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On the Importance of Tactile Sensing for Imitation Learning:
A Case Study on Robotic Match Lighting

Niklas Funk1, Changqi Chen1, Tim Schneider1, Georgia Chalvatzaki1, Roberto Calandra2, Jan Peters1

Abstract— The field of robotic manipulation has advanced
significantly in the last years. At the sensing level, several
novel tactile sensors have been developed, capable of pro-
viding accurate contact information. On a methodological
level, learning from demonstrations has proven an efficient
paradigm to obtain performant robotic manipulation policies.
The combination of both holds the promise to extract crucial
contact-related information from the demonstration data and
actively exploit it during policy rollouts. However, despite
its potential, it remains an underexplored direction. This
work therefore proposes a multimodal, visuotactile imitation
learning framework capable of efficiently learning fast and
dexterous manipulation policies. We evaluate our framework
on the dynamic, contact-rich task of robotic match lighting - a
task in which tactile feedback influences human manipulation
performance. The experimental results show that adding tactile
information into the policies significantly improves performance
by over 40%, thereby underlining the importance of tactile
sensing for contact-rich manipulation tasks. Project website:
https://sites.google.com/view/tactile-il.

I. INTRODUCTION

Robotic manipulation remains far from matching the dex-
terity and efficiency of human hands [1], [2]. In fact, the
current trend of exploiting human demonstration data for
learning robotic manipulation [3], [4], [5] actively exploits
human task understanding and their advanced manipulation
capabilities. While it is well-known that human manipulation
heavily benefits from touch sensing [6], the majority of
current works in imitation learning for manipulation are
still missing out on this modality [4], [5], [7]. Given the
importance of touch for human manipulation, the question
arises whether robotic policies could also benefit from adding
tactile sensing.

This work approaches this question by studying the im-
pact of touch sensing for learning a dynamic task, namely,
igniting matches. We argue that match lighting is an effective
testbed for examining the role of touch sensing in learning
robotic manipulation from demonstrations. This is because
the task requires dynamic motion and compliance [8], which
introduces additional complexity compared to standard tasks
such as pick-and-place or insertion [9], [10]. Moreover, it
is a task for which there is evidence that the availability
of touch sensing impacts human performance [11]. Despite
the task’s relevance, to the best of our knowledge, it has
only been investigated previously in [8]. Yet, Kronander et
al. [8] considered fixed match grasp poses and a precisely
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Fig. 1: Autonomous rollout of a policy that is conditioned
on visual and tactile observations illustrated on the left. The
policy controls the robot and, thereby, the contact configu-
ration between the match and striker paper. As can be seen,
the policy ensures sufficient force and velocity, resulting in
successfully igniting the match. This work highlights the
importance of tactile sensing for reliably solving the dynamic
and delicate task of lighting up matches.

calibrated setup without including high-dimensional obser-
vations. Our work addresses more complicated scenarios,
including varying grasp poses and striker paper orientations,
while considering RGB camera images, the end effector
velocity, and the information from an event-based optical
tactile sensor as observations (cf. Fig. 1).

We propose a multi-modal learning from demonstrations
framework to solve this intricate manipulation task solely
from local embodied sensing. To further restrict the human
efforts for learning the task, we emphasise learning from a
few demonstrations and consider only 20 available demon-
strations. This data is then exploited to learn an expressive
multi-modal flow matching policy [12] suitable for reactivity
and real-time inference. Given this low data regime, we
employ a modular and efficient policy architecture that
allows us to compare different encoding and training strate-
gies given the real-world observation data. The experiments
demonstrate the efficiency of the proposed framework and
showcase that the visuotactile policies can robustly light up
matches across different scenarios and observation-encoding
strategies despite learning from only 20 demonstrations.
They also reveal that the vision-only policies perform con-
siderably worse throughout all evaluations. Additionally, we
find that vision-only policies can benefit from employing a
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masked training procedure that exploits tactile observations
during training. The results, therefore, underline that tactile
information is a crucial source of information for obtaining
reliable robotic match lighting policies.

