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Abstract—Optical tactile sensors have recently become popular.
They provide high spatial resolution, but struggle to offer fine
temporal resolutions. To overcome this shortcoming, we study
the idea of replacing the RGB camera with an event-based
camera and introduce a new event-based optical tactile sensor
called Evetac. Along with hardware design, we develop touch
processing algorithms to process its measurements online at 1000
Hz. We devise an efficient algorithm to track the elastomer’s
deformation through the imprinted markers despite the sensor’s
sparse output. Benchmarking experiments demonstrate Evetac’s
capabilities of sensing vibrations up to 498 Hz, reconstructing
shear forces, and significantly reducing data rates compared
to RGB optical tactile sensors. Moreover, Evetac’s output and
the marker tracking provide meaningful features for learning
data-driven slip detection and prediction models. The learned
models form the basis for a robust and adaptive closed-loop
grasp controller capable of handling a wide range of objects.
We believe that fast and efficient event-based tactile sensors like
Evetac will be essential for bringing human-like manipulation
capabilities to robotics. The sensor design is open-sourced at
https://sites.google.com/view/evetac.

Index Terms—Touch Sensing, Optical Tactile Sensor, Event-
based Camera

I. INTRODUCTION

MANIPULATION of mechanical objects is essential for

real-world robotic applications ranging from industrial

assembly [1], [2] to household robots [3]–[5]. Physical ma-

nipulation of objects includes making and breaking contact

between the robotic manipulator and the object of interest.

In particular, the manipulator should apply sufficient forces

for stable grasping, while preventing any loss of contact and

damage to the objects by applying excessive force. For the

goal of having reactive, adaptive, reliable, and efficient dex-

terous manipulation skills also in unstructured environments

with little or no prior knowledge available, direct sensing of

contacts, i.e., tactile sensing, is of crucial importance [6].

Due to their huge potential, there exists a long history

in developing tactile sensors for robotics [6]–[9]. While a

wide range of sensing technologies have been proposed,

recently, especially RGB optical tactile sensors have received
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Fig. 1: Two Evetac sensors installed in the ROBOTIS RH-P12-RN(A)
gripper holding a pen. In the bottom left and right, we depict a
magnified version of the sensors’ measurements. Evetac is an open-
source event-based optical tactile sensor for robotic manipulation.
Its main components are an illuminated, dotted, soft silicone gel
that interacts with the environment. Changes in gel configuration are
captured by a high-resolution event-based camera inside the sensor
as shown in the bottom left & right.

increased attention [10], [11]. They are also known as vision-

based tactile sensors, as their functioning principle relies on

an RGB camera capturing an elastomer’s deformation. The

advantages of RGB optical tactile sensors are their small form

factors, compatibility with standard interfaces, low cost, and

very high, human-like, or even superhuman spatial resolution.

Yet, compared to other tactile sensing technologies and the

human sense of touch, they typically lack temporal resolu-

tion. Alternative sensing technologies such as capacitive [12],

piezoresistive [13], [14], magnetic [15], or pressure-based [16]

tactile sensors are contrarily typically fast, but lack resolution.

Inspired by human tactile sensing capabilities and their

different mechanoreceptors, which offer a high temporal res-

olution of resolving vibrations of at least up to 400Hz [7],

[17], as well as a high spatial resolution through approximately

17000 tactile sensing units per hand [17]–[19], with higher

densities in the fingertips, in this paper, we propose a novel

event-based optical tactile sensor called Evetac. While event-

based optical tactile sensors have been presented previously

https://sites.google.com/view/evetac
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[20]–[22], it still remains an underexplored area.

The proposed Evetac sensor is largely inspired by popular

RGB optical tactile sensors such as GelSight [23], TacTip [24],

and DIGIT [25]. The sensor’s functioning principle thus also

relies upon a camera capturing the deformation of a soft sili-

cone gel. The gel has imprinted markers which provide natural

features for the interaction between sensor and object. What

makes our Evetac sensor substantially different from common

RGB optical tactile sensors is that we replace the RGB

camera with an event-based camera. Event-based cameras

recently gained lots of attraction due to their properties of high

temporal resolution, high pixel bandwidth, and low energy

consumption [26]. This camera replacement fundamentally

changes the sensor’s properties as it allows for achieving a

significantly increased temporal resolution. In our case, we

obtain touch measurements at 1000Hz, while at the same

time pertaining a spatial resolution of 640x480 pixels. The

improved temporal resolution can be beneficial for reliably

detecting fast contact-related phenomena such as vibrations.

Moreover, the sparse signal returned from event-based cam-

eras, which only return signal upon intensity changes at the

pixel locations, also enables real-time signal processing despite

the high readout rate. This opens the door to closing tactile

control loops at high frequencies.

From a design point of view, our proposed sensor attempts

to maximize the re-use of existing components to reduce

the entry barrier into the field of event-based optical tactile

sensing. Apart from the housing, which has to be 3D-printed,

all other components are commercially available. In addition

to the hardware design, we develop the necessary software

interfaces for reading out the sensor online, in real-time at

1000Hz. We also present a novel, gradient-based algorithm

for real-time tracking of the dots imprinted in the gel. The

algorithm allows to keep track of the gel’s global state despite

the sensor’s sparse outputs. The dots’ displacement can be

used to reconstruct the shear forces acting on the sensor.

Finally, Evetac’s raw sensor output and the information from

the dot tracking provide the main features for developing slip

detection and prediction models. In particular, we integrate

Evetac into a commercially available robotic parallel gripper

as shown in Figure 1 and present a data-driven approach for

slip detection. For this task, we train and compare different

neural network architectures that benefit from the expressive,

low-dimensional features. The models can be evaluated online

at 1000Hz, and form the basis for the design of a closed-

loop grasp controller operating at 500Hz, capable of stably

grasping a wide range of objects with different masses and

materials.

In summary, our contributions are the design of a novel,

open-source event-based optical tactile sensor called Evetac.

The sensor design aims to maximize re-use of existing,

commercially available components to mitigate the manufac-

turing barrier and incentivize reproducibility. Besides sensor

design, we demonstrate the sensor’s high temporal resolution

by sensing vibrations up to 498Hz and showcase improved

sensing efficiency w.r.t. data rate. Despite Evetac’s high sens-

ing frequency, it generates significantly fewer data compared

to RGB optical tactile sensors. Moreover, we provide real-

time touch processing algorithms. In particular, we devise

an algorithm for tracking the dots imprinted in the gel with

1000Hz and show its effectiveness for reconstructing the shear

forces acting upon Evetac’s gel. Lastly, we showcase Evetac’s

effectiveness for robotic grasping by training efficient data-

driven neural networks for slip detection and prediction. The

models allow integration into high-frequency feedback control

loops for achieving robust and reliable grasping across a wide

range of household objects. Importantly, we are able to show

generalization of the slip detectors across objects and the

controller’s adaptiveness w.r.t. object mass and reactiveness

upon grasp perturbation.

II. RELATED WORKS

Tactile sensing [8] has a huge potential for robotics. Contact

information is a crucial source of information to e.g., recover

object properties [6], capture haptic information [27], or react

to undesirable contact configurations for preventing slip and

achieving stable grasping [9], [28]. In the following section,

we will mainly focus on the latter aspect as progress in

this direction holds the promise to improve the performance

of every robotic manipulation system regarding reliability,

robustness, and generalization to a wider range of objects.

Vibration-based Tactile Sensing. For stable grasping, hu-

mans make use of fast-adapting receptors to detect small

localized slips that allow adaption of grasping force prior

to gross slippage [29], [30]. Inspired by these fast human

mechanoreceptors, several tactile sensors have been devel-

oped, offering high temporal resolutions [7], [31]–[33]. The

corresponding touch processing algorithms for slip detection

investigate the energy of potential vibrations [16], [29], [34],

frequency-domain features in combination with neural net-

works [33], [35], signal coherence analysis [36], and data-

driven approaches using the raw sensor data [37]. Regarding

slip timing, [34] showed that their approach can detect slip

more than 30ms before an IMU accelerometer picked it up.

While all these works present promising approaches to slip

detection, almost all of them rely on special hardware, which

is difficult to access and requires substantial manufacturing

knowledge. Additionally, these tactile sensing technologies

lack spatial resolution.

Optical Tactile Sensors contrarily offer very high spatial

resolutions and have recently become relatively cheap to

acquire, thereby, significantly reducing the entry barrier into

the field. As standard RGB cameras are typically significantly

slower than the previously presented sensors, different slip

detection criteria have been developed. They include analy-

sis of the marker displacement field [38]–[40], model-based

criteria analyzing the inhomogeneity of the force field [41],

and data-driven slip detectors [42] eventually combined with

closed-loop feedback control [43] and multi-fingered hands

[44]. Overall, these works on slip detection using RGB optical

sensors rather focus on sensing displacements than high-

frequency phenomena such as vibrations. Particularly, these

RGB optical tactile sensors cannot offer the temporal resolu-

tions found in human fast-adapting type II mechanoreceptors,

which are sensitive to mechanical vibrations of at least up to

400Hz [7], [17].
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Event-based Tactile Sensors, on the contrary, are able to

operate at human-like temporal resolutions. Moreover, their

asynchronous functioning principle, i.e., only returning infor-

mation whenever the quantity of interest changes, significantly

reduces the overall sensor data rate and could potentially

facilitate operating large tactile skins. Examples of event-

based tactile sensing include [13], [45]–[47]. Yet, these tactile

sensors cannot keep up with the spatial resolution offered by

optical tactile sensors.

Event-based Optical Tactile Sensing. Recent progress in

event-based cameras has led to the development of event-based

optical tactile sensors that can eventually provide both high

spatial and temporal resolution. Ward et al. [22] introduced

the NeuroTac, an event-based optical tactile sensor based on

TacTip [24]. They showed the sensor’s effectiveness on texture

classification tasks and reported spatiotemporal features to

be beneficial. A miniaturized sensor version was presented

in [48]. In similar efforts, [49]–[51] used an event-based

camera behind a piece of silicone inside a parallel gripper,

and investigated its effectiveness on the task of force recon-

struction and material classification for robotic sorting [52].

Compared to this paper, these works investigated different

tasks. In particular, they do not cover exploiting the sensors

for high-frequency closed-loop feedback control for robotic

manipulation.

