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Fig. 1: Overview of ActionFlow. ActionFlow represents both observations & actions in one common space and describes every token by
its pose T and features f . (a) The scene consists of two observations (fo1,o2, To1,o2), and the action sequence is initialized by generating
random samples, i.e.,(fa1...a3, Ta1...a3). Based on the scene representation, an Invariant Point Attention (IPA)-based transformer computes
the attention between the different tokens considering their relative SE(3) poses, thereby exploiting the spatial symmetries of the task. (b)
The output of this model defines a flow in the action space. The flow results in refining the action sequence to obtain local trajectories for
fulfilling the task. (c) When using the procedure of scene encoding & action sequence generation through Flow Matching iteratively, i.e., as
a policy, we can generate highly accurate, SE(3) equivariant action sequences at low inference times.

Abstract—Most robotic tasks require a proper understanding
of the scene’s 3D geometry. Despite the impressive results of deep
generative models in complex manipulation tasks, the lack of a
representation that encodes the intricate spatial relations between
observations and actions usually leads to small spatial generaliza-
tion capabilities, requiring large amounts of demonstrations. To
tackle this problem, we introduce a novel policy class, ActionFlow.
ActionFlow integrates spatial symmetry inductive biases while
generating expressive action sequences. On the representation
level, ActionFlow introduces an SE(3) Invariant Transformer
architecture, which enables informed spatial reasoning based
on the relative SE(3) poses between observations and actions.
For action generation, ActionFlow leverages Flow Matching,
a novel, state-of-the-art deep generative model that has been
shown to generate high-quality samples with fast inference, an
essential property for feedback control. In combination, Action-
Flow policies exhibit strong spatial and locality biases and SE(3)
equivariant action generation. Our experiments demonstrate the
effectiveness of ActionFlow and its two main components on
several simulated and real-world robotic manipulation tasks
and confirm that we can obtain efficient, accurate, and fast
policies with spatially symmetric flow matching. Project website:
https://flowbasedpolicies.github.io/

I. INTRODUCTION

Recently, we have observed impressive results in using
deep generative models for solving complex manipulation
tasks [48, 8, 3, 46]. However, it is well known that models
that naively integrate observations and actions usually require
copious amounts of demonstrations to solve the task properly.
In this direction, there has been a collection of research
that explored how to exploit the spatial relations between
observations and actions [45, 12, 13, 40, 33, 18] to learn

more sample efficient policies. Equivariant policies gener-
alize the policy’s behavior under global scene translations or
rotations [41, 12, 45, 29, 16, 11, 34, 38]. If the observations
are rotated or translated, the generated actions will be equally
transformed, thereby adding an effective inductive bias.

Herein, we are not only interested in equivariant policies
but also in local spatial relations [4, 9, 12]. Consider, for
example, the task of picking & hanging a mug (cf. Fig. 1).
When the robot is approaching to pick up the mug, it should
be capable of reasoning based on the relative poses between
its own pose, the mug, and its next actions. But when hanging
the mug, the robot should also focus on the relative poses
between mug & hanger. Thus, equipping the policy with the
ability to reason based on the relative poses between the
different observations and actions, i.e., their spatial relations,
might be essential to learning policies efficiently. How can we
integrate all these desiderata and still learn dexterous, fast,
and expressive policies from demonstrations?

Inspired by recent successes in the protein folding commu-
nity [21, 42, 43, 20, 17], in which SE(3) symmetric models
are integrated with highly-expressive deep generative models,
we introduce ActionFlow, a novel policy class for robotics,
suitable for learning dexterous manipulation skills while in-
tegrating geometric notions for sample efficient learning. In
essence, ActionFlow is composed of two main elements: (1) a
state-of-the-art [10] highly-expressive deep generative model
(Flow Matching) [24, 6, 5] that has been shown capable of gen-
erating high-quality samples within very small inference times,
and, (2) an SE(3) Invariant Transformer network [21, 43]
that frames a relative positional encoding [21, 26] based on
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the tokens’ relative SE(3) poses (Fig. 1). Combining those
components results in several interesting properties that make
ActionFlow an appealing candidate for learning robot policies
and, in particular, robotic manipulation from demonstrations:
Fast and accurate action sequence generation. Given the
underlying Flow Matching generative model, we can generate
precise action trajectories with low inference times [25, 10].
SE(3) equivariant action generation. ActionFlow inherently
preserves the tasks’ spatial structure and naturally adapts the
actions. Given translated or rotated observations, the actions
are equally transformed, thereby providing SE(3) equivari-
ance. While ActionFlow’s underlying transformer network is
invariant, we achieve SE(3) equivariance by applying the flow
matching updates w.r.t. the actions’ local frame [21, 43].
Relative Pose Aware Attention. The SE(3) Invariant Trans-
former allows the actions to attend to the different observation
tokens based on their relative poses. This allows finding corre-
lations based on spatial relative information and enhances the
generalization to scenes where objects are arranged differently.