Overall, we contribute a multi-modal framework for ef-
ficiently learning robust and reliable manipulation policies
suitable for dynamic tasks such as lighting up matches.
Moreover, we present a masked training procedure that
exploits the tactile signals during training and allows for
increased success rates of vision-only policies. Lastly, we
contribute an extensive evaluation conducted in our modular
real-world match-lighting testing environment. The experi-
ments across different policies and experiment configurations
highlight that tactile observations are crucial for obtaining
performant policies for dynamic tasks like match lighting
and closely matching the human demonstration data.

II. RELATED WORK

Artificial tactile sensors are a promising technology to ad-
vance robotic manipulation as they allow direct sensing of the
contact configuration between the robot and its environment
[13]. Together with the emergence of commercially available
[14] and open-source tactile sensors [15], [16], the field of
tactile robotic manipulation is gaining increased attention.

One popular approach to obtain tactile manipulation poli-
cies is through reinforcement learning [17], [18], [19]. Since
reinforcement learning requires exploration, learning per-
formant policies demands a vast amount of environment
interactions. To account for this issue, previous works rely
on simulation, allowing for fast sample generation while
at the same time mitigating the sim-to-real gap [18], [19],
[20], [21]. Alternatively, [17], [22] presented approaches
for learning policies directly on real robots. However, this
requires a carefully designed experimental setup allowing
for autonomous exploration, as multiple hours of real-world
interactions are needed for successful policy learning. Since
our task of match lighting is challenging to simulate, and
since safety considerations hinder realizing autonomous ex-
ploration on the real system, this work takes a different direc-
tion. We want to efficiently learn match lighting policies from
few real-world expert demonstrations, thereby significantly
reducing the data requirements.

The field of learning robotic manipulation policies from
demonstration data [3], [23] has lately received increasing
attention [4], [5], [7], [24], [25]. In particular, several works
showed the effectiveness of training generative models based
on expert demonstrations for obtaining advanced real-world
manipulation skills [4], [5]. The field also benefits from
efforts for building effective devices for collecting human
demonstrations [26], [27]. However, the majority of works
in imitation learning focus on quasi-static manipulation tasks
and only incorporate RGB or RGBD cameras as external sen-
sors without considering tactile information [4], [5], [7], [26].
This work follows the current efforts and proposes an effi-
cient and modular multi-modal framework for learning from
demonstrations by leveraging a generative model trained as
a policy. Yet, it differs in that it considers tactile sensors as

input modality and investigates the contact-rich and dynamic
manipulation task of igniting matches. Only more recently, a
few works investigated adding tactile sensing capabilities [9],
[10], [28] into imitation learning frameworks. Yet, these
works also focused on quasi-static manipulation tasks and did
not consider dynamic manipulation as we do herein. More-
over, this work additionally introduces a masked training
procedure, showcasing that considering tactile observations
during training can enhance the inference performance of
vision-only policies.

From a task-level perspective, [8] is closest related as
it also investigates learning match lighting policies from
human demonstrations. To achieve good task success rates,
they propose employing a varying stiffness controller learned
through information from a human-robot interface. Instead
of learning a variable stiffness controller, this work directly
learns a reactive policy capable of controlling the contact
forces by varying the desired target poses. Moreover, this
work extends upon [8] in that it considers a more realistic
experimental setup, including varying match poses, striker
paper orientations, and conditioning the policies onto high-
dimensional image and tactile observations.

Overall, we contribute a framework for learning visuo-
tactile robotic match lighting policies from human demon-
strations and showcasing that tactile sensing is crucial for
learning high performance policies on this dynamic task.

III. LEARNING MATCH LIGHTING POLICIES
FROM DEMONSTRATIONS

This section describes our approach for learning the
dynamic manipulation skill of lighting up matches from
few real-world expert demonstrations and deploying the
policies on the real system. In terms of sensing, this work
exclusively considers local, embodied information, i.e., the
image information from an Intel RealSense D405 camera
mounted in the robot’s wrist, an open source Evetac [16]
tactile sensor mounted within the parallel gripper, and local
velocity information (cf. Fig. 2). The following sections
detail the learning framework, the policy architecture, the
data collection, and the policy inference procedure.