More closely related are [20], [21]. They both investigate the

task of slip detection from event-based optical tactile readings,

however, without considering closed-loop robotic manipula-

tion. The authors of [21] presented a marker-based tactile

sensor that is read out using a very high temporal resolution

of 0.5ms, and presented a proof of concept for slip detection

using a hand-defined threshold. Their proof of concept only

included a single object, compared to 18 objects investigated

herein. Rigi et al. [20] placed an event-based camera behind

a transparent silicone. They integrated the events for 10ms,
thereby operating at a 10 times reduced temporal resolution

compared to this paper. They also employed a hand-defined

threshold on the change in contact area between sensor and

object to detect the onset of slip. They evaluated their approach

on five different objects, which are all dark in color, as this

benefits their approach.

Closest to this paper is the work of Muthusamy et al. [53].

Their tactile sensor consists of an event-based camera placed

behind transparent plexiglass, creating an event-based version

of the Fingervision sensor [54]. For detecting slippage, they

investigated two approaches: one based on the raw spike count,

and the other one based on the count of edge and corner

features extracted from integrated images. They also combined

their model-based slip detectors with control. Contrary to

our proposed Evetac, their sensor is transparent and comes

without any imprinted markers. Therefore, their model-based

slip detectors rely on the manipulated objects having sufficient

texture, making them less general. Additionally, the gel’s

transparency results in their sensor capturing not only contact-

related phenomena but also events triggered, for instance, by

moving background. This might be disadvantageous as the

background events are essentially noise when considering the

task of slip detection.

From a methodological point of view, all previous ap-

proaches for slip detection using event-based optical tactile

sensors leveraged hand-designed, model-based criteria. Herein,

we take a different approach and use a model-free approach for

learning slip detection and prediction models solely relying on

labeled experimental data. Our approach is thus not focused on

one specific, pre-defined criterion for detecting slip. Instead,

during training, the neural network models are refined to

automatically extract the most important information from the

input features. For automatic data labeling without compro-

mising temporal resolution, we develop a new criterion based

on optical flow. Regarding input features, this work proposes

a novel method for tracking the markers imprinted in the

gel. The marker tracking is capable of providing information

about the gel’s global deformation, complementing the raw

sensor’s sparse and local measurements. We showcase that this

information benefits slip detection.

In terms of sensor properties, Evetac offers a significantly

higher spatial resolution of 640x480 pixels, compared to a

maximum resolution of 240x180 pixels offered by previous

event-based optical tactile sensors. The improved spatial reso-

lution closes the gap to standard RGB optical tactile sensing,

as it is similar to, for instance, the DIGIT sensor [25].

Additionally, we open-source the entire sensor design, and

all other components, such as connectors, used during the

experiments. All the custom components can be recreated

using an off-the-shelf 3D printer. Exemplarily, Evetac can be

seamlessly integrated into a commercially available robotic

gripper as shown in Figure 1. In contrast, for the other event-

based optical tactile sensors, the design files are not openly

available. Moreover, Evetac’s design is built around the idea

of modularity and re-use of existing components. Evetac uses

a commercially available event-based camera, and, contrary

to prior works, also exploits a commercially available soft

silicone elastomer from GelSight Inc. Lastly, to the best of

our knowledge, this is the first work quantitatively comparing

an event-based optical tactile sensor with an established RGB

optical tactile sensor in terms of data rate and shear force

reconstruction.

III. BACKGROUND - EVENT-BASED CAMERAS

Event-based cameras work fundamentally differently than

standard cameras. While in standard, frame-based cameras,

every pixel is read out at a constant frequency, in event-

based cameras, every pixel is independent and only reacts

to brightness changes at its location, making the sensor

asynchronous [26]. Given the brightness of a pixel at posi-

tion x, y, i.e., its log photocurrent L(x, y, t)= log(I(x, y, t))
at time t, the pixel is sensitive to changes in inten-

sity ∆L(x, y, t)=L(x, y, t)−L(x, y, tk) w.r.t. reference value

L(x, y, tk). If this change in intensity reaches either the

positive or negative threshold (±C) at time tk+1, this pixel

triggers a new event ek+1=(x, y, tk+1, pk+1). Every event is

a tuple and contains all the information about the event’s

location (x, y), timing (tk+1), and polarity pk+1∈{−1, 1},

which signals whether the brightness increased or decreased.

Subsequently, the pixel’s reference brightness value is adapted
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Fig. 2: Exploded view of the proposed Evetac sensor. From left to
right, it consists of the following components: A) DVXplorer Mini,
event-based camera, B) 3D printed camera housing, C) LED stripe to
illuminate the sensor from the inside, and D) GelSight Mini dotted
gel. The 3D pointed housing is designed such that the camera’s
distance from the gel can be adjusted to ensure that the camera is in
focus. Moreover, it allows mounting Evetac to an external gripper as
visualized in Fig. 1. For an overview of the components also see Table
I. The total dimensions of the assembled sensor are 32x33x65mm
(width x height x length).

TABLE I: Evetac Hardware Components.

Component Specifications

Camera DVXplorer Mini from Inivation, 640 x 480px resolution.

Housing Custom Design, 3D printed.

Camera Screws 1/4”, thread length 6.3mm e.g., available at [55].

LED stripe
LED COB band 4000K,

height 5mm, width 2.2mm, 12V, e.g., available at [56].

Gel GelSight Mini Marker Gel [57].

to L(x, y, tk+1)=L(x, y, tk) + pk+1C, and from then on, the

pixel is sensitive to changes w.r.t. the updated value. Overall,

the camera’s output is this stream of events.

This asynchronous functioning principle offers many ap-

pealing properties, such as reduced power consumption, high

dynamic range, lower latencies, and high temporal resolution

[26], which we, herein, aim to exploit in the context of touch

sensing, processing, and robotic manipulation.

IV. THE EVETAC SENSOR

We now introduce our proposed Evetac sensor, a new event-

based optical tactile sensor. The sensor mainly consists of

off-the-shelf components and a 3D printed case aiming to

reduce the entry barrier into the field. This section focuses

on the sensor itself by introducing its mechanical design and

hardware components, followed by a description of Evetac’s

raw sensory output.

A. Hardware

Figure 2 depicts the main components of our proposed Eve-

tac sensor. It consists of an event-based camera capturing the

deformation of a soft silicone gel. The sensor is held together

by a 3D printed housing and the illumination is provided

by a white LED stripe surrounding the gel. The housing is

designed such that the distance between camera and gel can

be adapted through two 1/4” camera screws. This allows to

position the camera such that the gel is in focus. The housing

further offers a mounting mechanism on the bottom, allowing

for sensor integration into parallel grippers or a single-finger

configuration as shown in Figure 1 & Figure 5b. We also

designed a similar casing for the standard GelSight Mini such

that we can easily create a setup with one standard GelSight

Mini and one Evetac inside a parallel gripper (cf. Figure 7). All

files for 3D printing are open-sourced on our our website. The

two main design goals of Evetac were to ensure modularity

and maximize reuse of existing components. Apart from the

3D printed housing, all the components are commercially

available. The hardware components are also summarized in

Table I. The event-based camera is a DVXplorer Mini from

Inivation. The soft silicone gel is the same dotted gel that

is also used in the standard GelSight Mini. The choice of

this non-transparent, dotted gel (cf. Figure 9) ensures that the

camera cannot see through the gel. It thus naturally focuses

on capturing contact-related phenomena between sensor and

object with minimum distraction. This also implies that the

sensor is agnostic w.r.t. the manipulated object being textured

or not. Moreover, the black dots that are imprinted in the

gel can provide important information about the gel’s current

global deformation. The dots provide natural features that can

be captured by the camera and used in tasks such as shear

force estimation or slip detection [38], [39], [41], as we will

later also show for Evetac in Sec. VI & Sec. VII.

Besides the modular design, the event-based camera is

the key component that differentiates Evetac from standard,

classical optical tactile sensors such as GelSight [58], DIGIT

[25], or TacTip [24]. The asynchronous functioning principle

has many desirable properties. In this work, we particularly

want to build upon the camera’s sparse output, high temporal

resolution, and low latency for high-frequency, real-time touch

sensing, processing, and feedback control.

B. Raw Sensor Output

As mentioned in Sec. III, on the lowest level, event-based

cameras return single events characterized by their location

x, y, timing t, as well as polarity p, i.e., e=(x, y, t, p). Yet,

when reading out event-based cameras with standard comput-

ers, the events are typically accumulated on the camera before

they are sent via USB to the computer for further processing.

Herein, we configure the event-based camera such that the

events are accumulated for 1ms before they are sent to the

computer. Therefore, every millisecond we receive the set of

NE events SE(ti)={ek, k∈NE}, that have been created within

the previous millisecond, i.e. ∀ek=(xk, yk, tk, pk)∈SE(ti) :
ti−1ms=ti−1≤tk<ti. Evetac’s current measurements, i.e.,

the received set of events, can also be visualized in image

form, e.g., as shown in Figure 3a. For the image visualization,

all pixel locations where no events occurred are colored in

gray. The white pixels correspond to locations where on-events

have been triggered (i.e., the pixel intensity increased), and the

pixels in black correspond to locations of off-events. As the

sensor’s output is very sparse, for visualization purposes, we

actually show the combination of the last five measurements in

all figures throughout the paper. Thus, the images depict the

events triggered within the past 5ms. The images have the

same resolution as provided by the camera, which is 640x480

pixels. We want to point out that the information received from

Evetac and its event-based camera is highly time-dependent.

When there is no change in the gel’s state, no events are

triggered, and we do not receive any information. If the gel is

https://sites.google.com/view/evetac
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(a) Touching Evetac with the fingertip
and moving the gel.

(b) Touching Evetac with an object
and rubbing it fast over the gel.

Fig. 3: Both pictures show the current contact configuration (left) &
Evetac’s output in image form (right). As mentioned in Sec. IV-B,
Evetac returns the raw events accumulated for 1ms. Since Evetac’s
raw output is extremely sparse, for visualization purposes, we actually
illustrate the combination of the last 5 measurements, i.e., the events
triggered within the last 5ms. In the pictures that show Evetac’s raw
output, all pixels in gray correspond to locations where no events
have been triggered, while the white pixels illustrate locations of on-
events, and the black pixels are the locations of off-events.

moved (e.g., as shown in Figure 3a & Figure 3b), many events

are triggered and returned to the computer. While it would be

possible to configure Evetac’s event-based camera to return

event sets even more frequently, we believe that our choice

of grouping the events for time intervals of 1ms, thereby

receiving measurements at 1000Hz, provides a good tradeoff

between temporal resolution and computational feasibility of

additional signal processing algorithms. In terms of software

implementation, we build on top of the dv-processing library

provided by Inivation [59]. We extend their code with our

touch processing methods presented in the next section and

also implement a ROS interface, facilitating data recording

and visualization.