In summary, our main contributions are: (a) we investigate
Flow Matching for fast and precise robotic action generation,
(b) we introduce an SE(3) Invariant Transformer architecture
for geometry-aware robot learning. Our experiments in simu-
lated and real robot environments underline the effectiveness
of both components and showcase that their combination, i.e.,
our proposed ActionFlow, yields accurate and fast manipula-
tion policies while showcasing sample efficiency.

II. ACTIONFLOW

ActionFlow represents observations O : pTo,Foq and ac-
tions A : pTa,Faq with a sequence of poses T“pT 1, . . . , TN q

and features F“pf1, . . . ,fN q (cf. Fig. 1). The pose
T“pr,pqPSEp3q consists of a rotation matrix rPSOp3q and
a 3D position vector pPR3. The associated feature fPRd

represents semantic information related to the respective pose.
This representation is pretty flexible. For observations, a pose
might represent a camera location while the features represent
the (encoded) image observation (cf. Fig. 1(a)). Alternatively,
a pose might represent an object’s location while its features
represent semantic information describing it (color, shape, . . . ).
For actions, the pose represents the desired target pose, while
the features might represent when this target pose should be
reached. Given this representation, we aim to learn a policy
πθpTa|Oq that generates action pose sequences Ta given an
observation O. The desiderata for this policy is to be fast,
accurate, and expressive, while being sample efficient by
capturing the spatial relations between observations & actions,
ultimately resulting in SE(3) equivariant action generation.
To this end, ActionFlow is built on two elements: a Flow
Matching based generative model for generating action poses
and a transformer model that represents the relative positional
encoding based on the tokens’ relative SE(3) poses.

A. Flow Matching on the Action Space

Flow Matching permits the learning of expressive gen-
erative models with fast inference [25, 10]. Similarly to

diffusion models [37, 15], sample generation is done by
iteratively calling a learned model. Herein, we apply Flow
Matching to generate action pose sequences. We consider
an action space represented with a sequence of N SE(3)
poses Ta“pT 1

a , . . . , T
N
a qPSEp3qN . Thus, similarly to [42],

we adapt Flow Matching to the Lie Group SE(3). For a
background on Flow Matching, see App. A. Without loss of
generality, we derive the solution for a single SE(3) action
pose TPSEp3qby adapting a common Flow Matching method
(Rectified Linear Flow [25, 10, 6]) to the Lie Group SE(3).
We define a decoupled flow between the rotation and the
translation, allowing us to represent the distribution path and
the vector fields independently.
SE(3)-Rectified Linear Flow. Rectified Linear Flow proposes
representing the data point conditioned flow ϕtpa|a1q with
a straight line from a noisy sample a0„N p0, Iq at t“0 to
the datapoint a1PD at t“1. In our case, we move an initially
randomly sampled action pose T0 towards an action pose from
the dataset T1 by defining a straight line path for the translation
p and the rotation r. The flow Tt “ ϕtpT0|T1q that moves
a noisy initial sample pp0, r0q to a pose sampled from the
dataset, i.e., pp1, r1q „ D, is represented by

Translation pt “ ϕtpp0|p1q “ tp1 ` p1 ´ tqp0 (1)

