to devise
a second algorithm capable of verifying and refining the
NN policies to guarantee system stability.

4 Background: Hierarchical Reinforcement
Learning

ETC represents a hybrid control problem, which is diffi-
cult to solve for most standard RL algorithms. In the fol-
lowing, we introduce the options framework established
by Precup et al. [14,30]. This hierarchical RL framework

4

is particularly suitable for learning control policies in hy-
brid action spaces as it naturally splits the discrete and
continuous variables.

To represent the hierarchy, the options framework re-
quires one additional variable, called option o ∈ O, be-
sides the state x ∈ X and the control action u ∈ U .O, X
and U represent the set of options, the state, and the ac-
tion space. To keep notation uncluttered, we omit time
dependence in the next two sections and write x = x[k],
x′ = x[k+1], and similar for other variables. The frame-
work is parametrized by three policies: the policy over
options µ(o|x), the intra option policy πo(u|x), and the
termination function βo(x). The principle in few words:
the policy over options decides which option is to be ex-
ecuted. Depending on this choice, the action is sampled
from the corresponding intra option policy until the ter-
mination function indicates to stop the execution of the
current option, which triggers a restart of the procedure.
Mathematically, the policy over options µ(o|x) deter-
mines the probability of choosing option o, the intra op-
tion policy πo(u|x) determines the distribution over ac-
tions u, and the termination function βo(x) determines
the probability for terminating the execution of option
o. As shown in [29], this can be rephrased as having a
flat action space without the hierarchy,

π(u|x, o) = (1−βo(x))πo(u|x)+βo(x)
∑
õ∈O

µ(õ|x)πõ(u|x) .

(6)
After executing action u, the next state and option are
given by x′ and o′.

To optimize the agent’s behavior, it is essential to es-
timate the expected reward of its actions using the Q-
function. This estimate directly indicates which actions
are more rewarding. In standard RL, the Q-function as-
signs a value to a state-action pair (x, u). In the hier-
archical setting, we define it as assigning a value to a
state-option pair (x, o),

Q(x, o) =

∫
ũ∈U

πo(ũ|x)Q̂(x, o, ũ) dũ , (7)

where Q̂ can be computed via Q̂(x, o, u) = r(x, o, u) +
γQ(x′, o′) and r defines the single step reward. In con-
clusion, the Q-function describes the future reward to
be expected when starting from state x and option o. Q̂
the reward starting from x, o and action u.

The options framework aims at maximizing the expected
reward, which for a given state x and option o reads

R(x, o) = [1− βo(x)]Q(x, o)

+ βo(x)
∑
õ∈O

µ(õ|x)Q(x, õ) . (8)

Assuming the termination function β is parametrized by
parameters θβ , the policy over options µ by θµ, and the
intra option policy π by θπ, the gradient of the reward
(8) with respect to the policies is given by

∂R(x, o, θβ , θµ)

∂θµ

= βo(x, θβ)E[
∂

∂θµ
log(µ(o, θµ|x))Q(x, o)]

(9)

and

∂R(x, o, θβ , θµ)

∂θβ
=

∂βo(x, θβ)

∂θβ
(
∑
õ∈O

µ(õ, θµ|x)Q(x, õ)−Q(x, o)) .
(10)

For each intra option policy, we seek to maximize

Q(x, o) =

∫
ũ∈U

πo(ũ, θπ|x)Q̂(x, o, ũ) dũ . (11)

Taking the gradient results in

∂Q(x, o, θπ)

∂θπ
= E[

∂

∂θπ
log(πo(u, θπ|x))Q̂(x, o, u)] .

(12)

For continuous action spaces, [33] proposes to use prox-
imal policy optimization (PPO) [34] for updating the
intra option policy. PPO stabilizes the learning process
for continuous action tasks by limiting the covariate
shift through including a clipping function into the op-
timization objective L. Let θ denote the parameters to
be optimized, and π′ denote the new policy to be found
(π′ = π(θ)), whereas π denotes the policy under the old
parameters (π = π(θold)) which were used for sampling
the state action transitions. The goal of the PPO algo-
rithm is to optimize

L(π′) = R(π′)−R(π)

= r(x, o, uπ
′
) + γQπ(x′, o′)−Qπ(x, o)

= Aπ(x, o, uπ
′
) ≈ π′o(u|x)

πo(u|x)
Aπ(x, o, uπ) .

(13)

Following the derivations presented in [33], we have

∂L(θ)

∂θ
= E[

∂

∂θ
min[

π′o(u|x)

πo(u|x)
Aπ(x, o, uπ),

clip(
π′o(u|x)

πo(u|x)
, 1− ε, 1 + ε)Aπ(x, o, uπ)]]

(14)

for the update of the intra option policy, with the advan-
tage Aπ(x, o, uπ) = r(x, o, uπ) + γQπ(x′, o′)−Qπ(x, o),

5

and the clipping function

clip(a, b, c) =

a, if a ∈ [b, c]

b, if a < b

c, if a > c ,

(15)

assuming c ≥ b, and ε the range in which no clipping is
applied.

Combining (9), (10), and (14) leads to the proximal pol-
icy option-critic (PPOC) framework for continuous ac-
tion spaces, as presented in [33]. Further, [33] uses gen-
eralized advantage estimation (GAE) [35] to calculate
Aπ(x, o, uπ). The GAE algorithm allows to tune the bias-
variance tradeoff when estimating this advantage term.

5 Learning Event-triggered Control and
Communication Policies

We now establish the link between the previously intro-
duced hierarchical RL algorithm and the ETC problem
formulation and present an algorithm capable of learning
ETC strategies from data through joint optimization. In
Sec. 5.1 we bridge the gap between ETC and hierarchi-
cal RL and show in which ways the problems they solve
are related. In Sec. 5.2 we first explain why simply ap-
plying plain hierarchical RL is not enough to solve ETC
problems before we show how existing algorithms and
concepts need to be extended to be applicable.

5.1 Relating Hierarchical Reinforcement Learning to
Event-triggered Control

The hierarchical RL algorithm presented in the preced-
ing section naturally allows us to represent problems
with hybrid action spaces. The policy over options µ
performs a discrete decision (which option to execute
next), while the intra option policy πo returns a contin-
uous action, if needed. Thus, in the context of ETC, the
policy over options represents the triggering law, while
the intra option policy yields the control action in case
of communication. We always assume that option 0 (o0)
corresponds to no communication and to performing the
ZOH, while option 1 (o1) corresponds to sampling a con-
tinuous action from a NN policy, i.e., uag[k] = πo1(u|x)
(cf. (3)). Thus, the event-triggered policy saves not only
communication, but also computational resources since
the intra option policy does not need to be evaluated in
case of no communication. Using this definition of op-
tions, (3) can be rewritten as

uac[k] =

{
uac[k − 1], if δ[k] = 0, o = o0
uag[k] = πo1(u|x), if δ[k] = 1, o = o1 .

(16)

5.2 Hierarchical Reinforcement Learning for Event-
triggered Control

Applying the concepts introduced in Sec. 4 is not suf-
ficient for successfully learning ETC strategies. This is
due to the special nature of the ETC problem. When us-
ing the algorithm in a standard, periodic control setting,
both options coincide to sampling a continuous action
from the respective intra option policy and applying it
to the system. On the contrary, in ETC, choosing op-
tion 0, i.e., the ZOH, directly fixes the action and, thus,
introduces a great difference between the capabilities of
the options. Simply put, in ETC, the two options cannot
compensate for each other as only option 1 is capable of
changing the action applied to the system. To account
for this difference, we next propose several modifications
to the original algorithm, mainly focused on stabilizing
the learning process and increasing exploration on the
options level.