A. Fast and Reactive Multi-modal Policies through Condi-
tional Flow Matching

Our multimodal policy learning framework leverages a
generative model as policy. Given the current observations,
the generative model should output an action sequence that
is close to the demonstrations. Since the match lighting task
is delicate and requires reactivity, we propose to learn a
policy using flow matching [29]. In particular, we learn an
SE(3)-Rectified Linear flow model [7] that generates high-
quality samples within low inference times. We impose a
flow in SE(3), as the model’s output should be the desired
future trajectory of the robot end-effector. In other words,
the resulting policies’ action space is a sequence of N = 16
SE(3) poses, Ta = (T 1

a , . . . , T
N
a ) ∈ SE(3)N .

By design, the datapoint-conditioned SE(3)-Rectified
Linear flow ϕt(a|a1) connects an initial noisy sample



Fig. 2: Method Overview. Upon retrieving the current obser-
vations, they are first encoded individually inside the obser-
vation encoder and brought into a common shape, i.e., each
modality contributes a latent vector of a fixed shape. These
latent vectors, together with the current action sequence
& time index, then serve as the input to the transformer
architecture, which outputs velocities to iteratively refine the
action sequence through flow matching. Upon retrieving the
final desired end effector trajectory, it is sent to the robot
and tracked through a Cartesian Impedance Controller. Note
that we only apply the first two actions of the sequence to
maintain reactivity.

a0∼N (0, I) at t=0 to a sample from the dataset a1 ∈ D at
t=1 with a straight line path. For explanation purposes, in the
following, we will consider only a single SE(3) action pose
(p1 ∈ R3, r1 ∈ SO(3)) that is to be generated starting from
an initially randomly sampled pose (p0 ∈ R3, r0 ∈ SO(3)).
When decoupling the translational (p) and rotational (r)
component of the flow, we obtain ṗt = (p1 − pt)/(1 − t)
& ṙt = (Log(r−1

t r1))/(1 − t) for the flow’s velocity field.
Therefore, this vector field describes how the current noisy
pose needs to be refined to reach the sample from the
dataset. Given the training dataset from the demonstrations,
the objective is then to train a parameterized Flow Match-
ing model vθ(pt, rt,O, t), that, conditioned on the current
observation O and “action” pose, outputs translation and
rotation velocities (vp ∈ R3 & vr ∈ R3) matching the Flow
Matching targets. The model is trained by minimizing L =
||vp − ṗt||2 + ||vr − ṙt||2. Given the learned model, during
inference, we sample actions by iteratively refining random
initial actions through pk+1 = pk + vθ(pt, rt,O, t)∆t &
rk+1 = rkExp(∆tvθ(pt, rt,O, t)).

B. Policy Architecture

As described in the previous section, our approach em-
ploys a parameterized SE(3)-Rectified Linear Flow match-
ing model for obtaining action trajectories. At the core of
this policy is a multimodal transformer architecture that

receives observations from multiple sensors, including the
RGB camera image, the current end-effector velocity, and,
when available, observations from the Evetac tactile sensor
as input. Transformers are particularly suitable for this task
as they can seamlessly handle the multiple multimodal input
observations [30]. The resulting transformer-based policy
architecture is illustrated in Fig. 2.

The observations are the crucial source of information
for refining the actions. Since we later want to compare
different sensor combinations, we ensure modularity, i.e., the
individual observation modalities are first encoded individu-
ally into latent vectors of dimension 64. We want to point
out that the first 5 entries of this 64-dimensional vector are
learnable weights that should inform the transformer about
the type of observation modality. These latent vectors then
serve as the input to a transformer for refining the action
sequence. Importantly, the latent observations and entries
of the action sequence enter the transformer as individual
tokens. The modular policy architecture thus allows for
seamlessly evaluating the policies’ performance under differ-
ent observation encoders. It also enables a masked training
procedure that stochastically decides upon the modalities
which are available in the transformer. The image observa-
tions are processed through a pre-trained ResNet 18 [31]
or by training the ResNet from scratch. For the tactile
observations, we consider the pre-trained model from [16],
and training this architecture from scratch. These features
(i.e., one per observation modality, one for each action in
the action sequence, and one for the current time index)
are the inputs to the transformer model, which consists of
4 layers with 4 attention heads. Inside the transformer, the
inputs exchange information with each other and update their
embeddings through multi-head attention [32]. In its standard
implementation, all the inputs exchange information with
each other (including self-connections). Herein, we configure
the transformer’s attention mask to full connectivity between
the observation tokens, while the action tokens solely cross-
attend to the observation tokens. The value of the action
tokens thus does not influence the update of the observation
tokens. This choice is made because only the observations
contain information on how to update the action sequence,
while the action sequence only contains noise, especially at
the beginning. Moreover, the self-attention within the action
tokens is configured such that action poses in the sequence
only attend to previous actions. In addition to this masking
scheme regarding the actions, in the experiments, we will
also investigate the effectiveness of employing stochastic
masking at the observation level during training. In particular,
we will train a single transformer model that is provided
with tactile observation during training with a probability of
50%. Due to this stochasticity on the input level, the policy,
therefore, has to better align the latents of the vision and
touch observations so that it can generate good outputs in
both cases, i.e., when touch is available and when it is not.