V. EVETAC TOUCH PROCESSING

In its standard configuration, Evetac returns event sets at

1000Hz (cf. Sec. IV-B). While it would be possible to directly

exploit Evetac’s raw sensory output for solving downstream

tasks such as slip detection, in this section, we will introduce

additional touch processing algorithms operating on top of

Evetac’s output. These algorithms and their output aim to

provide meaningful intermediate representations. In particular,

they also further compress the dimensionality of Evetac’s raw

output, which benefits meeting the computational requirements

and ultimately achieving real-time feedback control. Moreover,

the dot tracking algorithm, which will be introduced next, is

designed for keeping track of Evetac’s global configuration,

i.e., the configuration of the gel, despite the sensor’s sparse

measurements triggered by local changes.

A. Signal Processing - Dot Tracking

Evetac’s raw sensory output solely contains local, relative

information. This is fundamentally different from the raw

output of RGB optical tactile sensors, which, at every sensor

measurement, return a complete image of the gel. While the

former might be more efficient from the perspective of only

retrieving information when changes occur, it also comes at

the disadvantage of not being able to reconstruct the gel’s

t = ti t = ti+1 SE(ti+1)

Fig. 4: Illustrating how the movement of a black dot in front of
a white, bright background triggers events. In the leftmost picture,
at time ti, the dot is moving to the right, resulting in a slightly
shifted position at time ti+1 shown in the middle frame. This slight
dot movement between ti and ti+1 causes events SE(ti+1) that are
visualized in pictorial form in the rightmost frame. The pixels colored
in white in the right frame correspond to the locations where on-
events were triggered. The brightness of all these pixels changed
from being occupied by the black dot at ti to being occupied by the
white background at ti+1. Due to this intensity change, events have
been triggered at these locations. For the pixels colored in black,
the opposite happened, i.e., the brightness changed from the white
background to the black dot. At all the remaining pixel locations, no
events have been triggered. They are thus colored in neutral grey.

global configuration given a single measurement. When no

changes are happening across the gel surface, Evetac’s mea-

surements will not contain any events, and, therefore, provide

no information. As mentioned earlier, Evetac uses a gel with

imprinted markers, i.e., dots (cf. Figure 9), to visualize gel

movements. Their positioning provides information about the

current gel deformation. Since this global information might

be important for some tasks, such as shear force reconstruction

or slip detection, in the following, we provide an algorithm for

tracking the dots’ positions.

Our proposed dot tracking algorithm builds upon the work

of [60], who presented a model-based tracker for event-based

cameras. The algorithm is based on the assumption that all

triggered events are caused by the movement of the object that

is to be tracked. Since event-based cameras register changes in

lighting intensity, it is the edges of uniformly colored objects

that trigger events. The two leftmost frames of Figure 4 illus-

trate the scenario of a black dot (i.e., the object) moving to the

right between times ti and ti+1. As illustrated in the rightmost

frame of Figure 4, in the direction of movement, pixels change

from the white, bright background to the black color of the

moving dot. This change, i.e., decrease, in brightness triggers

negative off events. On the other side, i.e., opposite to the

dot’s moving direction, pixels change from the dot’s black

color to the bright background, yielding positive on events.

Exploiting this insight that an object’s edges trigger events

upon movement, the model-based tracking algorithm consists

of two main steps. First, finding correspondences between the

triggered events and model edge points. Second, updating the

model’s pose estimate given the established correspondences.

Without loss of generality, in the following,

we present the algorithm assuming a single event

ek(xk, yk, tk, pk)=(xk, tk, pk) that has already been assigned

to one of the gel’s dots. In the first step of correspondence

matching, we find the closest model edge point x
m
j ∈R2

that could have caused this event, given the model’s current

pose described by rotation R(θi)∈SO(2) and translation

vector ci=[cxi
, cyi

]T∈R2. We create an assignment between

event and model point k→j minimizing d(k, j)=∥xk,x
m
j ∥

2
.

Given the correspondence, we update the model’s pose
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through rotation matrix R(θ)∈SO(2) and translation vector

c=[cx, cy]
T , attempting to correct the model pose such that

it explains the observation. This is done by minimizing

objective function f=∥xk−(R(θ)xm
j→k+c)∥

2

2
. While it

would be possible to find the unique optimal solution

to minimize f , the authors of [60] proposed to apply a

gradient-based update, i.e., θi+1=θi−α∇θf |θ=0,c=[0,0]T ,

and ci+1=ci−α∇cf |θ=0,c=[0,0]T . One motivation for the

gradient-based update is that the event data is inherently

sparse. Also, in case of multiple events, the gradients can

simply be accumulated. Therefore, the gradient magnitude

changes with the number of events. Exemplary, in scenarios

with only a few events, the gradient-based update only slightly

adjusts the object pose, instead of greedily converging to

the best pose. This is advantageous since not all events

are triggered by object movements. Especially in low event

scenarios it might happen that the majority of events come

from sensor noise.

For our particular case of dot tracking, we can simplify the

update rule and correspondence matching. First, due to the

rotational symmetry of the model, we can omit optimizing its

orientation. Second, while [60] define model edges through a

discrete set of points, for tracking dots, we can analytically

calculate the closest model point x
m
j→k for every event at

location xk. Using geometry, the closest model point has to

lie at dot radius r away from the dot’s center point, in the

direction of the event, i.e., xm
j→k=rxk/∥xk∥2. Note that this

assumes that the event’s coordinate xk is already given with

respect to the dot’s current center location ci. Subsequently,

the objective for adapting the dot’s location equates to

f = ∥xk−(xm
j→k + c)∥

2

2
= ∥xk−(rxk/∥xk∥2 + c)∥

2
2. (1)

The gradient can be obtained in closed form as

∇cf |c=[0,0]T = −2(xk − rxk/∥xk∥2). (2)

In conclusion, we obtain a closed-form solution for updating

the dot’s center coordinate, given an event at location xk. If

more than one event is associated to a certain dot, i.e., when

having to deal with a set of events SE(ti+1, ci), the resulting

update is the sum of the updates for every individual event

∇cf(SE(ti+1, ci))|c=[0,0]T =

|SE|∑

l=1

−2(xl−rxl/∥xl∥2). (3)

Initial testing of this gradient-based tracking scheme showed

that it worked well in conditions where the dots’ movement

caused the majority of the events. Yet, the algorithm is prone

to losing track when an external object moves really fast over

the gel. In such situations, the stream of events caused by the

edges of the moving object can outweigh the events triggered

by the dots’ movement, as shown in Figure 3b. This might

result in our tracking algorithm following the stream of events

caused by the external object, thereby losing track. This issue

is especially problematic when considering that Evetac itself

only returns sparse, relative measurements. It is, therefore,

very difficult to recover the dots’ poses once track has been

lost since single Evetac measurements are not sufficient. To

counteract the issue and attempt to prevent losing track at first

place, we propose the following addition to the algorithm. The

addition is a regularizing term, emerging from the idea that

despite the gel deforming, the dots should still roughly stay

within their original grid-like structure. In other words, the

dots’ positions relative to each other should not change too

drastically. Without loss of generality, we now consider a pair

of neighboring dots at locations c1i and c
2
i which have been at

an initial distance d1,2 = ∥c10 − c
2
0∥

2
2 at the start of the tracking

for which we assume that nothing is pressing against Evetac.

Exemplarily, if we want to regularize the position update c

of dot 1 based on its initial distance to dot 2, the updated

objective with weighting factor wdist equates to

freg = f + wdistfdist

= f + wdist(∥(c
1
i + c)− c

2
i ∥

2

2 − d1,2)
2.

(4)

The additional term basically penalizes moving too far or too

close to the other dot, taking the initial distance as reference.

Calculating the gradient for the regularizing term results in

∇cfdist|c=[0,0]T = 4(c1i − c
2
i )(∥c

1
i − c

2
i ∥

2

2 − d1,2). (5)

While this example only considered a pair of dots, we add the

same regularization term for all the direct neighbors of a dot.

Herein, a dot can have at maximum 8 neighbors (i.e., along the

horizontal, vertical, and the two diagonals), and at minimum

three for the dots in the corner. Due to these differences in

the number of neighbors, wdist is scaled by 8 divided by the

dot’s actual number of neighbors such that the regularizing

term is of similar magnitude for all dots. Lastly, we want to

point out that a dot’s location is only updated if events are

triggered at its location. Without this additional constraint, the

regularizing term might cause a dot to move without any events

being present at its location.

B. Evetac Touch Features

Before proceeding with the next sections, in which we will

use Evetac to infer contact-related phenomena, we provide a

short overview of the features that we consider in this work.

While the sensor’s raw measurement (cf. Sec. IV-B) provides

a set of events SE(ti) at current time ti at a spatial resolution

of 640 by 480 pixels, in the next sections, we will mainly

exploit lower dimensional features. Building on top of these

lower dimensional features facilitates meeting Evetac’s real-

time requirements, as any further processing also has to be able

to handle the data at a frequency of 1000Hz. In the remainder

of the paper, we will consider the following features:

• Overall, raw number of events, NE(ti) = |SE(ti)|.
• Raw number of events per dot, i.e., for dot at location ci,

NE(ti, ci) = |SE(ti, ci)|. This quantity relies on the dot

tracking algorithm estimating the dot’s center location ci.

An event is associated with a dot if the event’s location

is less than 20 pixels away from the dot’s center.

• Number of events for all the ND dots EC(ti) =
{NE(ti, c

l
i), l ∈ ND}

• Positions of all of the ND dots PC(ti) = {cli, l ∈ ND}
• Displacement of the dot at current location ci w.r.t. its

initial location c0, i.e., dci
= ∥ci − c0∥2
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(a) (b)

Fig. 5: Experimental setups for the Evetac benchmarking experiments
of sensing vibrations (cf. Sec. VI-A, (a)) and shear force reconstruc-
tion (cf. Sec. VI-D, (b)). For both experiments, we have Evetac
mounted in the end-effector of a Franka Panda robot. In Fig. 5a,
Evetac presses against a speaker which is set to generate a tone
with a desired frequency. Through making contact with the speaker,
Evetac can perceive the vibrations of the speaker and reconstruct the
vibration frequency as shown in Fig. 6. In Fig. 5b, Evetac presses
against an object mounted on top of a F/T sensor. Through moving
the robot, we shear the gel. By combining our proposed dot tracking
algorithm with a model, we attempt to recover the shear forces acting
upon the gel as shown in Fig. 8.