Due to the different capabilities of the two options in
ETC, learning the policy over options is very sensitive.
However, in the original PPOC framework, the authors
propose to only use PPO for updating the intra op-
tion policy, while the policy over options is refined us-
ing vanilla policy gradient (9). In contrast, we propose
to also use the PPO algorithm for updating the policy
over options for two reasons. First, the learning process
is more sensitive due to the limited action of the ZOH
in case of no communication. Second, as the two policies
influence and affect each other, as can be seen in (6), re-
stricting the update process for both of the policies en-
hances the overall performance and stabilizes the learn-
ing process. Let θµ denote the parameters of the policy
over options, subject to optimization, and µ′ = µ(θµ)
the new policy, while µ = µ(θµold) represents the old one.
Using PPO to update the policy over options results in

L(θµ) = R(µ′)−R(µ) = Q(x, o(µ′))−Q(x, o(µ))

= r(x, o(µ′)) + γV µ(x′)− V µ(x)

= Aµ(x, uµ
′
) ≈ µ′(o|x)

µ(o|x)
Aµ(x, oµ) ,

(17)

where V is the value function and defined as V (x) =∑
õ∈O µ(õ|x)Q(x, õ). Thus, exploiting the PPO algo-

rithm, the gradient is given by

∂L(θµ)

∂θµ
= E[

∂

∂θµ
min[

µ′(o|x)

µ(o|x)
Aµ(x, oµ),

clip(
µ′(o|x)

µ(o|x)
, 1− ε, 1 + ε)Aµ(x, oµ)]] .

(18)

For calculating the advantage function in this case, there
are two possibilities:

6

(1) Aµ(x, oµ) = Q(x, o)−maxõ∈O Q(x, õ) ;
(2) Aµ(x, oµ) = Q(x, o)−∑õ∈O µold(õ|x)Q(x, õ) .

The first possibility represents a greedy approach as the
baseline is the maximum Q-value possible, whereas the
second one represents the expected Q-value under the
old parameters. In preliminary experiments, the first ver-
sion performed better and is, therefore, used herein.

The discrepancy in the capabilities of the options also af-
fects the exploration process. While any continuous con-
trol input can be applied in the case of communication
(i.e., option 1), option 0 is extremely limited. The algo-
rithm might tend to only choose option 1 as, especially
at the beginning of the learning process, the ZOH will
likely result in no improvements of the reward. Hence,
we introduce an entropy term in the optimization al-
gorithm. The entropy scheduling ensures that there is
enough exploration for the policy over options, which
handles the communication decision. The gradient for
the policy over options, therefore, equates to

∂L(θµ′)

∂θµ′
=

∂

∂θµ′
E[min[

µ′(o|x)

µ(o|x)
Aµ(x, o), clip(

µ′(o|x)

µ(o|x)
,

1− ε, 1 + ε)Aµ(x, o)] + τ log(µ′(o|x))µ′(o|x)],
(19)

where τ represents the entropy regularization coeffi-
cient. Over time, the entropy regularization is reduced
as enough exploration has been conducted and, there-
fore, a rather exploitative behavior is preferred.

Considering the optimization objectives of the original
PPOC algorithm reveals that the gradients of the policy
over options, as well as the termination function, effec-
tively optimize the same objective (see (9), (10)). The
policy over options is supposed to choose the option with
the highest Q-value, and the termination function should
terminate the current option when another option has a
higher estimated Q-value. As this is the same goal, we
remove the termination function (i.e., β(x) ≡ 1). In this
new setting, one can also interpret termination as the
policy over options deciding to choose another option.
This modification simplifies the learning process, as only
two policies have to be optimized. It further clearly es-
tablishes the link to the ETC problem formulation. The
discrete decision of the policy over options coincides with
the triggering law, while the intra option policy repre-
sents the control law.

The resulting algorithm for learning the hierarchical con-
trol policy is presented in Alg. 1. We use NN policies to
represent the policy over options, the intra option pol-
icy, as well as to approximate the Q-function. Details on
the network structures are provided in App. A.

Due to the ZOH, we have to include the last control
action applied to the system in the state to keep the

properties of a Markov decision process. Therefore, we
define x̃[k] = (x[k], uac[k − 1])T.

Algorithm 1 Hierarchical RL for ETC

1: Initialize Clipping ε and Entropy Regularization τ
2: Inititalize Q-Network Q(x, o)
3: Initialize Policy over options network µ(o|x)
4: Initialize Intra option policy network πo(u|x)
5: for number of epochs do
6: Q′ ← Q
7: µ′ ← µ
8: π′

o ← πo
9: Sample (x, o, u)-Transitions using current µ, π

10: Use GAE ([35]) to calculate Aπ(x, o, u)
11: for number of optimizer iterations do
12: for number of options, o = 0, 1, 2, ... do
13: Sample batch
14: Aµ(x, o) = Q′(x, o)−maxõQ

′(x, õ)

15: L1(θµ′) = E[min[µ
′(o|x)
µ(o|x) A

µ(x, o), clip(µ
′(o|x)
µ(o|x) ,

1−ε, 1+ε)Aµ(x, o)]+τ log(µ′(o|x))µ′(o|x)]

16: L2(θπ′) = E[min[
π′
o(u|x)
πo(u|x)A

π(x, o, u), clip(
π′
o(u|x)
πo(u|x) ,

1− ε, 1 + ε)Aπ(x, o, u)]]
17: L3(θQ′) = E[(Q′ − (Q(x, o) +Aπ(x, o, u)))2]

18: θµ′ ← θµ′ + αθµ
∂L1(θµ′)

∂θµ′

19: θπ′ ← θπ′ + αθπ′
∂L2(θπ′)
∂θπ′

20: θQ′ ← θQ′ − αθQ′
∂L3(θQ′)

∂θQ′

21: /* One potential implementation of the entropy scheduling
is shown below

22: if epoch % 1000==0 then
23: τ = τ/10

6 Results in Simulation Environments

To showcase the versatility of the presented algorithm,
we apply it to low-dimensional and linear as well as high-
dimensional and nonlinear systems. We first present re-
sults for the OpenAI Gym [36] Pendulum environment.
This simple environment also allows us to compare the
algorithm’s performance to classical ETC approaches.
Next, we show its behavior in challenging nonlinear and
high-dimensional MuJoCo [37] environments.

For all simulation experiments, we use two options as
shown in (16). The reward is given by (4), where, if not
stated differently, Rctrl[k] is the unmodified reward pro-
vided by the respective environment. For all the experi-
ments, we use the environments’ original sampling rate
of 20 Hz and their unmodified measurement functions.
Thus, the state available to the learning agent is given
by x̃[k] = (g(x[k], w[k]), uac[k − 1])T.

We train all of the agents for 5000 epochs and store
the model that achieves the highest reward. Each epoch
consists of sampling 2048 (x, o, u)-transitions. For each
communication penalty λ, we start 10 training runs with
different seeds and report the performance of the best
models. The NN architectures are presented in App. A.

7

Training one model took around 30 to 40 hours on a
single CPU. However, we did not parallelize the train-
ing process, which the algorithm would allow for. Thus,
we expect that the training time can be reduced signif-
icantly. On a laptop with an Intel® Core™ i7-7700HQ
CPU @ 2.80GHz and 24GB RAM, the evaluation of both
of the policies (policy over options and intra option pol-
icy) takes on average 1.1 ms. The code that has been
used to train the learning-based models and videos illus-
trating the results are available at 2 .

6.1 Pendulum Environment

In this rather simple environment, we consider the chal-
lenge of stabilizing the inverted pendulum on top, al-
ready starting in an upright position. We use the reward
function’s original parameters, except for increasing the
penalization on the control input from 0.001 to 0.1 to
prevent the controller from being too aggressive.

For this task, it is straightforward to linearize the sys-
tem dynamics around the equilibrium. This allows us to
compare the results of the presented algorithm to other
well-known ETC approaches. In particular, we compare
our algorithm to

• LQR:
u[k] = Kx[k]⇒ δ[k] = 1 ∀k ,
• LQR random skip:

u[k] =

{
Kx[k]⇒ δ[k] = 1, if ν > ξ

u[k − 1]⇒ δ[k] = 0, otherwise ,

• state triggering 2 norm:

u[k] =

{
Kx[k]⇒ δ[k] = 1, if ‖x[k]‖2 > ξ

u[k − 1]⇒ δ[k] = 0, otherwise ,

• output based triggering [38]:

u[k] =

{
Kx[k]⇒ δ[k] = 1, if ‖Kx̂[k]−Kx[k]‖2 > ξ‖Kx[k]‖2
u[k − 1]⇒ δ[k] = 0, otherwise ,

• state diff triggering [39]:

u[k] =

{
Kx[k]⇒ δ[k] = 1, if ‖x̂[k]− x[k]‖2 > ξ‖x[k]‖2
u[k − 1]⇒ δ[k] = 0, otherwise ,

where x̂[k] represents the state at the last triggering in-
stance and ξ a threshold variable, adjusting the trigger-
ing condition. The random variable ν is uniformly sam-
pled from the interval [0, 1]. The gain matrix K is chosen
from an LQR design where the weights are identical to
the parameters of the reward function.