The transformer’s final output is the updated action fea-
tures representing the velocity vectors for the iterative re-
finement, which is repeated K= 5 times. Note that the



observations only need to be encoded once. After obtaining
the final action sequence, it is sent to the controller and
applied to the robot. Using this generative model as policy
yields online action generation as illustrated in Fig. 2.

C. Data Collection

Similar to [8], we collect the demonstrations through
kinesthetic teaching. This procedure ensures that the human
demonstrator directly feels the interaction forces between
match and striker paper. This has been crucial for realizing
high task success rates during data collection. From a task-
level perspective, to light up the match, the match tip
must first be brought into contact with the striker paper.
Subsequently, the match tip has to be moved along the striker
paper while applying sufficient force with sufficient velocity.

Figs. 1 & 2 depict the components of our real-world match
lighting environment. Throughout the entire demonstration,
we record all of the sensor data, i.e., the image from the
wrist-mounted Intel RealSense D405 camera, an open-source
Evetac [16] tactile sensor mounted within a Robotis RH-
P12-RN gripper attached to the end effector of a 7-DoF
Franka Panda, and the local end-effector velocity informa-
tion. Moreover, we also record the end-effector poses that
the robot moves through, as these contain the trajectory
information that the robot should follow. Yet, we want to
emphasize that the policy framework only operates on the
level of local poses expressed in the current end effector
frame. While Evetac naturally returns asynchronous event
information, for compatibility with the other sensors, we
convert the event information into image form. This is done
by accumulating the events for every pixel for a duration
of 40ms. In line with this choice, we also collect all the
other sensor information at 25Hz. Since the task is delicate,
image (or tactile image) resolution might be crucial. Thus,
we maintain a high resolution of 320×240 pixels. As shown
in Figs. 1 & 2, for the image observations of the wrist-
mounted camera, we ensure that the match and, in particular,
the tip of the match is fully observable during the trajectories.
Moreover, we found that using the striking surfaces of
regular paper matchboxes resulted in short durability after
a few experiments. We, therefore, decided to 3D-print a thin
rectangular plate to hold the striker paper. In its standard
configuration, the plate is raised and placed with an angle of
20◦ relative to the table (cf. Fig. 1). We used long standard
matches with dimensions of (100mm ± 5mm) × (4mm ±
1mm) × (4mm ± 1mm) to keep the fire at a sufficient
distance from the silicone surfaces of the tactile sensors
mounted inside the gripper. Lastly, we also 3D printed hollow
cylindrical cones to cover the upper 45mm of the matches.
This was necessary to significantly increase the longevity of
the silicone gels that cover the tactile sensor, which could
rip easily when in direct contact with the matches.

D. Policy Inference and Robot Control

We use the Cartesian Impedance Controller from [33] to
move the robot during the autonomous policy rollouts. We
tuned the controller’s stiffness and damping values on a few

Fig. 3: Visualizing the versatility of the initial configurations
during the experiments. Left: Fixed grasp pose strategy.
Middle & Right: Two examples of the variable grasp initial-
ization. Note how the initializations yield different configu-
rations w.r.t. distance and angle between match and striker
paper that the policies have to handle for solving the task.

of the collected demonstration trajectories. The gains have
been chosen such that replaying the trajectories obtained
during kinesthetic teaching yields task success when tracked
using this control strategy. We rely on the Robotic Operating
System (ROS) to gather the sensor observations. Policy in-
ference is run asynchronously, and only the first two actions
of the action sequence are applied by the controller before
updating the action sequence based on the most recent model
inference with the latest observations. The resulting policies
run online in real-time as action generation, i.e., policy
inference, only takes 0.018 s for our largest vision+touch
policies on an NVIDIA RTX 3090 GPU.