Rotation rt “ ϕtpr0|r1q “ r0Exp
`

tLogpr´1
0 r1q

˘

, (2)

with Log and Exp, the logarithmic map and the exponential
map for the SO(3) manifold [35]. Equation (2) represents a
path through the geodesic on SO(3) from r0 to r1.
Given the flow is decoupled, the vector field ut “ dϕt{dt is
also decoupled. In particular, the translation & rotation veloc-
ity (i.e., 9ptPR3 & 9rtPR3) equate to 9pt“r⊺t ppt ´ p1q{p1 ´ tq
& 9rt “ pLogpr´1

t r1qq{p1 ´ tq. Notice that even if rotations
are represented in r P SOp3q, the velocity vector for the
rotations 9rt P R3 is a 3D vector (axis-angle representation)
represented in the tangent space centered around rt. Also, the
translation velocity is premultiplied with the transpose of the
current rotation r⊺t as we aim to represent the velocity in the
action frame.
Training. Our parameterized model pvp,vrq “ vθpT,O, tq
outputs both a translation vector vp P R3 and a rotation
vector vr P R3. Given a dataset D : tT i,OiuIi“0, the training
objective is to minimize the mean-squared error between the
model outputs pvp,vrq and the velocity vectors ut “ p 9pt, 9rtq.
Sampling in SE(3). To generate an action pose T“pp, rq,
we sample a rotation r0„UpSOp3qq and translation
p0„N p0, Iq and iteratively run Euler-discretization for
K inference steps, i.e., pk`1“pk`rkvθpTk,O, tq∆t &
rk`1“rkExpp∆tvθpTk,O, tqq, with ∆t “ 1{K and t “ k∆t.

B. SE(3) Invariant Transformer

ActionFlow’s network architecture is an SE(3) Invariant
Transformer (cf. Fig. 2). The main element of the proposed
architecture is a geometry-aware attention layer known as In-
variant Point Attention (IPA) [21, 43]. The IPA layer augments
the queries, keys, and values of classical attention [39] with
a set of 3D points that are generated in the local frames of
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Fig. 2: Spatial Symmetries in ActionFlow. (a), A visual representa-
tion of the SE(3) Invariant Transformer. Given a set of observations
of the scene F o, a set of poses To and candidate actions Ta, the
SE(3) Invariant Transformer predicts a vector v to update the actions
(cf. Section II-A). To refine the actions, we iteratively call our model
K times. (b) IPA augments the classical attention with points pQ

and pK generated in the local frames of the query and key poses.
The layer is designed to generate the same output under global SE(3)
transformations ∆T P SEp3q. (c) ActionFlow is SE(3) equivariant. If
we apply a transformation over the observation poses, the generated
actions will be equally transformed.

the query TQ and key TK poses. The layer is designed such
that the output is invariant to global rotations and translations
(cf. Fig. 2 (b)). This relative attention makes the network
both invariant and object-centric. If we apply a transformation
∆T P SEp3q over both observation poses T 1

o“∆TTo and
action poses T 1

a“∆TTa, the network generates the same
output. Additionally, given the IPA layer, the network can
reason considering all the relative poses between all the entities
in the scene. We hypothesize that given the invariant and
object-centric nature of the network, we can achieve more
data-efficient policies.

Network Architecture. Given the observation O“pTo,Foq

and a candidate action sequence TaPSEp3qN of length N ,
the SE(3) Invariant Transformer outputs vectors vPR6ˆN

that predict the direction in which the actions Ta should
be updated. The network architecture is inspired by protein
folding network FrameDiff [43, 42]. Given a set of poses
T and features F , the network first applies an IPA layer
to capture the spatial relative attention between the different
entities, followed by a transformer encoder to find higher-order
interactions. We use a small linear layer to map the transformer
output to the vector v. Notice that prior to the IPA, we employ
an observation encoder that maps all observation features into
a common latent feature space. The action features FA are
given by a learnable parameter vector.
Action Generation starts with a randomly sampled action
sequence Ta and iteratively updates the actions by calling
the SE(3) invariant transformer K times. Given the invariant
network and the action updates within their current local
frame, the resulting policy πθpTa|To,Foq is equivariant. If
we apply a transformation over To, the generated actions Ta

are guaranteed to be equally transformed (see Fig. 2 (c)).