In Fig. 3, we show the performance of the introduced
event-triggering laws and our data-based RL algorithm.
As can be seen, for the classical approaches, only commu-
nication savings up to about 80 % are possible, whereas
our algorithm finds policies that can save up to 90 %.
However, for intermediate communication savings, the
classical methods usually outperform our learning-based

2
https://sites.google.com/view/

learn-event-triggered-control

0.0 0.2 0.4 0.6 0.8 1.0
Γ

−10

−8

−6

−4

−2

0

R
ct
rl

learning

LQR

LQR random skip

state trigger 2 norm

output based trigger

state diff trigger

Fig. 3. Illustration of the magnitude of the control reward
Rctrl versus the communication savings Γ for various ETC
strategies and our learning approach for the task of stabiliz-
ing an inverted pendulum. The mean and standard devia-
tion are obtained by performing 10 rollouts with each of the
policies, and indicated by the grey lines. The vertical drops
indicate when the policies become unstable, i.e., fail to sta-
bilize the pendulum. For intermediate communication sav-
ings, all the approaches show similar performance. Consid-
ering the maximum savings possible, the learning approach
outperforms the others.

approach. This might be caused by the algorithm get-
ting stuck in local optima. Nevertheless, the rewards of
the classical approaches and our algorithm are still in the
same order of magnitude for the intermediate savings.
This distinguishes the herein presented algorithm from
the RL framework proposed in [19], which also achieved
communication savings of up to 90 % in the pendulum
environment, but was outperformed by orders of magni-
tudes for intermediate communication savings.

6.2 Results in high-dimensional, nonlinear Environ-
ments

We now focus on the nonlinear, high-dimensional Mu-
JoCo Half-Cheetah (Fig. 4a) and Ant (Fig. 4b) envi-
ronment, that cannot simply be linearized around cer-
tain equilibria points to yield linear system dynamics.
In those challenging nonlinear environments, known ap-
proaches for ETC usually fail as the settings are too
complex. To our knowledge, only [19] presents results in
such environments. However, through separately learn-
ing control and communication.

In these environments, the reward Rctrl is mainly made
up of the distance covered, but additionally includes a
cost on the control action and contact forces. The goal
of the optimization is to move the robotic agent as far

8

https://sites.google.com/view/learn-event-triggered-control
https://sites.google.com/view/learn-event-triggered-control

(a) Half-Cheetah environ-
ment. Its observation space
has 18 dimensions, and the
action space 6.

(b) Ant environment. Its ob-
servation space has 111 di-
mensions, and the action
space 8.

Fig. 4. The high-dimensional MuJoCo environments in which
we train the learning agents.

as possible in the available time, given input and envi-
ronmental constraints. Apart from the reward, we will
also analyze the distance d that the robotic agents cover
during a rollout. We slightly modify the Ant environ-
ment by eliminating the restriction that limits the jump
height of the center of mass of the Ant.

6.2.1 Half-Cheetah Environment

The red graph in Fig. 5 illustrates the performance of
policies trained using the presented algorithm. By in-
creasing the value of λ, higher communication savings Γ
can be achieved while, on the other hand, the covered
distance decreases. In this Half-Cheetah environment,
we are capable of learning policies that can achieve up
to 80 % communication savings. In the figure, we show-
case the performance of the nine best, out of ten rollouts
with each policy. This is due to the fact that some of the
policies exhibit one rollout where the Cheetah is flipped
onto its back, resulting in a significantly decreased dis-
tance covered.

Interestingly, the communication savings have an im-
pact on the gait, as shown in the accompanying video.
More communication savings result in a rather jumpy
policy; when the Cheetah is in the air, there is no need
to communicate. One can see that for a low penalty on
communication, the Cheetah’s feet stay rather close to
the ground, which also results in slightly faster progress.
As shown in the red graph of Fig. 5, the standard de-
viation of the distance traveled is small, indicating that
all the policies are robust and reliable. The training sta-
bility, i.e., the percentage of training runs that result in
moving the Cheetah forward, is dependent on the com-
munication penalization λ. The percentage of successful
training runs typically decreases as the value of λ is in-
creased, as the option of never communicating becomes
more and more attractive. Therefore, for high values of
λ, the training runs naturally converge to policies that
do not communicate at all. This results in the Cheetah
standing still at its initial position.

We also compare our algorithm’s results with a base-
line policy trained using the PPO algorithm. This base-
line PPO policy only learns the control policy, while

the communication strategy is fixed to always communi-
cate. One possibility to achieve communication savings
using this baseline policy is to randomly skip communi-
cation with a predefined probability. As can be seen in
the blue graph in Fig. 5 and the corresponding video,
this rapidly decreases the performance. This emphasizes
that it is crucial to optimize the control and communica-
tion strategy jointly. The models trained using our algo-
rithm outperform the baselines. They are considerably
more resource-efficient while the Cheetah still covers at
least the same distance.

As an additional benchmark, we implemented a modi-
fied version of the proposed algorithm that optimizes the
control and communication strategy separately, in an
alternating fashion. The performance of these agents is
visualized through the black and purple graph in Fig. 5.
To obtain the agents corresponding to the black and
purple line, we switch between solely optimizing control
and solely optimizing communication, every 25 respec-
tively 100 epochs. As can be seen, the proposed joint op-
timization approach outperforms the separate optimiza-
tion method. Considering low communication savings,
the difference in performance is small. However, for high
communication savings, it is significant. This highlights
that especially for more difficult tasks, where it is crucial
to finely adjust the two policies to each other, the joint
optimization approach is superior. The experiments also
illustrate that a higher frequency of alternation (black
graph) results in better performance. Further increasing
the frequency of alternation naturally converges to the
joint optimization approach.

We additionally investigate the significance of the modi-
fications detailed in Sec. 5.2. For this, we try to learn an
event-triggered controller using the original PPOC im-
plementation (see Sec. 4). As shown in Fig. 5, for λ = 0.0,
the PPOC algorithm finds a solution that saves a mini-
mal amount of communication. However, for higher val-
ues of λ, e.g., 1.0, the PPOC algorithm always results
in a policy that never communicates, and therefore, the
Cheetah does not progress at all. Thus, unlike our al-
gorithm, the original PPOC algorithm is incapable of
arriving at event-triggered controllers that reduce com-
munication significantly, while still moving the Cheetah
forward. This is probably due to the greedy optimization
of the PPOC algorithm. Further insights are provided
in App. B.

6.2.2 Ant Environment

When deploying the algorithm to the even higher-
dimensional Ant environment, we obtain similar results.
Fig. 6 shows the distance covered by the Ant versus the
communication savings Γ for models trained using the
proposed algorithm. We again show the performance
of the nine best, out of ten rollouts for each policy
since some policies exhibit one rollout where the Ant

9

0.0 0.2 0.4 0.6 0.8 1.0
Γ

0

500

1000

1500

2000

d

learning

PPO baseline

PPO baseline rand skip comm

separate optimization (25)

separate optimization (100)

PPOC λ = 0.0

Fig. 5. Illustration of the performance of various agents. De-
picted is the distance traveled by the Half-Cheetah d versus
the communication savings Γ. The shown mean and stan-
dard deviation are calculated from the nine best, out of ten
rollouts, and illustrated in grey. The red line connects the
results obtained from agents, trained using our algorithm.
The blue line combines the rollouts of a PPO baseline policy,
which saves communication by randomly skipping commu-
nication. The purple and black lines connect the results ob-
tained from agents, trained using a modified version of our
proposed algorithm. I.e., control and communication are op-
timized separately, in an alternating fashion. For the black
line, the optimization is switched every 25 epochs; for the
purple one, every 100 epochs. The herein presented joint op-
timization approach outperforms the others in terms of per-
formance at intermediate communication savings as well as
maximum savings possible.

is flipped onto its back, resulting in a significantly de-
creased distance covered. As can be seen from the plot,
the most resource-aware control policies are capable of
saving up to 70 % of communication. The figure also
illustrates that performance degrades if the communi-
cation savings increase. The policy saving 70 % exhibits
the largest standard deviation. Therefore, it is the least
stable, but also the most resource-efficient policy. The
corresponding video from rollouts with different penal-
izations underlines those findings and aligns with the
results for the Half-Cheetah. When more communica-
tion is possible, the Ant’s feet are kept rather close to
the ground, which results in fast progress, and more re-
liability as the chances of flipping are minimized. When
the penalization on communication is progressively in-
creased, the gait changes towards a rather jumpy behav-
ior. This allows for the most significant communication
savings, as when the feet are in the air, no communi-
cation is needed. Nevertheless, compared to the results
for the Cheetah, the changes in the gait behavior are
less obvious. Considering the training process, again,
if the resource constraints become very restrictive, the
learning process becomes more difficult, and never com-
municating also becomes a local optimum.