• Displacements of all of the dots DC(ti) = {dl
ci
, l ∈ ND}

Our reasoning for this choice of features is that the raw

number of events might be beneficial for resolving very

fast phenomena, while the displacement features will provide

more information about the gel’s current deformation. We

nevertheless want to point out that this list only covers a very

small portion of possible features that could be extracted from

Evetac’s raw output. It might well be that there exist more

powerful and informative features that would actually benefit

and improve Evetac’s performance on downstream tasks.

VI. BENCHMARKING EVETAC

In this section, we present four experiments to showcase

Evetac’s properties. First, we use Evetac to sense vibrations

up to 498Hz and validate its high temporal resolution. Second,

we compare the data rate of Evetac and a RGB optical tactile

sensor in a grasping and slipping experiment, highlighting the

advantages of Evetac’s sparse output. Third, we investigate

the effectiveness of the regularizing term for dot tracking. For

this purpose, we compare the unregularized and regularized

version of the dot tracker w.r.t. losing track of the dots

when interacting with the gel using our fingertips and tools.

Lastly, we evaluate the quality of the proposed regularized dot

tracking method. We do so by considering the task of shear

force reconstruction, solely using the dot’s positions as input.

We again also compare against an RGB optical tactile sensor.

Additional videos are available on our website.

A. Sensing Vibrations

This experiment aims to verify Evetac’s high tempo-

ral resolution of receiving sensor feedback at 1000Hz by
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Fig. 6: Frequency spectrums of the vibration sensing experiment.
The plot shows the normalized frequency spectrums (i.e., amplitudes
normalized to [0,1]) measured by Evetac when pressing against a
speaker which is set to different frequencies fd (cf. Fig. 5a). The
spectrums are obtained by performing a Fourier transform on the
total number of events measured per millisecond for a duration
of Tw=10 s. Evetac recovers the main vibration frequency of the
speaker (fd) reliably up to frequencies of 498Hz as the peaks
in the measured frequency spectrum align with fd. This confirms
the sensor’s high temporal resolution and its readout frequency of
1000Hz.

TABLE II: Numerical results for the vibration sensing experiment
(cf. Fig. 5a & Fig. 6). The table reports the success percentage
and successful detections of the speaker’s frequency fd considering
different time windows Tw. The results underline Evetac’s high
temporal resolution. Vibrations up to 498Hz can be detected reliably.

Speaker Detected Frequency
Frequency Tw = 10 s Tw = 1 s Tw = 1 s

50Hz 100% (10/10) 100% (50/50) 99% (99/100)
100Hz 100% (10/10) 98% (49/50) 96% (96/100)
150Hz 100% (10/10) 100% (50/50) 100% (100/100)
200Hz 100% (10/10) 92% (46/50) 69% (69/100)
250Hz 100% (10/10) 100% (50/50) 100% (100/100)
300Hz 100% (10/10) 100% (50/50) 99% (99/100)
350Hz 100% (10/10) 100% (50/50) 100% (10/10)
400Hz 100% (10/10) 100% (50/50) 98% (98/100)
450Hz 100% (10/10) 100% (50/50) 100% (100/100)
498Hz 100% (10/10) 100% (50/50) 100% (100/100)

Avg. 100% (100/100) 99% (495/500) 96% (961/1000)

measuring vibrations generated by a speaker. According to

Nyquist–Shannon sampling theorem [61], given sampling

frequency fs, perfect signal reconstruction is possible for

bandwidth B < fs/2, i.e., B < 500Hz for our case. The

experimental setup is shown in Figure 5a. We attach Evetac

to a 3D-printed mount that can be screwed to the mounting

flange of the Franka Panda 7DoF robot. The robot presses

Evetac against a commercially available Bluetooth speaker

(Anker Soundcore mini). The tone frequency played by the

speaker fd is controlled through the mobile phone app ”Tone

Generator” which generates pure sine wave tones at the desired

frequency. The speaker is placed upside down and set to

maximum volume. Evetac presses against the bottom of the

speaker. We ensure that Evetac directly touches the speaker’s

metal housing and not the rubbery ring on the edge, as the

rubber will dampen the vibrations. On the other side, the

speaker’s housing is in direct contact with a piece of wood.

This experimental setup ensures that there is no dampening

material between the metal housing of the speaker and the

piece of wood / Evetac. Therefore, the speaker will vibrate

when generating the sound.

https://sites.google.com/view/evetac
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Since Evetac is touching the speaker, the vibrations will be

transmitted to the gel and make the black dots within the gel

move. Evetac’s event-based camera will capture this movement

of the dots, and events will be generated proportional to the ve-

locity of the dots or changes in their size. We, therefore, expect

the number of events to oscillate with the same frequencies

that are triggered by the speaker’s vibrations. The most excited

frequency component should coincide with the tone frequency

fd that the speaker is tasked to play. For recovering fd from

the sensor readings of Evetac, we propose to apply a Fourier

transform to the absolute number of events (NE(ti)) over a

time series of length Tw. Given the spectrum in the frequency

domain, we remove all frequency components smaller than

25Hz, as we are only interested in sensing higher frequency

vibrations. Subsequently, we select the frequency component

that exhibits maximum amplitude. If this frequency is within

±1Hz of the tone frequency that we set the speaker to, we

label this as a correct detection of the vibration.

To evaluate the performance of this procedure, we set the

speaker to play tones with 10 different frequencies ranging

from 50Hz to 498Hz. For each frequency, we create a

recording for 100 s. The result for extracting and analyzing

one measurement of length Tw=10 s for all frequencies is

illustrated in Figure 6. As can be seen, the peaks in the

measured frequency spectrum coincide with the frequency we

set the speaker to (fd). For a more thorough analysis, we divide

the entire recording into pieces of length Tw and apply our

procedure to recover fd to all of the sequences individually.

The results are presented in Table II. Overall, the sensor and

processing pipeline are capable of sensing the speaker’s tone

through the vibrations with high success rates. Considering

longer time series, i.e., Tw=10 s, it is possible to perfectly

recover the vibration frequency. For Tw=2 s, i.e., dividing

the trajectory into 50 segments of length 2 seconds each,

only in 5 out of 500 segments, the vibration frequency of

the speaker (fd) was only the second most excited frequency

component, while half of the tone frequency (fd/2) was the

most excited one. Considering shorter time windows such as

Tw=1 s, the performance of identifying fd through the most

excited frequency component again slightly decreases. In the

shorter time windows, it happens more frequently that either

half or double of the tone frequency fd are the most excited

components. Nevertheless, the speaker’s vibration frequency

is still always amongst the three most excited components.

Overall, we conclude that Evetac is able to accurately sense

high-frequency vibrations. We thereby also validate Evetac’s

high temporal resolution. The highest frequency that was able

to be recovered was 498Hz, which is very close to the Nyquist

frequency of our setup, i.e., 500Hz.

B. Data Rate Experiments

Next, we compare the sensor data rate of our proposed

Evetac sensor and a standard RGB optical tactile sensor

(GelSight Mini [57]), considering the sensors’ raw outputs.

For tactile sensing applications, sensor data rate is crucial as

we ideally want to deploy tactile sensors all around a robot’s

surface. Less sensor data rate thus also correlates with less

information that needs to be processed. As experimental setup,

we consider a parallel gripper, where one of the fingers is

equipped with Evetac, and the other one with a GelSight Mini

(cf. Figure 7). As shown in the small pictures of Figure 7 and

in the supplementary videos, for comparing the data rates,

we execute the following maneuver. We start with the gripper

fully open and close it to make contact with the object.

Next, we establish a predefined grasping force, resulting in

a stable grasp. After stable grasping, we mimic perturbations

that might occur during manipulation by pressing onto the

object. Since the sensors’ gel is elastic, this will make the

object oscillate within the fingers, however, without breaking

contact. Finally, we open the gripper, which will cause the

object to slip.

For the data rate comparison, we make the following as-

sumption. Since we used a modified version of the gels, which

will later be introduced in more detail (cf. Sec. VII), we only

consider a sensing area of 540 by 480 pixels for both of the

sensors. Yet, we want to point out that the reduced sensing area

has no effect on the results. The RGB optical tactile sensor,

i.e., GelSight Mini, returns 3 color values per pixel. Each of

them is in the range of 0-255 and can be represented by 1

byte. Thus, one output from the RGB optical tactile sensor

has 540∗480∗3=777600 bytes. For Evetac, we receive a set

of events with varying size every millisecond (cf. Sec. IV-B).

Every event can be represented by 5 bytes. In particular, we

require 2 bytes to encode the event’s x coordinate and 2 bytes

for the y coordinate, together with 1 byte signaling its polarity.

Figure 7 illustrates the two sensors’ outputs in bytes for one

of the exemplary trajectories. As can be seen, while the syn-

chronous RGB optical tactile sensor always returns a fixed-size

output, Evetac is more selective. Evetac’s output exhibits clear

spikes whenever something happens at the contact location,

as its output size correlates with the number of events. At all

other times, almost no sensor output is generated. Numerical

results are presented in Table III. The table reports the ratio

between data rate (i.e., bytes/s) used by Evetac w.r.t. data rate

generated by the RGB optical tactile sensor for different parts

of the trajectory. Although Evetac is read out at a 40 times

higher frequency (1000Hz vs 25Hz), it only produces 1.7%

of the RGB optical tactile sensor’s data rate considering the

entire trajectories. Even when only considering a 0.5 s interval

around the moment of slippage, which is the point in time

when Evetac returns most information, it still only generates

around 11.9% of the RGB optical tactile sensor’s data.

This experiment underlines the efficiency of Evetac and the

underlying event-based camera. It only returns information

when something at the contact is changing and thus produces

considerably less data compared to a standard, RBG optical

tactile sensor that always returns fixed-size measurements

irrespective of changes in the image and contact configuration.