III. EXPERIMENTAL RESULTS

The experiments are split into two parts. First, we evaluate
the impact of the SE(3) Invariant Transformer, particularly
whether IPA helps for learning policies in a data-efficient

ActionFlow NO IPA ONE TOKEN BCRNN

N Demonstrations

S
u
c
c
e
s
s
 R

a
te

100 101 102 103

0.0

0.2

0.4

100 101 102 103

0.0

0.2

0.4

3 Piece Assembly D2

100 101 102 103

0.0

0.2

0.4

0.6 Coffee D2

100 101 102 103

0.0

0.2

0.4

0.6

0.8
Stack Three D1 Threading D2

Fig. 3: Success rate of models trained on different number of
demonstrations p20, 50, 200, 1000q on a subset of Mimicgen en-
vironments [28]. We report the average success rate on 50 test
environments for the last 10 checkpoints of a single seed. The top
row shows two randomly sampled initial configurations for each task.

manner. Second, we evaluate ActionFlow for real robot manip-
ulation. Additionally, in App. B, we explore the performance
of Flow Matching to generate high-quality samples within few
inference steps.

A. SE(3) Invariant Transformer Evaluation: Multi-Token Ob-
servations and Invariant Point Attention

We evaluate the proposed SE(3) Invariant Transformer (cf.
Section II-B) w.r.t. two design choices:
(1) Does a multi-token representation, in which each object
is treated as a single token, enhance policy performance?
(2) Does the IPA layer, which allows computing the relative
poses of all the tokens among each other, help in finding
informative features to improve policy performance?
Dataset & Evaluation Environment. The experiments are

conducted in a subset of Mimicgen environments [28]. The
datasets consist of 1000 synthetically generated demonstra-
tions, given 10 original demonstrations.
Models. We consider three variations of ActionFlow for
evaluation: (A.1) We eliminate the IPA layer and represent all
observations as a single token. (A.2) We eliminate the IPA
layer but keep each object as an independent token. (A.3)
The original ActionFlow as introduced in Section II-B. All the
models consider 5 inference steps. Additionally, we consider
as baseline (B) a RNN-GMM model as introduced in [27, 28].

Results. We train the models with different amounts of
demonstrations p20, 50, 200, 1000q and evaluate their perfor-
mance in 50 randomly sampled test environments. The results
in Fig. 3 reveal that the original ActionFlow consistently
outperforms the variations and baselines across the tasks,



Fig. 4: ActionFlow policy rollout on the mug hanging task, in which the hanger is placed in a test configuration (cf. Fig. 5).
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Fig. 5: Left: Success Rates on train and test configurations. Right:
Visualization of the initialization configurations for training and
testing evaluations.

specifically in low demonstration regimes. This indicates that
IPA is beneficial for learning policies in a sample-efficient
way, while with large datasets, all models appear to converge
to similar performances. We also observe that representing
the observations with multiple tokens shows performance
benefits compared to representing the whole observation as
a single token. Finally, all ActionFlow variations outperform
the baseline in different data percentages. We hypothesize
that this performance increase could be directly related to the
expressivity of Flow Matching with respect to GMM.

B. Real Robot Experiments

We evaluate ActionFlow’s equivariance on the real robotic
task of placing a mug onto a hanger. Another experiment
evaluating ActionFlow’s accuracy is provided in App. C.
Setup. The experimental platform consists of a 7DoF Franka
Panda manipulator with a RealSense D435 mounted at its
end-effector (cf. Fig. 1). We employ a token for the hanger’s
pose and the robot’s end-effector pT,fq. The end-effector is
described by its pose T and the features f contain the en-
coded RGB images (using a ResNet18 [14]) and the gripper’s
opening width.