0.0 0.2 0.4 0.6 0.8 1.0
Γ

1000

1500

2000

d

learning

Fig. 6. Illustration of the agents’ performance, trained using
our proposed algorithm. Depicted is the distance covered
by the Ant d versus the communication savings. The shown
mean and standard deviation are calculated from the nine
best, out of ten rollouts, and illustrated in grey. At maximum,
70 % of communication can be saved.

Compared to [19], where the authors also try to learn an
ETC strategy from data for the Ant environment, the
proposed joint optimization achieves even higher com-
munication savings with up to 70 %, whereas [19] only
reported savings of up to 60 % for their separate opti-
mization approach.

7 Results on Hardware

While many deep RL methods have shown good perfor-
mance in simulation environments, there are only few ex-
amples where the learned policies are actually deployed
on real hardware. This is mainly due to the sample inef-
ficiency of those algorithms or insufficient simulation to
reality transfer. In this section, we present the results of
using our learning algorithm on real hardware, namely,
the Apollo robot shown in Fig. 7.

In contrast to the previous simulation experiments,
which provide perfect communication and no delays, we
now consider real experimental conditions with noise,
delays, and potential packet losses. The experimental
setup is as follows: the sensory information, i.e., Apollo’s
joint configuration, is communicated to the learning
agent running on a computer. The agent then decides
whether or not to communicate, and, depending on that
decision, eventually sends new control commands to the
robot. We use a base sampling time of 20 Hz. Further
details on the setup can be found in App. C.

7.1 Problem Definition and Setup

To demonstrate the feasibility of the introduced frame-
work, we employ a real-time position controller for
the end-effector of Apollo’s right arm with 6 DoF.
The controller that is to be learned operates in the
cartesian space. The goal is to reach a desired po-
sition as accurately as possible under resource con-
straints, i.e., trying to communicate as efficiently as
possible. The learning agent’s output is a desired ref-
erence velocity in the task space of the end-effector,
u[k] = vref[k] = (vx[k], vy[k], vz[k])T.

10

As the input to the robot has to be with respect to
the individual joints, while the learning algorithm’s out-
put is defined in task space, the procedure is as follows.
The learning algorithm outputs velocities in task space,
which are then mapped to the corresponding commands
in joint space through inverse kinematics. We use the
Pinocchio library [40] for this step. The process of com-
puting the target velocity in joint space is iterative and
affected by the current robot configuration. It is not
guaranteed that the desired velocity can be reached ac-
curately. Once the velocities in joint space are computed,
they are applied until the next instance of communica-
tion. In the beginning, the desired velocity is reached
quite accurately. Considering a longer horizon, it is ob-
vious that constant joint velocities do not coincide with
a constant velocity in task space. Therefore, over time,
the discrepancy between the desired and the actual ve-
locity increases as there is no recomputation until the
next instance of communication.

Since the learning agent only operates in the task
space, the state which is fed to the agent is x̃[k] =
(g(x[k], w[k]), uac[k − 1])T = (ẋef[k], xef[k], xref[k] −
xef[k], uac[k − 1])T, where xef denotes end-effector po-
sition and xref denotes the desired reference position
that is to be reached, in cartesian coordinates. Thus,
no joint information is available to the learning agent,
which makes the setting partially observable.

In the settings in Sec. 6.2, the steady-state solution is ap-
plying a sequence of control inputs to achieve a constant
movement of the agent. However, for this task, once the
end-effector is close to the reference, it is desirable to
apply a zero action to hold its position. As it is unlikely
that a NN policy outputs exactly zero, we exploit our
approach’s hierarchical nature and simply define a third
option (o2) that corresponds to setting the control in-
put to zero. Hence, for the hardware experiments, unlike
presented in (16), we consider three options:

uac[k] =

uac[k − 1], if δ[k] = 0, o = o0
uag[k] = πo1(u|x), if δ[k] = 1, o = o1

uag[k] =
(
0 0 0

)T
, if δ[k] = 1, o = o2 .

(20)

To obtain the results presented in the next sections, we
first train the learning algorithm in simulation using the
simulation laboratory (SL) framework [41]. Then, we de-
ploy the learned policies on the real robot. For the trans-
fer from simulation to reality, no additional adjustments
are performed.

7.2 Dynamic Reference Position Tracking

At first, we describe the performance of resource-aware
agents trained for reaching a dynamic reference position.
I.e., putting the end-effector close to a cup (cf. Fig. 7)

Fig. 7. Illustration of the hardware experiment where the
goal is to place Apollo’s hand close to the cup. The cup’s
position is estimated using the Vicon system.

such that it could be grabbed. The cup’s position is esti-
mated using the Vicon system and included in the sen-
sory information.

During training, we choose a random initial po-
sition of the robot arm and a random reference
position (representing the cup) inside the interval
([−0.2, 0.5], [0.55, 0.9], [−0.15, 0.45])Tm, for each tra-
jectory. At each simulated timestep, the reference po-
sition is reset to another randomly sampled point in-
side this interval with probability 1 %. This procedure
should already account for the fact that during the
evaluation on the real system, the reference will change
dynamically.

The policies, whose results are presented in the follow-
ing, have been trained for 2250 epochs in simulation
with a communication penalty of λ = 0.1. To incen-
tivize reaching the final position more accurately, we
added an inverse term to the reward function R, which

is thus given by R =
∑N
k=0 γ

k(Rctrl[k] + Rcomm[k]) =∑N
k=0 γ

k(−3(0.01‖u[k]‖2
2

+ 10‖xref[k]− xef[k]‖2
2

+

0.01‖ẋef[k]‖2
2

+ λδ[k]) + 0.05
‖xref[k]−xef[k]‖2

2). The parame-

ters have been obtained empirically and reflect a stan-
dard cost function with an increased emphasis on reach-
ing the target while ensuring that the overall cost stays
in the same order of magnitude as for the previous ex-
periments. We chose a factor of 0.05 for the inverse term
as we view 5 cm as close enough to the goal position.

In Fig. 8, we depict an exemplary rollout of the model
while tracking the reference signal provided by the Vicon
system. It is striking that 85% of communication can be
saved while still reaching the dynamic desired reference
reliably. As can be seen, the reference signal is some-
times slightly disturbed. However, although only trained
in simulation without such nonidealities, the learning
agent is robust to these disturbances. Thus, we conclude
that we did not overfit and that our problem formulation
and implementation results in a stable and robust simu-

11

0.0

0.2

x
in

m

xref
xef

0.6

0.8

1.0

y
in

m

yref
yef

−0.5

0.0

z
in

m

zref
zef

0.0

0.1

0.2

0.3

||x
ef
−

x
re
f||

2
2
in

m

0.0

0.5

1.0

δ

0 5 10 15 20 25
t in s

0

1

2

o

Fig. 8. Exemplary rollout of a policy trained for the task
of reaching a dynamic reference position with Apollo’s right
hand, see Fig. 7. The reference (i.e., the cup’s position) is
provided by the Vicon system. During the rollout, the pol-
icy saves 85% of communication, while the reference is still
tracked reliably. This performance is consistent among var-
ious runs.

lation to reality transfer. The corresponding video illus-
trates the responsiveness of the final policy and confirms
the low tracking error. The learned controller drives the
hand close enough to the cup such that it can be grabbed.

7.3 Obstacle Avoidance

To further illustrate our learning algorithm’s capabili-
ties, we increase the difficulty and demonstrate the re-
sulting performance for the inherently more complex,
nonlinear task of reaching a desired end-effector position
in the face of an obstacle, as illustrated in Fig. 1. Now,
it is not sufficient to simply drive the end-effector in the
direction of the reference. Instead, multiple changes of
direction are necessary to avoid the obstacle.

The state available to the agent is the same as introduced
in Sec. 7.1. Thus, the learning agent is only aware of the

end-effector position xef in task space. The algorithm’s
goal is to reach the desired reference position xref without
hitting the obstacle with the end-effector. We assume a
static obstacle position, as otherwise, this information
would need to be provided to the agent. The reference
position is now defined in software and not retrieved via
the Vicon system.