IV. EXPERIMENTAL RESULTS

This section evaluates our proposed approach. It is struc-
tured along the following three main questions to investigate
the importance of tactile sensing for the dynamic manipula-
tion task of lighting up matches: A: How important is tactile
feedback for obtaining performant match lighting policies?
B: Can the vision-only policies benefit from leveraging the
tactile information during training?, and C: Are the policies
robust w.r.t. generalizing to novel scenarios?

The following evaluation considers two task versions. One
in which the match is always grasped with the same pose,
and a more complicated one, where the grasping location
is varied within translational offsets of ±1 cm & rotational
perturbations of ±10 ◦ (cf. Fig. 3). For both tasks, we col-
lected 20 successful demonstrations within 1 hour. We then
trained our models for 500 epochs. The evaluations report
the mean performance across task and model configurations.
We trained 3 seeds per combination and evaluated the last
checkpoint through 5 rollouts on the real system.

A. How important is tactile feedback for obtaining perfor-
mant match lighting policies?

Fixed Grasp Pose. In the fixed grasp pose scenario (cf.
Fig. 3, left), the vision+touch policies outperform the vision-
only policies, achieving a success rate of 86% compared to
33%. Apart from the differences in success rate, Fig. 4 also
reveals that the rollouts of the vision+touch (also referred to
as visuotactile) policies better match the demonstration data.



Fig. 4: Comparing the demonstrated trajectories with trajec-
tories obtained from rolling out different policies, consider-
ing the y-coordinate of the end effector. The y-coordinate
is the direction in which the robot needs to accelerate to
light up the matches along the striker paper. Qualitatively,
the vision+touch policies generate rollouts that better match
the demonstration data compared to the behaviour of the
vision-only policies, indicating that the tactile observations
contain crucial information for explaining and matching the
human demonstrations.

In particular, the visuotactile policy evaluations better align
in terms of the timing of accelerating along the striker paper,
which corresponds to the end-effectors y-axis. This finding
hints that vision-only policies struggle to precisely detect the
point in time of making contact since this indicates that the
acceleration phase along the striker paper should follow.

Variable Grasp Pose. We repeat the procedure for the
variable grasping poses (cf. Fig. 3, middle & right), yet
considering a wider class of observation encoders. In par-
ticular, we train policies with the pre-trained encoders and
either freeze or optimize them during policy training. We also
investigate training the observation encoders from scratch. As
presented in Fig. 5, in this new, more complicated scenario,
there remains a significant difference between the vision-
only and vision+touch policies in terms of success rate.
Importantly, the superior performance of the visuotactile
policies holds across the observation encoding strategies, and
adding the tactile observations improves the task success
rates by at least 50%. While the best visuotactile policies
achieve an average success rate of 80%, the best performing
vision-only policies only reach success rates of up to 20%.

Fig. 6 provides a more detailed comparison in that it
differentiates between different failure modes of the policies.
We consider four types of failures: 1) making contact in the
wrong location, i.e., the tip of the match not making contact
with the striker paper, 2) not making contact at all during the
policy rollout, i.e., the policy accelerating along the striker
paper but without making contact, 3) insufficient contact
force, i.e., making contact in the right location but without
sufficient force resulting in the match not lighting up, and 4)
applying too much force during the rollout, i.e., the policy
pressing the tip of the match with too much force against the
striker paper which results in the match sliding through the
fingers. The last failure case is mainly related to the policy
missing the transition between the approaching phase of the
task and the phase of accelerating along the striker paper.
As shown in the comparison, the vision-only policies exhibit
significantly increased failure rates. In particular, the failures

Fig. 5: Comparing the success rates of different policies on
the variable grasp pose task. Across different observation
encoding strategies, the vision+touch policies consistently
outperform the vision-only policies by at least 50%, thereby
highlighting the importance of tactile sensing for obtaining
reliable match lighting policies.