Results. For policy training, we collect 200 demonstrations
using variations as shown in Fig. 5 - right. Notably, the
demonstrations only include slight variations of the mug poses,
while the hanger always stays in the same pose. The results
are presented in Fig. 5. The table’s first row reveals that the
ActionFlow policy achieves high success rates of 90% upon
evaluating in similar scenarios as those encountered during
training. We only observe one failure in which the mug is not
grasped properly. Importantly, our policies run online in real-
time as action generation only takes 0.03 s on an NVIDIA
RTX 3090 GPU. We also evaluate the policy in previously
unseen test scenarios (cf. Fig. 5), where the hanger is moved
to either side of the table. The results show that our policy
can still handle these novel test scenarios well, achieving 80%
success. Fig. 4 shows a policy rollout in one of the testing
scenarios. These high success rates, despite the previously
unseen scenarios, demonstrate the equivariance property of

our proposed ActionFlow, which inherently can handle these
translated scene instances.

IV. RELATED WORK

Spatial Symmetries on Robot Learning. A large line of
research [45, 12, 18, 22, 34, 38, 13, 31] explored designing
methods that exploit the spatial symmetries between observa-
tions and actions to alleviate the data requirements of learning
from demonstrations. A set of works have proposed projecting
the action to the visual space [45, 32, 13, 23, 40] representing
the actions in the pixel space. Closer to our approach, a set of
works propose representing both observations and actions in
the 3D space [30, 12, 31, 33, 41, 34, 38, 44, 22]. In particular,
[12, 22] propose using spatial relative attention to allow the
policy to reason based on the relative 3D positions between
observations and actions. Our work extends the attention to
SE(3) poses allowing the agent to reason based on both relative
position and orientation.
Flow Matching for Decision Making. Despite the recent
emergence of flow matching methods [24, 25, 5] for learning
deep generative models, there has been a wide set of fields in
which they have been applied from image generation [10] to
protein backbone generation [42, 1]. In the context of decision
making, Zheng et al. [47] introduce guided flow matching to
condition the flow-based models on arbitrary contexts. Then,
they apply the conditioned flow-based models in Offline RL
setups, similarly to [19]. Concurrent to this work, Braun et
al. [2] introduce Riemannian Flow Matching Policies that
propose learning a flow-based model to generate trajectories in
arbitrary Riemannian manifolds. Their work showed promis-
ing results on the LASA dataset. In this work, we focus on
robotic manipulation and the combination of Flow Matching
with an SE(3) Invariant Transformer architecture, enabling
SE(3) equivariant action generation with successful application
to real robot experiments on challenging manipulation tasks.

V. CONCLUSION

This paper presented ActionFlow, a new policy class for
robot learning from demonstrations. On the representation
level, ActionFlow consists of an SE(3) Invariant Transformer
equipped with geometry-aware Invariant Point Attention. Ac-
tions are generated using Flow Matching, a new generative
model capable of obtaining high-quality samples with low
inference times. The resulting policies are fast, represent
both actions and observations in one common space, and
yield SE(3) equivariant action generation. Our experiments
underline the effectiveness of ActionFlow’s individual compo-
nents and demonstrate its capabilities for solving real robotic
manipulation tasks.
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APPENDIX A
BACKGROUND - FLOW MATCHING

Let us consider a data point a P Rd and a probability
path ρtpaq that connects a noise distribution ρ0paq at t“0
to the data distribution ρ1paq at time t“1 with its associated
flow at “ ϕtpa0q, which defines the motion for the par-
ticle a0, Flow Matching [24] proposes learning Continuous
Normalizing Flows (CNF) [7] by regressing the vector field
utpaq “ dϕpaq{dt with a parametric one vθpa, tq. Unfortu-
nately, in general, there is no closed-form solution for ut that
generates ρt, making the direct flow matching untractable.
Instead, Conditional Flow Matching (CFM) proposes an effi-
cient approach to learn CNF by regressing a conditioned vector
field utpa|zq that generates the probability path ρtpa|zq

LCFMpθq “ Et,ρtpa|zq,ρDpzq ∥vθpa, tq ´ utpa|zq∥2 , (3)

with ρDpzq being the data distribution. As shown in
[24], vθ recovers the marginalized conditioned vector field
ut “

ş

z
utpa|zqρtpa|zqρDpzq{ρtpaqdz that generates the

marginalized distribution path ρt “
ş

z
ρtpa|zqρDpzqdz. Then,

the problem boils down to designing a conditioned vector field
utpa|zq that moves a randomly sampled point at time t “ 0
to the datapoint z at time t “ 1.