We adapt the previously presented training procedure as
follows. The starting and reference positions are sampled
from the intervals ([0.45, 0.55], [0.7, 0.9], [0.0, 0.2])Tm,
and ([−0.2,−0.1], [0.7, 0.9], [−0.1, 0.1])Tm, respec-
tively. This way, they are separated, with the obstacle
in between at ([−0.05, 0.35], [0.5, 1.0], [−1.0, 0.1])Tm.
Moreover, during training only, before applying the
control action to the system, we predict the next po-
sition of the end-effector using integrator dynamics,
i.e., xpred,ef[k + 1] = xef[k] + ∆Tuac[k]. If the next
predicted position xpred,ef[k + 1] lies inside the obsta-
cle, we apply uac[k] = (0, 0, 0)T to the system, and
additionally penalize this state/action combination in
the reward function. Thus, the reward is now given

by R =
∑N
k=0 γ

k(Rctrl[k] + Rcomm[k] + Robst[k]) =∑N
k=0 γ

k(−3(0.01‖u[k]‖2
2

+ 10‖xref[k]− xef[k]‖2
2

+

0.01‖ẋef[k]‖2
2

+ λδ[k]) + 0.05
‖xref[k]−xef[k]‖2

2 − ζ[k]), where

ζ[k] =

{
0, if xpred,ef[k + 1] not inside obstacle area

5, otherwise.

For obtaining the results presented in Fig. 9, we first
pretrain the policy for 2250 epochs in simulation and
then evaluate it on the real hardware.

As shown in Fig. 9, Fig. 1, and the associated video,
the reference position is reached reliably without hit-
ting the obstacle, while still 92 % of communication can
be saved. This behavior is consistent among different
starting and reference positions. However, compared to
the previously presented reference tracking, without the
obstacle present, the reference position is not reached
as accurately. The reason for this behavior is that the
presence of the obstacle limits the freedom of the arm
and the policy, resulting in less accuracy. The fact that
the reference position is now defined in software and
not noisy could explain why more communication can
be saved compared to the previously presented dynamic
cup reaching scenario (Sec. 7.2).

8 Towards Stability of Event-triggered Control

In the previous sections, we tackle the ETC problem for-
mulation using model-free, deep RL. The results of our
learning algorithm are NN policies consisting of many
parameters. In this setting, it is usually difficult to pro-
vide stability guarantees. Yet, since the learned poli-
cies are also envisioned to be used in real-world sce-
narios, such guarantees are essential. In the following,

12

0.0

0.5

x
in

m

xref
xef

0.8

1.0

y
in

m

yref
yef

0.0

0.2

z
in

m

zref
zef

0 2 4 6 8 10 12
t in s

0

1

2

o

Fig. 9. Exemplary obstacle avoidance trajectory, where a
fixed reference position is to be reached in the face of an
obstacle, cf. Fig. 1. During the rollout, the policy saves 92 %
of communication, while the reference is reached reliably
without hitting the obstacle. This performance is consistent
among various runs.

we present an approach toward checking the stability of
learned NN policies. As a starting point, in this work, we
restrict to NNs parametrized with ReLUs, and known,
linear system dynamics.

8.1 Stability Verification of Neural Network Policies

The following stability analysis is based on the Marabou
framework proposed in [15,42], which allows to check for
properties of deep NNs. The Marabou framework is an
expansion of the Simplex method [43]. Simplex tries to
find a valid assignment to a linear program. It either
returns an admissible value for all the free variables in-
volved that result in satisfying the query, or returns that
the query is not satisfiable. As piecewise linear activa-
tion functions can be interpreted as case dependent lin-
ear constraints, the authors expand the algorithm such
that the same satisfiability queries, as for the Simplex
method, can be posed with respect to NNs.

We exploit this framework to come up with stability
guarantees for trained policies. For our considerations,
the only limitation is that exclusively piecewise linear
activation functions, i.e., ReLU activations can be used
within the networks. Nevertheless, by combining the al-
gorithm with assumptions on the system dynamics, it is
possible to provide stability guarantees through output
range analysis for the learned NN policies. Further, in
case the policy does not fulfill the stability requirements

x̃[k]

NN

uNN[k]

P (δ[k] = 1)

Ax[k] +BuNN[k]

Assuming δ[k] = 1

Ax[k] +Bu[k − 1]

Assuming δ[k] = 0

xδ=1[k + 1]

xδ=0[k + 1]

P (δ[k] = 1)

Input to Marabou framework.

Fig. 10. Schematic of the pipeline used for the stability ver-
ification procedure. The parts inside the blue box can all
be parametrized using ReLU units. Therefore, the Marabou
framework can check whether the next state is inside the
same set as the initial state. This is the basis for our stability
analysis.

straight away, the framework can be used to develop a
retraining procedure to refine the NNs.

8.2 Stability Analysis and Retraining of Event-triggered
Control Policies

We define stability as finding a positive invariant set in
the state space: once inside this set, when applying the
NN policy, the next state is guaranteed to also lie within
this set.

Definition 1 (Stability)
The system f is considered stable under the NN control
policy uNN[k] = hNN(x̃[k]) if there exists a region M,
such that
x[k] ∈ M ⇒ x[k + 1]=f(x[k], hNN(x̃[k])) ∈ M ∀x[k] ∈
M.

While the RL algorithm presented in Alg. 1 is model-
free and can be used for systems with linear or nonlin-
ear dynamics, the stability check relies on the underly-
ing system exhibiting known, linear dynamics. The al-
gorithm then checks whether the control policy is stable,
according to Def. 1. Linear system dynamics can also be
represented using ReLUs. Thus, algorithmically, we can
design one NN that takes as the input the current state
x[k] and outputs the next state x[k+1], cf. Fig. 10. With
this network given, we can exploit the Marabou frame-
work [42] to check for the desired properties.

8.2.1 Stability Analysis of the Policies

In the event-triggered setting, the next state depends on
the communication decision. Therefore, effectively two
next states have to be calculated, as shown in Fig. 10. To
make use of the deterministic Marabou framework, we
need to eliminate the stochasticity of the communication
decision. Hence, we always choose to communicate in
case the probability is larger than or equal to 50 %.

13

x[k]

u[k]

Ax[k] +Bu[k] x[k + 1]

Input to Marabou framework.

Fig. 11. Schematic of the pipeline that is used to find an
admissible input u[k] for an unstable point x[k]. The parts
inside the blue box can all be parametrized using ReLU units.

The resulting algorithm that checks for the stabil-
ity of a region M is presented in Alg. 2. As the
input to the stability verification framework (see
Fig. 10) is given by x̃[k], we additionally define
S = (M, L)T = (M, [−ulim, ulim])T, which combines
the stable region with the input range. Adding the in-
put range is necessary as it covers the potential range
of the previously applied control actions, which are
reapplied in case the ZOH is selected. If the algorithm
returns an empty set of points, we know that given the
region M, the input range, and the system dynamics,
the ETC policy is stable. Otherwise, the algorithm di-
rectly outputs exemplary unstable points x̃[k]. There
are two possibilities, why a point x̃[k] is unstable under
the ETC policy. Either the policy erroneously decides to
skip communication, and the reapplication of the pre-
vious control input results in the next state outside the
invariant set. Or, in case of communication, the policy
chooses an unstable control input.

Algorithm 2 Check for Stability in ET setting (S)

1: points=[]
2: Marabou query: x̃[k] ∈ S, P (δ[k] = 1) ≥ 0.5⇒ xδ=1[k+1] ∈

Rn \M
3: if Valid assignment is found: then points.append(x̃[k])

4: Marabou query: x̃[k] ∈ S, P (δ[k] = 1) < 0.5⇒ xδ=0[k+1] ∈
Rn \M

5: if Valid assignment is found: then points.append(x̃[k])

6: return points

8.2.2 Retraining Neural Network Policies

If Alg. 2 does not indicate stability, i.e., returns a non-
empty set of points, it is possible to refine the ETC policy
such that it fulfills the invariance property using Alg. 3.

At the core of this algorithm is the FindValidInputET
function (ll. 1-3). In case the stability verification algo-
rithm (Alg. 2) returns an unstable point, we feed it into
the schematic presented in Fig. 11 and Marabou returns
a value for the input u[k] such that the next state x[k+1]
also lies inside the invariant set.