C. Effectiveness of Regularization in Dot Tracking

While the previous two experiments mainly considered

the sensors’ raw outputs, in this experiment, we investigate

the effectiveness of the regularization in the dot tracking

algorithm (cf. Sec. V-A). As mentioned previously, the dot
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Fig. 7: Data rate comparison between Evetac and a RGB optical tactile sensor (GelSight Mini), considering a manipulation maneuver of
grasping an object, perturbing the object, and finally forcing object slippage. As can be seen, Evetac’s output size correlates with changes
in contact configuration, and, per measurement, is of significantly smaller size. For numerical results on sensor data rate, see Table III.

TABLE III: Data rate comparison between Evetac and a RGB optical
tactile sensor averaged over 5 trajectories (reporting mean & standard
deviation). See Fig. 7 for one of them. The relative data rate of
Evetac w.r.t. the RGB optical tactile sensor is reported. Since Evetac’s
output is correlated with changes in contact configuration, different
time intervals are considered. The ratio is reported for 1) the entire
trajectories, 2) the timespan between making contact and object
slippage, and 3) a 0.5 s interval around the moment of slippage.
Despite Evetac running at a significantly higher frequency (1000 vs
25Hz), regarding the overall trajectory, it only consumes 0.017 of
the data rate of the RGB optical sensor.

data rate ratio entire trajectory
making -

breaking contact

slip

only

Evetac / RGB Optical

Tactile Sensor
0.017 (0.004) 0.028 (0.008) 0.119 (0.006)

TABLE IV: Evaluating the effectiveness of the regularized dot
tracking. We report on how many out of 10 trajectories the regularized
and unregularized version of the dot tracking algorithm successfully
completed the dot tracking, i.e., did not lose track of any of the dots.
We also report the average number of dots for which track was lost
in the unsuccessful trajectories (Nlt).

Tracking Algorithm Version Success Rate Nlt

Unregularized 20% (2/10) 9.5

Regularized 80% (8/10) 1.5

tracking algorithm assumes that dot movements trigger all

events. While this holds true for some tactile interactions as

shown in Figure 3a, in other situations, the edges of an object

sliding over the gel might trigger many events that might even

outweigh the events triggered by the dots (cf. Figure 3b).

These additional events, which are not triggered by the dot

movement, contradict the assumptions of the dot tracking and

might cause it to lose track of the dots. To counteract the

dot predictions following the events triggered by the moving

object, we introduced a regularization term, regularizing the

dots’ positions relative to each other based on their initial

distance.

In this experiment, we compare the two versions of the dot

tracking algorithm, i.e., the unregularized and the regularized

one. We consider 10 trajectories in which we either make

contact with Evetac using a finger or the handle of a scis-

sor. Snapshots from two trajectories are shown in Figure 3a

and Figure 3b. After making contact, we performed several

movements to shear the gel. Most importantly, we also ensure

that there is slippage, i.e., relative motion between the sensor

and object, during which also the object’s edges and shape will

trigger events. All the trajectories start and end with nothing

touching the gel. Thus, the dots should be at their equilibrium

position at the start and end. For comparing the two dot

tracking versions, we report the percentage of trajectories for

which the dots end up close to their initial position, i.e.,

for which the tracking was successful throughout the entire

trajectory. For this, all dots have to end up within a radius

of 20 pixels from their initial position. Additionally, for the

unsuccessful trajectories, we report the mean number of dots

for which track was lost (Nlt).

Table IV shows the results and underlines the effectiveness

of the regularized dot tracking. The regularizer helps in

increasing the number of successful trajectories by a factor of

4, from two to eight. Moreover, even in the unsuccessful cases,

the number of dots for which track was lost is substantially

decreased. We also provide supplementary videos comparing

the two trackers across the trajectories. They illustrate that

the regularized tracker does not compromise tracking quality.

We nevertheless want to point out that the trajectories in this

experiment rather cover extreme cases. As we will show later,

when an object slips, normally, most of the events are still

triggered by the dots. We still think that a robust dot tracker

is important as Evetac and the touch processing algorithms

should be capable of dealing with a wide range of scenarios.

Thus, throughout all of the following experiments, we use the

regularized version of the tracker.

D. Dot-based Shear Force Reconstruction

Due to their sensing principle, event-based cameras nat-

urally only return relative, sparse information. While this

property is beneficial with respect to sensor data rate, it

might be a limitation in scenarios where knowledge about

the gel’s global deformation is important. In this section,

we, therefore, evaluate the previously proposed regularized

dot tracking algorithm (cf. Sec. V-A) through the task of

shear force reconstruction solely using the dots’ displacements
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Fig. 8: Shear force reconstruction from tracking the dots of Evetac
(top) and a RGB optical tactile sensor (bottom). For the experimental
setup, see Fig. 5b. GT corresponds to ground truth measurements
of a F/T sensor, LR to the linear regression model, and NN to the
neural network model. Qualitatively, the shear force reconstruction
leads to similar quality despite the different sensor types. Since
the reconstruction is solely based on the dots’ displacement, we
conclude that our presented regularized dot tracking tracks the dots
with good accuracies, despite the sparse and relative output of Evetac.
Numerical results are presented in Table V.

TABLE V: Numerical Results for Shear Force Reconstruction exper-
iment (cf. Fig. 8).

MAE [N]
Method Sensor Fx Fy

Linear Regression
Evetac 0.53 (0.41) 0.41 (0.29)

RGB Optical 0.53 (0.49) 0.44 (0.29)

Neural Network
Evetac 0.33 (0.25) 0.22 (0.18)

RGB Optical 0.35 (0.30) 0.37 (0.26)

DC(ti) as input. We will compare against the quality of shear

force estimation based on tracking the dots using a standard

RGB optical tactile sensor (GelSight Mini).

For conducting the experiment, we mount the two tactile

sensors on the end effector of a 7DoF Franka Panda robot.

Figure 5b shows the setup for Evetac. We designed a similar

mount allowing to attach GelSight Mini to the robot in the

same pose. As shown, the robot presses the respective sensor

against a flat, 3D-printed object, which in turn is mounted

on top of a SCHUNK FTCL-50-40 force torque sensor (F/T

sensor). Upon the robot establishing contact between tactile

sensor and the 3D printed object, it executes a trajectory

of predefined waypoints that result in shearing the gel. The

trajectories cover shear forces in the range of ±10N. The

tactile sensors are aligned such that the direction in which

they have 9 dots, i.e., the longer side, aligns with the x-axis

of the F/T sensor. During manipulation, we track the position

of the dots and record the readings of the F/T sensor. For

Evetac, we use the previously proposed regularized dot tracker

Sec. V-A. For the RGB optical tactile sensor, we use the

optical-flow-based tracker from the GelSight repo [62]. We

end up with one training dataset per sensor, which consists of

4 trajectories, and one separate, previously unseen trajectory

for evaluation. The trajectories differ in that the sequence of

the waypoints is randomized. Additionally, we randomized the

relative translation in x- and y-direction between sensor and

3D printed object within ±1 cm. Each trajectory contains 200

datapoints. Each datapoint contains the displacement of all of

the 63 dots of the gel (DC(ti)), as well as the shear force

readings of the F/T sensor.

To evaluate the dot-tracking quality, we attempt to recon-

struct the shear forces based on the displacement of the tracked

dots. For this experiment, we investigate two models.

Linear Regression. Inspired by [23], we attempt to fit

a linear model, mapping from the overall displacement of

the dots in the x and y direction to the shear forces in the

respective direction. For fitting the model, we use the training

trajectories and do a least squares minimization.

Neural Network. The second model is a fully connected

neural network. As input, this model takes the displacement

of every individual dot in x- and y-direction. Given we have

63 dots, this forms a 126 dimensional input. The network

consists of 2 fully connected layers with 128 neurons, each,

using the ReLU activation function. We also add 25% dropout.

On the last layer, we map to two outputs, i.e., Fx and Fy . For

training, we use the same trajectories we use to fit the linear

model. However, we additionally divide these 4 trajectories in

3, which will be used for training, and 1 for testing. We train

the model for 50 epochs and select the model with the lowest

loss on the test dataset.

The results when evaluating the trained models on the pre-

viously unseen evaluation trajectory are presented in Table V

and Figure 8. As shown in Figure 8, qualitatively, both of

the models are able to reconstruct the shear force throughout

the trajectory. Quantitatively (cf. Table V), considering the

Linear Regression models, the force reconstruction through

the dot tracking from Evetac, or the RGB optical tactile sensor

yield similar results. The fact that the error for the x-direction

is slightly higher might be related to the fact that there are

more measurements at higher forces for the x-direction. Using

the more powerful neural network model helps to improve

the results, reducing the error in estimating Fx by around

37% for both sensors, and for the y-direction by around

46% and 16% for Evetac and the RGB optical tactile sensor,

respectively. Overall, we conclude that reconstructing the shear

forces from tracking the dots’ locations is possible with good

accuracies. Moreover, the shear force reconstruction is of

similar quality for both sensors. Small variations in the results

might be related to the fact that the trajectories for recording

the data with the different sensors might be slightly different.

Nevertheless, these results are in line with our expectations,

and they confirm that our proposed regularized dot tracking

from Evetac’s raw output is of similar quality than performing

dot tracking from images of the RGB optical tactile sensors.

VII. SLIP DETECTION USING EVETAC

After successful validation of Evetac’s basic properties, we

next focus on a more practically relevant task - slip detection.

Reliable detection of slip is a crucial task in robotics and has

received lots of attention. The task is especially important

as any slippage is related with unstable contacts between
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TABLE VI: Overview of the training and testing objects considered for the slip detection and grasp control experiments. In the materials
column, G represents glass, M metal, P plastic, and Pa paper. For cylindric objects, only their diameter is provided (as width).

Training Objects. Testing Objects.

Obj ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Mass g 341 325 70 102 236 273 100 114 119 72 108 38 116 166 56 74 248 550

Height mm↕ 145 145 145 145 140 135 115 105 125 185 140 150 118 85 102 80 190 190

Width mm↔ 74 70 35 27 36 52 26 41 33 50 48 10 40 71 25 42 60 60

Depth mm 61 36 63 35

Material G G M P G M P Pa G P M M P P P Pa G G

Comment empty filled

Fig. 9: Illustrating the original gel (left) in comparison with the mod-
ified cut version (right), providing the view from the outside and the
inside. The modified gel enables seeing the object’s movement from
within the sensor (cf. Fig. 10). This allows running the slip classifier
on the same image, which also contains the tactile measurements and
circumvents any additional delays (cf. Sec. VII-B). The part of the
gel was removed using a simple box cutter, cutting vertically until
reaching the plexiglass and subsequently scraping off the small part.

finger, i.e., sensor, and object. For achieving stable grasping,

any slippage requires quick corrective actions in order to

prevent dropping the grasped object. In the following, we

will introduce, our data-driven, model-free approach for slip

detection. We particularly want to learn the slip detector from

data as we want to avoid pre-specifying any slip criteria. We

want the neural network models to automatically learn and

focus on the most important information based on labeled

training data. The following section is structured as follows.