Fig. 6: Comparing success rates and different failure modes
for the vision-only and vision+touch policies in the variable
grasp pose evaluation. The results are averaged across the
observation encoder configurations (cf. Fig. 5). The vi-
sion+touch policies have a reduced failure rate of more than
50% and reduce the contact-related failures of not applying
any force, insufficient force, or too much force significantly.

related to resolving the current contact state (no contact,
insufficient force & too much force) are the most prominent
ones with 33%, 15%, & 22%, respectively. In contrast,
adding the tactile observations yields significantly reduced
failure rates. The few failure cases of the vision+touch
policies are mainly related to not making contact at all or
not applying sufficient contact forces (8% each), while none
of the vision+touch policies apply too much contact force.

Lastly, Fig. 7 illustrates the evolution of the attention
weights of the individual inputs of the transformer w.r.t.
the update of the fifth action of the action sequence for
a visuotactile policy (trained using pre-trained weights but
further refining the encoder during training). In other words,
it shows how the inputs contribute to updating the action.
As can be seen, initially, the vision observation from the
RealSense is the most important modality. This is expected,
as the camera information is crucial to moving the robot
closer to the striker paper. The event-based tactile sensor
does not provide any information during this phase, as there
is no change in contact configuration. However, once contact
is made, the tactile inputs gain importance and become the



Fig. 7: Visualizing the evolution of the attention weights
over time for one exemplary trajectory. The bottom images
show the task progression. The plot shows the weights that
are attributed to the individual inputs of the transformer: 1)
the actions, 2) the proprioception observation (end effector
velocity), 3) the tactile observation from Evetac, and 4) the
vision observation from the Realsense camera. The weights
are w.r.t. to updating the fifth action of the desired end-
effector trajectory, which is computed for every observa-
tion along the rollout. At the beginning and end of the
trajectory (when there are no tactile signals), vision is the
most important modality. Once there are changes in contact
configuration, touch is the most important modality for
action generation, therefore highlighting that touch provides
important feedback for controlling the contact configuration.

most important entity. This holds true until the match ignites,
which signals successful task execution. The other inputs,
i.e., attention to the other actions and to the proprioception
observation, stay low throughout the trajectory.

Overall, based on the findings from these experiments, we
conclude that touch is a crucial sensing modality for learning
performant match lighting policies from few demonstrations.

B. Can the vision-only policies benefit from leveraging tac-
tile information during training?

While the previous section showed the importance of
conditioning the policies onto tactile signals, this section
investigates whether vision-only policies can benefit from
leveraging tactile information during policy training. In
particular, we exploit the transformer architecture’s natural
capability to handle input sequences of different lengths
and investigate the effectiveness of the masked training
procedure (cf. Sec. III-B). During the masked training, the
policy either receives all of the input modalities or all
of the input modalities except for the tactile signals. The
masking probability is set to 50%. Since the policy uses
the same transformer independent of the masking, it has
to align the latent spaces to generate meaningful outputs
given the different input combinations. This experiment
now investigates whether the masked training procedure can
improve the performance of the vision-only policies in the

Fig. 8: Comparing the policy predictions of two vision-
only policies (one trained with the standard procedure, the
other one with the masked one). We visualize the policy
predictions for the y- and z-component of the 5th action in
the sequence on a trajectory that was obtained by rolling out
the standard policy and on which it fails to establish sufficient
contact between the match and the striker paper. As shown,
the policy that underwent the masked training procedure
proposes different actions, i.e., moving closer to the striker
paper before accelerating along the striker paper (as shown
for the z-predictions when T < 3.5 s). Additionally, it
proposes to accelerate at a later point in time along the striker
paper, as shown for the y-axis predictions.

TABLE I: Success Rate of different vision-only policies in
the variable grasp scenario. The policies differ regarding the
training procedure, i.e., whether they are trained with the
standard procedure or with masked training that considers
the tactile signals during training. The masked training
procedure, i.e., leveraging touch during training, is effective
and yields increased success rates.

Training Configuration
Standard Training Masked Training

Success Rate 20% 40%

variable grasp pose scenario. We start with the pre-trained
encoders and optimize them during the training. This choice
is made because the pre-trained encoders already provide
a meaningful embedding when the respective modality is
important. This is particularly important for the tactile repre-
sentation, as the masked training procedure indirectly forces
the optimization of the vision encoder to account for the
missing tactile information.