In case a point x̃[k] is unstable using the current policy,
both parts of the event-triggered controller have to be
adapted. On the one hand, it is crucial to ensure that an
appropriate control action is chosen. On the other hand,

we have to ensure that the policy decides to communi-
cate. This supervised retraining for unstable points can
be seen in ll. 34-38 of Alg. 3. We define that at those
points, the probability of communication should be set
to 60 %. Note that any choice above 50 % is admissible.

When using the previously described mechanism, all the
refined policies exhibit significantly reduced communi-
cation savings as any unstable configuration can only be
resolved using communication. Thus, we found it bene-
ficial to sample additional points using Sobol sequences
[44] to cover the whole state space as thoroughly as pos-
sible (l. 20 of Alg. 3). We then add the condition to the
retraining procedure that communication must be saved
whenever possible (ll. 9-14 and 30-32). This can also be
interpreted as trying to be maximally resource-efficient.

Combining the individual parts results in Alg. 3. If the
algorithm terminates, we know that the ETC law is sta-
ble for the defined region M, the input range, and the
assumed system dynamics.

8.3 Simulation Example

In the following section, we demonstrate the previously
presented algorithm. The task is to obtain a stable event-
triggered controller for stabilizing the inverted pendu-
lum on top in the OpenAI Gym Pendulum environment.
To obtain the linear dynamics required for the algorithm,
we linearize the nonlinear pendulum dynamics around
the upper equilibrium point θ = 0° and θ̇ = 0 °/s. The
conversion from continuous to discrete-time is done us-
ing the matrix exponential method. We use the exact
same configuration as in Sec. 6.1. In line with Definition
1, we define the safe state space (M) to capture ranges of

θ ∈ [−2.5°, 2.5°] and θ̇ ∈ [−5 °/s, 5 °/s]. Usually, the state
of the pendulum environment that is fed into the NNs
is given by x[k] = (cos(θ[k]), sin(θ[k]), θ̇[k])T. How-
ever, for the stability verification algorithm, we need to
express the NN policies’ output in terms of the system
variables, i.e., θ[k] and θ̇[k]. Thus, we can neither use the
nonlinear sine nor the cosine function and linearize the
state of the environment around the equilibrium, which
results in x[k] ≈ (1.0, θ[k], θ̇[k])T.

The results of running the retraining procedure (Alg. 3)
are shown in Fig. 12. We initialize the procedure with
the linearized dynamics and a policy that has been
trained for 500 epochs using our proposed training al-
gorithm (Alg. 1). As can be seen in Fig. 12a, this policy
is not stable yet. Running the retraining procedure for
4 epochs results in a guaranteed stable event-triggered
controller that also successfully stabilizes the nonlinear
system around the equilibrium point (see Fig. 12b). Al-
though we only trained for an angular region between
−2.5° and 2.5°, the policy also keeps the pendulum up-
right when starting outside of this interval, as shown

14

Algorithm 3 Refine Policy ET

1: function FindValidInputET(x̃[k],M)
2: Marabou query: find u[k], s.t. x[k], u[k]⇒ x[k + 1] ∈M
3: return u[k]

4: function CheckPointET(x̃[k],M)
5: points=[]
6: Marabou query: x̃[k]⇒ x[k + 1] ∈ Rn \M
7: if Valid assignment is found: then points.append(x̃[k])

8: return points

9: function CommSavingPossible(x̃[k],M)
10: points=[]
11: /* Check whether next state is also stable without commu-

nicating.
12: Marabou query: x̃[k]⇒ xδ=0[k+ 1] ∈M for P (δ[k] = 1)
≥ 0.5

13: if Valid assignment is found: then points.append(x̃[k])

14: return points

15: Choose region M
16: Define region S = (M, [−ulim, ulim])T

17: pointscrit = Check for Stability (S), see Alg. 2
18: while not pointscrit is EMPTY do
19: /* Use Sobol sequences to generate additional points
20: pointssobol = Use sobol sequence to sample from S
21: pointscommsav = []
22: for x̃[i] in pointssobol do
23: pointscrit.append(CheckPointET(x̃[i],M)
24: pointscommsav.append(CommSavingPossible(x̃[i],M)

25: /* Calculate admissible input for all the unstable points.
26: ucrit = []
27: for x̃[i] in pointscrit do
28: ucrit.append(FindValidInputET(x̃[i],M)

29: /* Supervised retraining to enforce communication savings
30: for number of optimizer epochs do
31: L2(θ2) = (P (δ[k] = 1|pointscommsav, θ2)− 0.4)2

32: θ2 = θ2 − αθ2
∂L2
∂θ2

33: /* Supervised retraining of the NN policy for critical points
34: for number of optimizer epochs do
35: L1(θ1) = (uNN(pointscrit, θ1)− ucrit)2
36: L2(θ2) = (P (δ[k] = 1|pointscrit, θ2)− 0.6)2

37: θ1 = θ1 − αθ1
∂L1
∂θ1

38: θ2 = θ2 − αθ2
∂L2
∂θ2

39: pointscrit = Check for Stability (S), see Alg. 2

in Fig. 12b. Over 10 randomly started runs, the policy
saves around 70 % of communication. An exemplary
rollout of this very resource-efficient and guaranteed
stable control policy is presented in Fig. 13.

9 Conclusion

In this paper, we propose a model-free hierarchical RL
algorithm capable of jointly learning event-triggered
control policies from scratch. Without any modifica-
tion, the algorithm can be applied to linear and non-
linear, low- and high-dimensional systems. In those
high-dimensional environments, communication sav-
ings of up to 80 % can be reported. To the best of our
knowledge, our algorithm is the first that can obtain

−10

−5

0

5

10

θ
in

◦

0 2 4 6 8 10
t in s

−40

−20

0

20

40

θ̇
in

◦ /
s

(a) Exemplary rollouts for try-
ing to stabilize a pendulum
with an event-triggered policy,
which has been trained for 500
optimization epochs. This pol-
icy does not succeed in keeping
the pendulum upright.

0

5

0

5

0

0 2 4 6 8 10
t in s

0

0

0

0

0

(b) Exemplary rollouts
for stabilizing a pendu-
lum after retraining the
policy from Fig. 12a with
Alg. 3 for 4 epochs. This
policy is guaranteed to
stabilize the pendulum on
top.

Fig. 12. Effect of the retraining procedure presented in Alg. 3.
In the plots, each color represents a different rollout. While
the initial policy is unstable (Fig. 12a), after refining this
policy for 4 iterations using Alg. 3, a guaranteed stable con-
troller is obtained which successfully stabilizes the pendulum
and still saves about 70 % of communication (Fig. 12b).

−0.5
0.0
0.5

θ
in

◦

−0.5

0.0

0.5

u

0 2 4 6 8
t in s

0

1

δ

Fig. 13. Illustration of an exemplary rollout of the same
policy as shown in Fig. 12b.

event-triggered policies for such environments through
joint optimization.

The algorithm is also successfully deployed on real hard-
ware, i.e., the Apollo robot. We provide a demonstra-
tion for resource-efficient setpoint tracking and obstacle
avoidance while saving around 85 % and 90 % of commu-
nication, respectively. These results imply that the pre-
sented algorithm scales to partially observable settings,
to using more than 2 options, and to imperfect commu-
nication settings with potential delays.

Moreover, we show a novel algorithm for evaluating the
stability of linear systems controlled by NN policies. In

15

case the learned event-triggered policy initially does not
yield the desired stability guarantee, we propose a re-
training procedure for refining the previously unstable
policy. Scaling those ideas to nonlinear environments, as
well as higher-dimensional systems through handling the
increased computational complexity, is subject to ongo-
ing research.

Acknowledgements

The authors would like to thank S. Heim and F. Grim-
minger for helpful discussions and input. This work was
supported in part by the German Research Foundation
within the SPP 1914 (grant TR 1433/1-1), the Cyber
Valley Initiative, and the Max Planck Society.

References

[1] Joo P Hespanha, Payam Naghshtabrizi, and Yonggang Xu.
A survey of recent results in networked control systems.
Proceedings of the IEEE, 95(1):138–162, 2007.

[2] Jan Lunze. Control Theory of Digitally Networked Dynamic
Systems, volume 1. Springer, 2014.