First, we describe the experimental setup and our procedure

for labeled data collection. Second, we present the classifier

for labeling the data. Third, we provide the training procedure

and the architectures of the neural network models for slip

detection. Last, we provide an evaluation of the trained models

on previously unseen data, first considering the training ob-

jects, followed by an evaluation on novel objects. One section

later, we also investigate the effectiveness of the slip detection

models for stable object grasping, by integrating them into a

real-time, reactive feedback control loop.

A. Experimental Setup and Data Collection Procedure

For collecting the labeled data, we use the setup shown in

the leftmost picture of Figure 10. The setup consists of 2 Eve-

tac sensors that are installed in ROBOTIS RH-P12-RN(A) 2

finger gripper. The two Evetac sensors are synchronized before

data collection, and both read out at 1000Hz. The gripper is

controlled at 500Hz. The training objects and their properties

are presented in Table VI. As shown in the supplementary

videos, for collecting the data, the objects will be grasped by

the gripper. Subsequently, we force slip by opening the gripper

using current control. Starting from the currently applied

current, when the object is held stably, we adapt the target

current every timestep by randomly sampling a value from

within [−0.025,−0.0025]mA, i.e. considering one second, the

target current is adapted between [−12.5,−1.25]mA. This

tcs0−30ms tcs0 tcs0+30ms

Fig. 10: Series of pictures illustrating Evetac’s measurements during
labeled data collection. Left, we see Object 8 held in the gripper,
shortly (30ms) before the object is going to slip. Upon further
opening the gripper, the object starts to slip (middle). Note how,
especially in the lower, window region of the gel, we can now clearly
see events related to the texture moving. The number of events
triggered by the moving texture increases further upon the object
accelerating (right).

way, we collect 40 trajectories per object, and 360 in total, that

we will use for training. We split them into 315 trajectories

used to train the model and 45 trajectories that form the test

dataset during training.

B. Data Labelling - Slip Classifier

One of the most important components for learning a

slip detector from labeled data is the classifier for actually

labeling the data. While most previous works rely on different

sensors for data labeling, such as external cameras tracking

Aruco markers [44], OptiTrack markers [13], or using IMUs

attached to the object [34], in this work, we take a different

approach. We aim to recover the moment of slip from the

readings of Evetac. For this purpose, we cut the original gel

and removed a small piece using a box cutter as shown in

Figure 9. Due to the transparent plexiglass remaining in the

cut region, we can essentially see through the sensor at this

location. Now, looking through the transparent part of the

sensor, i.e., the region without any gel remaining, we can

determine when the object starts moving using an optical flow

based criteria. While this choice comes at the disadvantage of

losing part of the contact area of the tactile sensor (roughly

15%), it comes with the big advantage that the signal that

is used to determine the moment of onset of object slippage

is inherently aligned with the raw tactile measurements. Any

errors due to synchronization can thus be eliminated, and

the classifier naturally provides the same temporal resolution

as the tactile readings. We nevertheless want to point out

that we had to run the slip classification procedure offline,

i.e., after having collected the data, thereby not having to

meet any real-time requirements. The slip classifier relies on

representing Evetac’s raw measurements as images and the
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objects exhibiting texture in the window region, as shown in

Figure 10. We label Evetac’s raw measurements as slip or non-

slip samples by computing the optical flow between the current

measurement and the measurements 4ms ahead. We motivate

this forward-oriented flow calculation (i.e., calculating the

flow of the current measurement w.r.t. a measurement in the

future) with the fact that for events to be triggered, the object

has to be in motion. Thus, if we have optical flow between

consecutive Evetac measurements, we know that the object

changed its position, but also that the motion started already

in the initial frame. Moreover, this choice aims to mitigate

any delays in slip classification and is enabled by the fact

that we label the measurements offline, after having collected

the data. For computing the optical flow, we use the OpenCV

implementation of the Gunnar Farneback [63] method. We

compute the flows for both regions of the image separately,

i.e., the flow for the region with the markers and the window

region. If the relative flow between the window and the marker

region exceeds a certain threshold, then we mark the current

measurement as belonging to the slip class. We consider the

relative flow between the two regions since in situations where

the flow in the tactile region and the transparent window

region are equal, but both nonzero, we still want to obtain

a non-slip label, as the elastic gel and object are moving in

accordance and not relative to each other. Thus, there is no slip.

In general, we found this analysis of optical flow more robust

compared to a simpler approach that would only analyze the

number of events in the respective regions, since optical flow

is more invariant to the specific texture of the object. While

the previously described procedure for determining the onset

of slip requires that the object has texture, we want to point out

that textured objects are only needed during data collection as

they enable automatic data labeling. The trained models will

only operate on the tactile data without having access to the

cut, window region. Thus, during deployment, object texture

is not necessary.

C. Model Architectures

For training the models for slip detection, similar as in [40],

we make use of Neural Networks. Apart from fitting the data

as good as possible, we want to keep the network inference

times low, such that we can later evaluate the models online

in real time with 1000Hz. As features, we will, therefore,

mainly focus on two quantities. First, we make use of the

current displacement dci
of the dots, i.e., their distance to their

initial location. As shown in Sec. VI-D, this information can

be used to reconstruct shear forces acting on the sensor and

thus provide information about the global gel configuration.

Second, we consider the number of events per dot NE(ti, ci),
i.e., the current number of events triggered in the vicinity of

each of the dots. From Sec. VI-A, we know that the number of

events is effective for resolving high frequency phenomena and

sensing vibrations. We want to point out that information from

the transparent cut region is not available to the classifiers.

They only have the information from the remaining 7∗8=56
dots. While we collected data for both Evetac sensors in

the parallel gripper, herein, we will focus on slip detection

and grasp control using a single sensor only. We leave slip

detection and grasp control using multiple Evetacs for future

work.

The general architecture used for the slip detection models

is depicted in Figure 11. In the later sections, we investigate

different configurations of this architecture that differ in the

input features that are available (cf. Table VII). As input, the

models either receive the dots’ displacements, the number of

events per dot, or both. In case of both, we first concatenate the

dot displacement FD and dot event features FE . For almost all

architectures, we consider a time series of measurements, i.e.,

we provide a history of previous measurements in addition to

the current measurement. Given the resulting input vector per

dot with dimension 1xli, we first pass it through a two-layered

fully connected neural network for encoding. This procedure

is repeated for all of the dots, and we use the same weights

for all dots. Next, we spatially combine these initial per-dot

embeddings, in the same way as the dots are placed relative

to each other in the gel. This allows us to subsequently use

two convolutional layers, taking the spatial information and

topology of the gel into account. We use convolutions, as slip

is a local phenomenon, i.e., it is likely that an entire region

of the gel is slipping. Thus, if an object is slipping, the slip

signal should typically be sensed at multiple locations of the

gel. Lastly, we flatten the features and pass them through two

fully connected layers to receive the output, which is a scalar

between [0, 1] and can be interpreted as a slip probability.

D. Model Training & Data Selection

Apart from the model architecture, careful selection of

the training data is also important. If we consider a single

trajectory that is recorded as described in Sec. VII-A, it first

contains many measurements where the object is held stably,

then follows object slippage, and slightly after, the object

has slipped completely and lost contact with the sensor. As

also discussed in [44], it is important to determine, how

many measurements to consider after the classifier detected

slip for the first time. This choice is crucial since slightly

after the onset of object slippage, it is likely that there is no

contact between sensor and object. Thus, it does not make

sense to classify such a measurement as belonging to the

slip class. In line with these considerations, we also want to

stress the importance of the models correctly detecting the

moment of onset of slip, or even predicting it, as this greatly

influences the timing of the corrective actions to prevent and

minimize slippage. Empirically, we found best performance,

when cutting the trajectories 15ms after the onset of object

slippage (i.e., after the classifier detected slip for the first time)

for all models with a history of 10 or less, cutting after 20ms
for models with histories of 20, and cutting after 50ms for

the remaining architectures.

Cutting the trajectories after few samples of slip, however,

also introduces data imbalance. We have way more datapoints

of non-slip data. To counteract model bias, we use a modified

version of the dataloader during training. In particular, we

sample from three dataloaders at the same time. One of them

solely contains slip data, and the other two non-slip data.
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fully connected + ReLU

FEFD

fc1 fc2

1xli
1xlfc1 1xlfc2

h1xw1xlc1
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conv2

fc3 fc4

h2xw2xlc2

output

Evetac Gel Per Dot Encoding Spatial Combination & Prediction

1xlfc3 1xlfc4

1

max poolingconvolutional + ReLU fully connected + sigmoid

Fig. 11: General neural network architecture used for slip detection. First, per dot, a feature vector containing the current dot displacement
FD (eventually combined with a sequence of past measurements) is extracted. The same is repeated for the number of events per dot,
yielding FE . Second, the feature vectors are concatenated and embedded using two fully connected layers, sharing weights between the dots.
Third, the embedded features are spatially combined, in the same way as the dots are placed relative to each other, and processed through
two convolutional layers. Finally, the result is flattened, processed using two last fully connected layers, and yields the slip predictions.

TABLE VII: Parameters of the different model configurations used for slip detection. Fig. 11 shows the general architecture.