APPENDIX B
FAST AND ACCURATE ACTION SEQUENCE GENERATION IN

SIMULATION

We compare Flow Matching against Diffusion Policy [8]
for action sequence generation in the simulated Robomimic
tasks [27]. For the comparison, we replace the diffusion
process with flow matching to estimate the action distribution
conditioned on the current observations. To ensure a fair
comparison, for both methods, we use the transformer archi-
tecture from [8] to model the (observation-conditioned) vector
field in Equation (3) or the denoising network. Moreover,
we consider Flow Matching in the Euclidean space and use
the same hyperparameters from the Diffusion Policy in Flow
Matching. Both policies are trained with for 4000 epochs with
K “ 100 time steps. Checkpoints are evaluated every 200
episodes. For testing, we pick the best-performing checkpoint
during training and report the average success rate from policy
rollouts starting from 50 different initial configurations (from
the test set) across 3 training seeds. During inference, it is
desirable to use fewer steps than during training since it
enables higher-frequency policies. In Flow Matching, reduced
inference time steps are obtained by interpolating the training
time steps, while for Diffusion Policy we use DDIM [36] for
faster sampling.

Results. Fig. 6 shows the results. We depict how the
success rate varies with the number of inference steps
t2, 5, 10, 20, 100u. As both methods use the same underly-
ing transformer network, their inference times are similar,
and the resulting frequencies for the tested number of steps
are t100, 33, 20, 9, 2u Hz, respectively. The results show that
for most environments and number of inference steps, Flow
Matching and diffusion perform almost equally. However,

Flow Matching results surpass those from Diffusion Policy for
very small inference steps. This effect is most noticeable in
the Tool Hang task, which requires the policy to produce very
accurate actions. These experiments show that Flow Matching
can achieve good success rates using only 2 inference steps
(allowing inference at 100Hz) while Diffusion Policy results
degrade.

APPENDIX C
EVALUATING ACCURATE TRAJECTORY GENERATION ON

THE REAL ROBOT

Lightbulb Mounting - Evaluating Accurate Action
Sequence Generation. This task of mounting a lightbulb
(cf. Fig. 7) consists of two main phases: first, the lightbulb
and its two pins have to be precisely inserted into the socket.
Second, the bulb has to be rotated to tighten it and turn it
on. For this task, we collected 100 demonstrations using our
teleoperation interface based on OptiTrack.
We consider two baselines. The first one consists of replay-
ing 10 randomly selected demonstrations. The second one
is replaying 10 randomly selected demonstrations with an
additional offset of 1.5mm sampled in a random direction.
The results in Fig. 7 show that replaying 10 randomly selected
demonstrations results in 8 out of 10 successful executions.
Adding a small perturbation of 1.5mm reduces the number
of successes to only 5. These findings underline that this
task requires high accuracy and precise trajectory execution,
as slight perturbations significantly reduce the success rate.
Despite the tight tolerances and initializing in perturbed states,
our learned ActionFlow policy, which is only conditioned on
the input of the RGB camera, achieves a success rate of
80%. Two successful policy rollouts are presented in Fig. 7.
This experiment underlines that ActionFlow is capable of
generating highly accurate trajectories suitable for solving
delicate manipulation tasks.
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Fig. 6: Results in Robomimic tasks with state-based observations. Success rate evaluation on Robomimic tasks with state-based
observations averaged over 3 seeds and 50 environments initializations. We evaluate flow-matching and diffusion policy [8] (using DDIM)
with different inference steps. For 100 inference steps, the same as training time steps, the diffusion policy is run using DDPM.

Method Success Rate

Replay Demonstrations 8/10

Perturbed Demonstrations
5/10

Replay

ActionFlow (Ours) 8/10

Fig. 7: Real robot light bulb experiments. We report the performance of our model and two baselines, i.e., replaying 10 randomly selected
demonstrations and replaying the demonstrations with a position offset in one randomly selected direction of 1.5mm. The table and the
pictures from successful rollouts of our learned action flow policies on the right illustrate that our proposed method can generate highly
accurate trajectories.
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