[3] X. Zhang, Q. Han, and X. Yu. Survey on recent advances in
networked control systems. IEEE Transactions on Industrial
Informatics, 12(5):1740–1752, 2016.

[4] WPMH Heemels, Karl Henrik Johansson, and Paulo
Tabuada. An introduction to event-triggered and self-
triggered control. In IEEE Conference on Decision and
Control (CDC), pages 3270–3285, 2012.

[5] Marek Miskowicz. Event-based control and signal processing.
CRC press, 2018.

[6] Lars Grüne, Sandra Hirche, Oliver Junge, Péter Koltai,
Daniel Lehmann, Jan Lunze, Adam Molin, Rudolf Sailer,
Manuela Sigurani, Christian Stöcker, et al. Event-based
control. In Control Theory of Digitally Networked Dynamic
Systems, pages 169–261. Springer, 2014.

[7] Michael Lemmon. Event-triggered feedback in control,
estimation, and optimization. In Networked Control Systems,
pages 293–358. Springer, 2010.

[8] Sebastian Trimpe and Raffaello D’Andrea. An experimental
demonstration of a distributed and event-based state
estimation algorithm. IFAC World Congress, 44(1):8811–
8818, 2011.

[9] José Araújo, Manuel Mazo, Adolfo Anta, Paulo Tabuada,
and Karl H Johansson. System architectures, protocols and
algorithms for aperiodic wireless control systems. IEEE
Transactions on Industrial Informatics, 10(1):175–184, 2013.

[10] Victor S Dolk, Jeroen Ploeg, and WP Maurice H Heemels.
Event-triggered control for string-stable vehicle platooning.
IEEE Transactions on Intelligent Transportation Systems,
18(12):3486–3500, 2017.

[11] Burak Demirel, Arunselvan Ramaswamy, Daniel E Quevedo,
and Holger Karl. DeepCAS: A deep reinforcement learning
algorithm for control-aware scheduling. IEEE Control
Systems Letters, 2(4):737–742, 2018.

[12] Kyriakos G Vamvoudakis and Henrique Ferraz. Model-free
event-triggered control algorithm for continuous-time linear
systems with optimal performance. Automatica, 87:412–420,
2018.

[13] Chithrupa Ramesh, Henrik Sandberg, Lei Bao, and
Karl Henrik Johansson. On the dual effect in state-based
scheduling of networked control systems. In American
Control Conference, pages 2216–2221. IEEE, 2011.

[14] Richard S Sutton, Doina Precup, and Satinder Singh.
Between MDPs and semi-MDPs: A framework for temporal
abstraction in reinforcement learning. Artificial Intelligence,
112(1-2):181–211, 1999.

[15] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and
Mykel J Kochenderfer. Reluplex: An efficient SMT solver for
verifying deep neural networks. In International Conference
on Computer Aided Verification, pages 97–117. Springer,
2017.

[16] Xiangnan Zhong, Zhen Ni, Haibo He, Xin Xu, and Dongbin
Zhao. Event-triggered reinforcement learning approach for
unknown nonlinear continuous-time system. In International
Joint Conference on Neural Networks (IJCNN), pages 3677–
3684. IEEE, 2014.

[17] Xiong Yang, Haibo He, and Derong Liu. Event-triggered
optimal neuro-controller design with reinforcement learning
for unknown nonlinear systems. IEEE Transactions on
Systems, Man, and Cybernetics: Systems, 2017.

[18] Avimanyu Sahoo, Hao Xu, and Sarangapani Jagannathan.
Neural network-based event-triggered state feedback control
of nonlinear continuous-time systems. IEEE Transactions on
Neural Networks and Learning Systems, 27(3):497–509, 2015.

[19] D. Baumann, J. Zhu, G. Martius, and S. Trimpe. Deep
reinforcement learning for event-triggered control. In IEEE
Conference on Decision and Control (CDC), pages 943–950,
Dec 2018.

[20] Kazumune Hashimoto, Yuichi Yoshimura, and Toshimitsu
Ushio. Learning self-triggered controllers with Gaussian
processes. arXiv preprint arXiv:1909.00178, 2019.

[21] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel,
Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and
Daan Wierstra. Continuous control with deep reinforcement
learning. arXiv preprint arXiv:1509.02971, 2015.

[22] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and
Pieter Abbeel. Benchmarking deep reinforcement learning for
continuous control. In International Conference on Machine
Learning, pages 1329–1338, 2016.

[23] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter
Abbeel. End-to-end training of deep visuomotor policies.
The Journal of Machine Learning Research, 17(1):1334–1373,
2016.

[24] Jan Peters and Stefan Schaal. Reinforcement learning
of motor skills with policy gradients. Neural Networks,
21(4):682–697, 2008.

[25] Jens Kober, J Andrew Bagnell, and Jan Peters.
Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32(11):1238–
1274, 2013.

[26] Warwick Masson, Pravesh Ranchod, and George Konidaris.
Reinforcement learning with parameterized actions. In
Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[27] Matthew Hausknecht and Peter Stone. Deep reinforcement
learning in parameterized action space. In International
Conference on Learning Representations (ICLR), May 2016.

[28] Michael Neunert, Abbas Abdolmaleki, Markus Wulfmeier,
Thomas Lampe, Jost Tobias Springenberg, Roland Hafner,
Francesco Romano, Jonas Buchli, Nicolas Heess, and Martin
Riedmiller. Continuous-discrete reinforcement learning for
hybrid control in robotics. arXiv preprint arXiv:2001.00449,
2020.

16

[29] Richard S Sutton. TD models: Modeling the world at a
mixture of time scales. In Machine Learning Proceedings
1995, pages 531–539. Elsevier.

[30] Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-
critic architecture. In Thirty-First AAAI Conference on
Artificial Intelligence, 2017.

[31] Fabio Bonassi, Enrico Terzi, Marcello Farina, and Riccardo
Scattolini. LSTM Neural Networks: Input to state stability
and probabilistic safety verification. Learning for Dynamics
and Control, 2020.

[32] Benjamin Karg and Sergio Lucia. Stability and feasibility of
neural network-based controllers via output range analysis.
arXiv preprint arXiv:2004.00521, 2020.

[33] Martin Klissarov, Pierre-Luc Bacon, Jean Harb, and Doina
Precup. Learnings options end-to-end for continuous action
tasks. Hierarchical Reinforcement Learning Workshop
(NIPS), 2017.

[34] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec
Radford, and Oleg Klimov. Proximal policy optimization
algorithms. CoRR, abs/1707.06347, 2017.

[35] John Schulman, Philipp Moritz, Sergey Levine, Michael
Jordan, and Pieter Abbeel. High-dimensional continuous
control using generalized advantage estimation. arXiv
preprint arXiv:1506.02438, 2015.

[36] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas
Schneider, John Schulman, Jie Tang, and Wojciech Zaremba.
OpenAI Gym, 2016.

[37] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco:
A physics engine for model-based control. In IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), pages 5026–5033, 2012.

[38] M. C. F. Donkers and W. P. M. H. Heemels. Output-
based event-triggered control with guaranteed L∞-gain
and improved and decentralized event-triggering. IEEE
Transactions on Automatic Control, 57(6):1362–1376, 2012.

[39] Paulo Tabuada. Event-triggered real-time scheduling of
stabilizing control tasks. IEEE Transactions on Automatic
Control, 52(9):1680–1685, 2007.

[40] Justin Carpentier, Guilhem Saurel, Gabriele Buondonno,
Joseph Mirabel, Florent Lamiraux, Olivier Stasse, and
Nicolas Mansard. The Pinocchio C++ library: A fast and
flexible implementation of rigid body dynamics algorithms
and their analytical derivatives. In IEEE/SICE International
Symposium on System Integration (SII), pages 614–619, 2019.

[41] Stefan Schaal. The SL simulation and real-time control
software package. Technical report, Los Angeles, CA, 2009.

[42] Guy Katz, Derek A Huang, Duligur Ibeling, Kyle Julian,
Christopher Lazarus, Rachel Lim, Parth Shah, Shantanu
Thakoor, Haoze Wu, Aleksandar Zeljić, et al. The Marabou
framework for verification and analysis of deep neural
networks. In International Conference on Computer Aided
Verification, pages 443–452. Springer, 2019.

[43] George Dantzig. Linear Programming and Extensions.
Princeton University Press, 1963.

[44] Ilya M Sobol. Uniformly distributed sequences with
an additional uniform property. USSR Computational
Mathematics and Mathematical Physics, 16(5):236–242,
1976.