Name FD FE li lfc1 lfc2 h1, w1, lc1 h2, w2, lc2 lfc3 lfc4

no hist [dc(ti)] [NE(ti, c)] 2 10 4 7,6,16 3,3,32 32 10

hist 10 [dc(ti), dc(ti−1), ..., dc(ti−9)] [NE(ti, c), NE(ti−1, c), ..., NE(ti−9, c)] 20 12 4 7,6,16 3,3,32 32 10

events only

hist 10
[NE(ti, c), NE(ti−1, c), ..., NE(ti−9, c)] 10 8 4 7,6,16 3,3,32 32 10

disp only

hist 10
[dc(ti), dc(ti−1), ..., dc(ti−9)] 10 8 4 7,6,16 3,3,32 32 10

hist 20 [dc(ti), dc(ti−1), ..., dc(ti−19)] [NE(ti, c), NE(ti−1, c), ..., NE(ti−19, c)] 40 20 8 7,6,16 3,3,32 32 10

hist 50

down 5

[
∑4

l=0 0.2dc(ti − l),
∑4

l=0 0.2dc(ti−5 − l),

...,
∑4

l=0 0.2dc(ti−45 − l)]

[
∑4

l=0 0.2NE(ti − l, c),
∑4

l=0 0.2NE(ti−5 − l, c),

...,
∑4

l=0 0.2NE(ti−45 − l, c)]
20 12 4 7,6,16 3,3,32 32 10

fast slow

hist 50

[dc(ti), dc(ti−1), ..., dc(ti−9),∑9
l=0 0.1dc(ti − l),

∑9
l=0 0.1dc(ti−10 − l),

...,
∑9

l=0 0.1dc(ti−40 − l)]

[NE(ti, c), NE(ti−1, c), ..., NE(ti−9, c)∑9
l=0 0.1NE(ti − l, c),

∑9
l=0 0.1NE(ti−10 − l, c),

...,
∑9

l=0 0.1NE(ti−40 − l, c)]

30 15 8 7,6,16 3,3,32 32 10

The dataloaders for sampling the non-slip data are different

in that one of them contains measurements where the number

of events exceeds a certain threshold, i.e., 25, and the other one

contains the remaining non-slip measurements. The distinction

across the non-slip frames attempts to separate measurements

in which really nothing is happening, from measurements that

do contain some events and information. The latter measure-

ments are especially important to label correctly, as the event

patterns have to be differentiated from the actual slip data.

We train using a batch size of 72, where 32 samples are

drawn from the slipping frames, 32 samples from the non-

slipping frames above the threshold, and 8 frames from the

non-slipping frames that are below the threshold. One episode

consists of fully looping through the dataset with the non-

slipping frames above the threshold. To additionally improve

the models’ robustness, we add data augmentation. Since all

the training data was captured with the objects being grasped

from top, with probability 50%, we rotate the input features

within [90, 180, 270◦] to mimic different grasp poses. For the

cases of 90 and 270◦, we crop the measurement and pad it

such that it is compatible with the networks’ usual input size.

Using the training data, we train each of the models for 70

epochs, using stochastic gradient descent with a learning rate

of 0.001 and the binary cross entropy loss. We log the models

every 10 epochs.

E. Evaluation Procedure & Metrics

Table VII shows the different model configurations we con-

sidered herein. For model evaluation, we will mainly consider

2 metrics. First of all, we investigate the point in time when

the model first detects slip tms0. This point in time is very im-

portant, as in a control task, action needs to be taken whenever

slip is detected. It is thus highly undesirable if this point in

time is not aligned well with the object really starting to slip,

as determined by the classifier (tcs0). In the following, we will

refer to this as the slip timing criterion, which we define as

follows. If the first instance of slip detected by the models

tms0 is within the interval of tcs0−50ms≤tms0≤tcs0+20ms, then

we label this trajectory as one in which the slip timing was

identified correctly, i.e., ”slip corr”. In other words, the models

are allowed to identify slippage at most 50ms prior to the

first instance of slip detected by the classifier, and at latest

20ms afterwards. We choose this rather long period before

slip occurs, as it might be that the classifier learns to detect

features related to incipient slip, which have been reported

to be found up to 30ms beforehand [34]. We, therefore, do

not want to penalize potential detections of incipient slip and

choose this time interval regarding the slip timing criterion. We

refer to the remaining two cases as ”slip detected too early”,

i.e., tms0<tcs0−50ms, or as ”too late”, i.e., tms0>tcs0+20ms.
Note that the ”too late” slip detection also includes trajectories

where no slip is detected at all. As second metric, we consider

the F1 score, which is the geometric mean of recall and pre-

cision. Recall is the ratio of true positives (TP) w.r.t. the sum

of true positives and false negatives (FN), i.e., recall= TP
TP+FN

.

Precision is the ratio of true positives w.r.t. the sum of

true positives and false positives (FP), i.e., precision= TP
TP+FP

.

Recall gets lower whenever positive samples are erroneously
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Fig. 12: Evaluating different slip detection models on previously unseen trajectories (90 in total) using the training objects. The results show
the mean and standard deviation averaged across all objects and five seeds per model configuration. The figure shows performance w.r.t. slip
timing criterion (left) and F1 score (right).
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Fig. 13: Evaluating the different models on the task of slip detection
considering a single previously unseen trajectory with Object 3. s
corresponds to slip, and ns to no slip.

predicted as negative by the models, i.e., slip is not detected.

Precision drops when non-slipping samples are erroneously

labeled as slip. While this metric is related to the previous

one, it has a clearer focus on temporal consistency, i.e., only

detecting the moment in time of onset of slip correctly, will

still result in a bad F1 score, as the recall would be low. Thus,

the F1 score considers the entire trajectory. In line with our

previous definition for the slip timing criterion, we cut the

trajectories 20ms after the classifier detected slip for the first

time when calculating the F1 scores.

Given that the models’ output can, at first glance, be inter-

preted as slip probability and is continuous, but our metrics

require binary labels, we have to convert the models’ output

into a binary signal. This is done through thresholding. To

determine a good threshold, we use the previously introduced

dataset of 45 test trajectories and perform a grid search,

sweeping the threshold value from 0 and 1 with increments

of 0.025. We use the three last checkpoints of every model

and perform the threshold optimization on all of them. Subse-

quently, we select the best combination of model checkpoint

and threshold value, w.r.t. maximizing the combination of slip

timing criterion and F1 score.

F. Evaluation on Training Objects

Figure 12 shows the results when evaluating the trained

models on new, previously unseen trajectories using the train-

ing objects. For each object, we recorded 10 trajectories.

Overall, this evaluation considers 90 trajectories. For each

model configuration (cf. Table VII), we trained 5 models using

different seeds. The black bars in Figure 12 depict the standard

deviation.

As illustrated, using the models without any history (i.e.,

no hist) already yield quite good results when considering the

slip timing criterion. The onset of slip is detected correctly

(i.e., ”slip corr”) in 87% of all trajectories. However, they only

achieve an F1 score of 0.59. Increasing the history length to

10 (hist 10) slightly improves the rate of correct initial slip

detections to 89.5% and the F1 score significantly to 0.73.

For this model configuration with histories of 10, we also

show an ablation, comparing models that either only have the

number of events (events only) or the dots displacement (disp

only) as features available. The models having access to the

number of events per dot outperform the models only having

access to the displacements. Overall, they nevertheless still

perform slightly worse than the models that have access to

both, especially when considering the F1 score. We therefore

conclude that both features are crucial. Increasing the history

length, i.e., to 20ms (hist 20), further improves the rate of

correct initial slip detection to 92.5%, the F1 score to 0.815.

Using an even longer history, at the cost of downsampling

the signal by a factor of 5 (i.e., the down 5 model), which

mimics a sensor running at a 5 times reduced frequency,

i.e., 200Hz performs slightly worse in the correct initial slip

detection with on average 88.2%. Lastly, we also investigate

an architecture, which on the one hand has direct access to the

last 10 measurements, i.e., the same input as the hist 10 model,

but additionally also access to the last 50 measurements, which

are downsampled by a factor of 10. We call this model fast

slow, as it has direct, unfiltered access to the recent history,

as well as knowledge about the signal evolution over a longer

horizon. Due to the downsampling of the longer history, it

overall still has a smaller input size than the model with a

history of 20 (cf. Table VII). These fast slow models perform

on par with the hist 20 model, having a correct initial slip

detection rate of 92.6% and an average F1 score of 0.816.

These findings are also underlined in Figure 13, where

we see the models’ predictions over time for Object 3. The

model without any history gets the moment of initial slip cor-

rect, however, has difficulties classifying slip states correctly

afterwards, which explains the lower F1 scores. The model
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Fig. 14: Evaluating two model configurations on the task of slip detection and prediction for ∆Tpred=10ms or 20ms in advance using the
previously unseen testing objects. On the left, we show the slip timing criterion, and on the right, the F1 scores. Mean and standard deviation
are reported, averaging across 80 trajectories, and five seeds per model configuration.

with a history of 10 classifies slip correctly over a longer

time horizon and thus achieves better temporal consistency

and higher F1 scores. For this trajectory, the events only

model performs similarly, while the model that only has the

displacements available exhibits a delayed slip detection. This

might be due to the fact that there is a delay between initial

events signaling slip and significant dot movement. Moreover,

it also struggles achieving temporal consistency. Lastly, the

models with longer histories are capable of capturing the

timely evolution substantially better. We can also see that the

downsampled model (down 5) is slightly delayed, considering

initial slip detection. This can be explained by the fact that it

can only make predictions every 5ms, thus, this phenomenon

is due to temporal discretization.

In the following experiments, we will present a closer

investigation of the two best performing models, i.e., the model

with 20ms history (hist 20), as well as the fast slow model.

G. Evaluating on unseen Testing Objects & Slip Prediction

Using the previously best performing models, i.e., the

models with a history of 20, as well as the fast slow models,

we next present an evaluation on 8 previously unseen testing

objects (Objects 9-17, cf. Table VI). Again, for every object,

we record 10 trajectories, yielding 80 trajectories. Addition-

ally, we now also investigate the effectiveness of training the

models on the task of slip prediction. In particular, we train

both model configurations on data where we shift the classifier

signal by ∆Tpred=10ms and ∆Tpred=20ms forward in time.

The respective models are thus tasked to detect slip 10ms or

20ms before the classifier detected the onset of slip. Predicting

slip is beneficial, as it increases the time window to react and

counteract the slippage. For consistency, the F1 scores for the

slip prediction models are computed using the shifted labels.

The slip prediction models are trained on the same data as the

other models and we again consider five different seeds.

The results are shown in Figure 14. Considering the predic-

tion qualities w.r.t. slip timing criterion, we observe that for the

model with a history of 20, the percentage of correct initial slip

detections (slip corr) continuously decreases (i.e., 86%, 84%,

81%) when training the models for the task of slip prediction.