As shown in Tab. I, the vision-only policies that have un-
dergone the masked training procedure achieve significantly
higher success rates, increasing the number of successful
rollouts by a factor of 2 and achieving an overall success
rate of 40%. In particular, while the policies trained with the
standard procedure often fail to establish contact between
the match and the striker paper (46% in this experiment),
the policies that underwent the masked training procedure
exhibit a significantly decreased probability of this failure



Fig. 9: Successful policy rollout for the out-of-distribution evaluation. Even though the demonstrations are given when the
angle between the striker paper and the table is 20◦, our policy shows generalization to a mounting angle of 30◦.

Fig. 10: Visualizing the different mounting angles of the
striker paper in the generalization experiments. Left: Nom-
inal mounting angle of 20◦. Middle & Right: Mounting
angles used in the generalization experiments of 5◦ and 30◦,
respectively. Note how the different mounting angles change
the angle & distance between match and striker paper.

mode (25%). To underline this finding quantitatively, Fig. 8
compares the differently trained policies regarding action
generation. It visualizes the translational outputs for the 5th
action in the sequence along the y- (direction of acceleration
along the striker paper) and the z-direction (controlling the
height of the match tip). For the comparison, we consider
a trajectory that has been obtained by rolling out the policy
trained with the standard procedure. During this trajectory,
the policy failed to establish contact between the match
and the striker paper. Considering the z-component of the
predicted action, before the start of the sideways motion, the
policy that was trained using the masked procedure outputs
lower values, thereby indicating that it wants to move the
end effector lower, increasing the probability of making
contact with the striker paper. Considering the y-direction,
it is also evident that the policy trained using the standard
procedure aims to move along the striker paper earlier. This
behaviour again increases the probability of accelerating too
early without making proper contact with the striker paper.
We conclude that the masked training procedure increases the
success rates of vision-only policies. Therefore, the availabil-
ity of tactile observations can improve policy performance,
even when tactile feedback is only provided during training.

C. Are the policies robust w.r.t. generalizing to novel sce-
narios?

This last experiment evaluates whether the visuotactile
policies can generalize to novel scenarios in which the angle
between the match and the striker paper is further changed
compared to the previous experiments and demonstrations.
This is achieved by mounting the striker paper at novel, pre-
viously unseen mounting angles of 5◦ and 30◦ (cf. Fig. 10),
while maintaining the variable grasping. This evaluation
considers the visuotactile policy with the pretrained+refine
training procedure.

Fig. 9 depicts a successful policy rollout in one of the
novel environments. Quantitatively, for the two testing sce-
narios, we obtain success rates of 80% for the 5◦ mounting
angle and 67% for 30◦. The policies, therefore, generalize
without losing performance to the 5◦ mounting angle. One
explanation for the slightly decreased success rates for the
30◦ mounting angle is that the match starts closer to the
3D-printed holder, leaving the policies less space to adjust
the angle between the match and the striker paper. Providing
more demonstrations for this specific case could improve the
policies’ performance. Given that we trained the policies on
only 20 demonstrations, we nevertheless conclude that the
policies can generalize to the new testing environments, as
the overall performance only drops slightly by 7% reaching
73% on average.

V. CONCLUSION

This work investigated the importance of tactile sensing
for performing the dynamic manipulation task of match
lighting. The policies were learned from demonstration data
obtained through kinesthetic teaching. Our proposed policy
learning framework leveraged a flow matching generative
model for fast and efficient action generation and a mod-
ular multi-modal transformer as policy representation. The
experimental results underline that tactile feedback is cru-
cial for learning performant match lighting policies. Across
all task variations, the vision+touch policies outperformed
vision-only policies, increasing the number of successful



policy rollouts almost by a factor of 3. By analysing the
visuotactile policies’ attention weights, we confirmed that
tactile observations gain importance during the contact-rich
interactions between the match tip and the striker paper.
Moreover, we also showed that exploiting the tactile signals
during training and employing a masked training procedure
can benefit vision-only policies and yield increased success
rates. Yet, the improved vision-only policies still cannot
reach the performance of the visuotactile policies. Lastly,
we showed that the visuotactile policies are robust and can
generalize to novel task variations. All findings underline
the importance of tactile sensing for obtaining performant
policies for successfully solving the dynamic manipulation
task of igniting matches. Future work should investigate
transferring these findings to other manipulation tasks and
further improving the overall performance of the visuotactile
policies by, e.g., learning from unsuccessful policy rollouts.
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