[45] Daniel Kappler, Franziska Meier, Jan Issac, Jim Mainprice,
Cristina G. Cifuentes, Manuel Wüthrich, Vincent Berenz,
Stefan Schaal, Nathan Ratliff, and Jeanette Bohg. Real-time
perception meets reactive motion generation. IEEE Robotics
and Automation Letters, 3(3):1864–1871, 2018.

A Parametrization of the Proposed Algorithm

In this section, we provide insights on how we implement
the major components needed for the proposed learning
algorithm (Alg. 1).

As explained in Sec. 5.2, our implementation is based on
three main components, the policy over options µ(o|x̃),
the intra option policy π(u|x̃, o), and the Q-function
Q(x̃, u). Fig. A.1, Fig. A.2, and Fig. A.3 show the stan-
dard implementations of the respective components for
the case of using 2 options. As done in standard RL, we
normalize the input before it is passed to the networks
and clip the output of the intra option policy to reflect
the input constraints of the physical system. Fig. A.2 il-
lustrates that for the case of performing the ZOH, i.e.,
option 0, the intra option policy does not have to be eval-
uated. Thus, computational resources can be saved in the
forward, as well as the backward pass. For implementing
the NN estimator of the Q-function (see Fig. A.3), we
decided to split the estimates for option 0 and option 1
already before the first hidden layer. The reason for this
choice is that as the two options are very different, we
also expect very different Q-values for the two options,
although being in the same state x̃. This is because op-
tion 0 is limited to the ZOH, while option 1 can basically
apply any action, depending on the intra option policy.
For the same reasons, we arrive at the design choice for
the policy over options (see Fig. A.1).

For the stability verification and retraining procedure,
we apply the following modifications to the previously
presented implementation. Instead of using the hyper-
bolic tangent (TanH) activation function, we apply the
ReLU activation. The number of hidden neurons is de-
creased from 64 to 32. This is due to the fact that at the
core of the verification algorithm, we run a modified ver-
sion of the Simplex algorithm, which simply runs faster
if less neurons are used. Further, instead of using the
softmax activation function for the policy over options,
we calculate Z = ζ0 − ζ1. If Z > 0, this corresponds to
performing the ZOH and choosing option 0, otherwise
we use option 1. That way, we achieve deterministic be-
havior of the policy over options and avoid using the
softmax activation function, which is incompatible with
the verification framework. Moreover, this deterministic
decision is compatible with the stochastic case, as Z = 0
is equal to µ(o = 0|x̃) = µ(o = 1|x̃) = 50 %, and Z > 0
corresponds to µ(o = 0|x̃) > µ(o = 1|x̃).

B Learning Hierarchical, Periodic Control

Using the proposed algorithm for ETC is one possibility.
However, it is also possible to use it as a normal, hier-
archical control algorithm where the two options repre-
sent two different NN policies that we can sample from.
The original PPOC [33] algorithm has also been devel-

17

x̃[k]

Fully connected
Layer

T
an

H
ac
ti
va
ti
on

64

Fully connected
Layer

T
an

H
ac
ti
va
ti
on

64

Fully connected
Layer

Fully connected
Layer

T
an

H
ac
ti
va
ti
on

64

Fully connected
Layer

T
an

H
ac
ti
va
ti
on

64

Fully connected
Layer

S
of
tm

ax
ac
ti
va
ti
on

2

µ(o = 0|x̃)

µ(o = 1|x̃)

ζ
0

ζ 1

Fig. A.1. Illustration of the parametrization of the policy
over options. In this specific implementation, each hidden
layer consists of 64 neurons, and the TanH and softmax acti-
vation functions are used. The variables ζ0 and ζ1 represent
intermediate values.

x̃[k]

u[k − 1]

Fully connected
Layer

T
an

H
ac
ti
va
ti
on

64

Fully connected
Layer

T
an

H
ac
ti
va
ti
on

64

Fully connected
Layer

π(u|x̃, o = 1)

Fig. A.2. Illustration of the parametrization of the intra op-
tion policy. In this specific implementation, each hidden layer
consists of 64 neurons, and the TanH activation function is
used.

x̃[k]

Fully connected
Layer

T
an

H
ac
ti
va
ti
on

64

Fully connected
Layer

T
an

H
ac
ti
va
ti
on

64

Fully connected
Layer

Q(x̃, o = 0)

Fully connected
Layer

T
an

H
ac
ti
va
ti
on

64

Fully connected
Layer

T
an

H
ac
ti
va
ti
on

64

Fully connected
Layer

Q(x̃, o = 1)

Fig. A.3. Illustration of the parametrization of the Q-func-
tion estimator. In this specific implementation, each hidden
layer consists of 64 neurons, and the TanH activation func-
tion is used.

oped for this case of standard periodic control without
any event-triggering involved.

Considering this setting, Fig. B.1 exemplarily shows the
difference in the learning progress between using the
PPOC and the proposed algorithm for the Cheetah en-
vironment. As shown in Fig. B.1a, the PPOC algorithm
quickly collapses to essentially only using one of the op-
tions as the other one is almost never executed. In con-
trast, as illustrated in Fig. B.1b, our algorithm ensures
that both of the options are used. This is due to the en-
tropy scheduling that prevents the policy over options
from being too greedy and also due to the PPO up-
dates. Considering the reward, this might slightly slow
down the learning process but is an essential property
of the algorithm, which is important when it comes to
ETC. In ETC, the smooth learning process allows to

0

5000

R

0 500 1000 1500 2000
Epochs

0

1000

2000

D

Opt 0

Opt 1

(a) Training progress, using the
PPOC algorithm [33], in the set-
ting of periodic control, without
any event-trigger.

0

0

0 1000 2000
Epochs

0

0

0 Opt 0

Opt 1

(b) Training progress,
using our algorithm,
in the setting of peri-
odic control, without
any event-trigger.

Fig. B.1. Comparing the training progress for two exem-
plary policies, one using the PPOC and the other one us-
ing our algorithm for the setting of periodic control in
the Half-Cheetah environment. Each epoch consists of 2048
(x, u)-transitions. The lower plot illustrates how many of
those transitions D are conducted using option 0 or option 1.

arrive at policies with intermediate communication sav-
ings. On the contrary, we think that the greedy opti-
mization of the PPOC algorithm is the reason why its
event-triggered implementation always collapses to one
of the extreme cases, either saving no communication at
all or never communicating.

C Deatils on the Robot Experiments

For running the robot experiments, three main compo-
nents are needed: The Apollo robot executing the con-
trol actions; the learning agent, running on a computer,
using Ubuntu 14.04 together with a Xenomai kernel that
sends the control commands to the robot; and the sensors
monitoring the robot, which are Apollo’s internal sen-
sors and a Vicon camera system. Using the Xenomai ker-
nel is essential, as this allows us to check whether timing
constraints are violated. The Apollo robot is equipped
with two KUKA LBR4+ robotic arms. Each of the arms
consists of 6 joints. All the experiments presented in this
work only use the right arm where at the end, a Bar-
rett Hand is mounted onto the arm. Further details on
Apollo can be found in [45]. For controlling and simu-
lating the robot, we use the simulation laboratory (SL)
framework [41]. As the SL package is programmed in C,
but our learning algorithms are implemented in Python
and using Tensorflow, we use a shared memory to ex-
change information between the Python-based learning
pipeline and the C Code, which takes care of the actual
robot control.

18

	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 Background: Hierarchical Reinforcement Learning
	5 Learning Event-triggered Control and Communication Policies
	5.1 Relating Hierarchical Reinforcement Learning to Event-triggered Control
	5.2 Hierarchical Reinforcement Learning for Event-triggered Control

	6 Results in Simulation Environments
	6.1 Pendulum Environment
	6.2 Results in high-dimensional, nonlinear Environments

	7 Results on Hardware
	7.1 Problem Definition and Setup
	7.2 Dynamic Reference Position Tracking
	7.3 Obstacle Avoidance

	8 Towards Stability of Event-triggered Control
	8.1 Stability Verification of Neural Network Policies
	8.2 Stability Analysis and Retraining of Event-triggered Control Policies
	8.3 Simulation Example

	9 Conclusion
	Acknowledgements
	References
	A Parametrization of the Proposed Algorithm
	B Learning Hierarchical, Periodic Control
	C Deatils on the Robot Experiments