In line with this decrease, the percentage of trajectories where

slip is detected too early increases. Thus, when training the hist

20 models for slip prediction, it seems that the models adjust

their features, which, however, also results in detecting slip too

early more frequently. For the fast slow models, the results are

slightly different. Here, the models that have been trained on

the task of detecting slip 10ms in advance yield the highest

percentage of correct slip detections (88%), while the models

trained on the original signal and on the 20ms shifted one

perform equally (around 84%), with the ones tending towards

detecting slip too late, while the others again rather detect slip

too early, respectively. It thus seems that the fast slow models

which can access the evolution of Evetac’s measurements over

a longer horizon, however, downsampled, as well as the most

recent measurements, are capable of extracting discriminative

slip prediction features while avoiding an increase in detecting

slip too early for the task of predicting slip 10ms ahead.

Considering F1 scores, the models for just detecting slip

∆Tpred=0ms perform comparable. For the task of predicting

slip 10ms ahead in time, the fast slow architecture achieves

similar scores compared to the baseline slip detection models,

while the hist 20 models perform worse on average. For

the task of predicting slip 20ms in advance, the hist 20

models perform better than the fast slow architecture, however,

as analyzed previously, these models come at the cost of

significantly lower performance concerning the timing of the

first slip detection.

In this experiment, we found a tradeoff between attempting

to predict slip, and the models detecting slip way too early. We

nevertheless find that the fast slow architecture offers slightly

beneficial performance in that the tendency to detect slip too

early is not as prominent while attempting to detect slip 10ms
ahead. In fact, this model still performs on par with the non-

predictive models, considering F1 score. We will thus use the

fast slow model architecture with predicting slip 10ms ahead

in all the following experiments.

H. Evaluating Slip Timing

Finally, we analyze the timing of the first slip detection

tms0 of the previously selected fast slow models predicting

slip 10ms ahead, on the previously unseen testing objects.

Table VIII shows the results, again averaging across the five

seeds. In line with the configuration the model has been trained

in, most of the initial slip detections, i.e., 57%, are within the

interval of 10ms ahead to the actual moment of onset of slip

(i.e., 10-0). The second most frequent interval of initial slip
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TABLE VIII: Evaluating the timing of the fast slow models’ initial
slip detection tms0 trained for the task of predicting slip 10ms in
advance using the testing objects. Reported are mean and standard
deviation considering 5 models trained with different seeds.

Obj Avg 10 11 12 13 14 15 16 17

Slip too early
t
m
s0

<t
c
s0

−50ms

0.07
(0.02)

0.1
(0.0)

0.0
(0.0)

0.1
(0.06)

0.0
(0.0)

0.0
(0.0)

0.18
(0.07)

0.0
(0.0)

0.18
(0.07)

50-30
t
c
s0

−50ms ≤ t
m
s0

< t
c
s0

−30ms

0.04
(0.02)

0.0
(0.0)

0.0
(0.0)

0.14
(0.08)

0.07
(0.04)

0.02
(0.04)

0.0
(0.0)

0.0
(0.0)

0.06
(0.05)

30-10
t
c
s0

−30ms ≤ t
m
s0

< t
c
s0

−10ms

0.22
(0.01)

0.1
(0.0)

0.24
(0.08)

0.48

(0.12)
0.38

(0.04)
0.04

(0.05)
0.22

(0.04)
0.08
(0.1)

0.26
(0.14)

10-0
t
c
s0

−10ms ≤ t
m
s0

< t
c
s0

−0ms

0.57

(0.03)
0.76

(0.08)
0.72

(0.1)
0.08

(0.04)
0.53

(0.04)
0.74

(0.1)
0.32

(0.04)
0.9

(0.09)
0.48

(0.12)

0-20
t
c
s0

−0ms ≤ t
m
s0

< t
c
s0

−20ms

0.05
(0.01)

0.0
(0.0)

0.0
(0.0)

0.04
(0.05)

0.02
(0.05)

0.16
(0.05)

0.14
(0.05)

0.0
(0.0)

0.02
(0.04)

Slip too late
t
m
s0

>t
c
s0

+20ms

0.05
(0.01)

0.04
(0.08)

0.04
(0.08)

0.16
(0.05)

0.0
(0.0)

0.04
(0.05)

0.14
(0.05)

0.02
(0.04)

0.0
(0.0)

(a) (b) (c)

Fig. 15: Closed-loop grasp control experiments. We mount the gripper
equipped with Evetacs (cf. Fig. 1) on a Franka Panda 7 DoF robot,
for stably grasping and lifting previously unseen objects. OptiTrack
markers are attached to the object to determine how much the object
moved relative to the gripper. (a) depicts the initial situation in which
the gripper establishes light contact with Object 17 (cf. Table VI),
which is insufficient for lifting. Upon the robot starting to lift, object
slip is detected by the slip detector, resulting in the closed-loop
grasp controller adjusting the grasping force. (b) shows the end of
the successful lifting phase. After object lift, we aim to minimize
the applied grasping force, by identifying the gripper opening width
that is just sufficient for grasping, and at the boundary to the
object slipping. This so-called balancing phase typically includes
small object slippages, and (c) depicts the object pose at the end
of this phase. The successful completion of this experiment, also
demonstrates that our slip detector does not require any object texture,
as the object is transparent at the grasping locations.

detection is between 30 to 10ms ahead in time. Averaged

across all objects, the success percentages of detecting slip

correctly, i.e., the interval between 50ms prior to 20ms after

the classifier detects slip for the first time, is high, with

88%. However, for Objects 12 and 15, slip is often predicted

too early or too late (26% and 32%, respectively). Potential

explanations for these findings could be that Objects 12 and 15

are lighter and smaller compared to the objects that the model

has been trained on (cf. Table VI). Their different weight and

size will deform the gel differently, which might be one reason

for the slightly reduced performance.

VIII. CLOSED-LOOP GRASP CONTROL USING EVETAC

In this last experimental section, we investigate the effec-

tiveness of using Evetac in combination with the previously

introduced slip detection and prediction models for reactive

robotic grasping. In particular, we equip a ROBOTIS RH-

P12-RN(A) gripper with two Evetac sensors (cf. Figure 1)

and mount it as the end effector onto a Franka Panda robot

arm, as shown in Figure 15. As also mentioned previously,

herein, we only consider the signal of one Evetac and use

it in combination with the best model architecture from the

previous section, i.e., the fast slow model that has been trained

on predicting slip 10ms ahead. The slip prediction model is

integrated into a real-time grasp control loop. In the following,

we first provide the experimental setup and description of the

control strategy, followed by closed-loop pickup and grasping

experiments using the previously unseen testing objects. We

end the section by investigating the robustness of the grasp

controller w.r.t. changing from top-down to sideways grasps,

and adding additional disturbances by dropping weights onto

the grasped objects. Again, we provide videos on our website.

A. Evaluation Procedure & Control Strategy

The experiments deal with the situation in which a robot

has to pick up an a priori unknown object. To solve this

task, first, the robot has to position the gripper such that

the fingers will make contact with the object upon closing.

Subsequently, sufficient grasping force has to be applied to

lift the object stably. Finally, if having to hold the object for

longer, it will be beneficial to apply minimal grasping forces

for improved efficiency. Throughout the whole procedure, it

is desirable that the grasping force is adaptive w.r.t. the object

that is to be lifted. The controller should apply less force

when dealing with lighter objects, and vice versa. Moreover,

the grasp controller should be reactive w.r.t. any disturbances.

For control, we use the real-time position control interface

of the gripper. Given the gripper’s current opening width xg,

we specify the reference opening width xref. Together with the

control gain Kp = 50, the control law yields uc = Kp(xe+uff)
with xe = xref −xg . The reason for using the position control

interface is that it offers a higher resolution and, therefore,

finer control compared to the current control interface.

To investigate the effectiveness of our trained models for

online grasp control in the previously described scenario, we

propose the following procedure. We first move the robot

to a suitable pre-grasp pose, assuming knowledge about the

object’s pose. Next, we close the gripper to make light

contact with the object to avoid any damage. This is achieved

by setting the feedforward signal to a small constant value

uff = −2, which is just sufficient to make the gripper move,

while keeping xe = 0. The chosen, small control signal will

make the fingers stop upon making very light contact. When

attempting to lift the object starting from this initial light grasp

configuration, the object would just slip and remain on the

table surface, as the applied forces are not sufficient.

Lifting Phase. To counteract this slippage during the lift,

we use our slip detector in an online fashion, essentially

controlling the width of the gripper. Upon detecting slippage,

we attempt to further close the gripper until the slip stops. In

particular, we now have a time-dependent feedforward term

uff(t)=uff(t−1)+ui(t), with the increment ui(t)=− 1, if slip

was detected (s(t)=1) between the last and the current call

https://sites.google.com/view/evetac
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Fig. 16: Closed-loop grasp control experiments using the previously unseen testing objects (cf. Table VI). For every object, we perform 10
trials. While the top row shows the success rates, the middle row shows the change in gripper opening applied by the controller for lifting
the object and optimizing the grasp force, i.e., opening width, during the subsequent balancing phase. The bottom row shows how much the
objects moved relative to the gripper during the whole procedure of pickup, lift, and balance. For an exemplary trajectory, see Fig. 15.

to the controller, and ui(t)=0.01, if no slip was detected

(s(t)=0). The reason for the different increments is that

whenever slip has been detected, we want to react fast, while

we want to reduce the grasping force gently in case of no

slip, as the reduction of grasping force might lead to new

slippage. Moreover, to limit the amount of force the gripper

can exert onto the object, we clip uff(t) to stay within [−5, 0].
Additionally, in the switching moments from slip to no slip

(i.e. s(t−1)=1 and s(t)=0), we set the reference gripper

position to the current gripper opening width xref=xg(t). This

is the first gripper closing width realizing a stable grasp

without slippage, and should thus be the desirable setpoint.

Before the first occurrence of this switching moment, we leave

xe zero. Note that this control law is reactive, i.e., if there

are multiple occurrences where a switch between slip and no

slip happens, the reference is adapted accordingly. Yet, the

grasping force can only increase. Since the slip detector is

running at 1000Hz, while the control loop is operating at half

the frequency, we choose a shared memory to pass information

between the slip detector and control loop asynchronously. We

create one integer variable that is incremented whenever slip

occurs. In the controller, we access this variable and check

whether the slip count increased (slip), or is unchanged (no

slip) w.r.t. the previous function call.

Balancing Phase. After successful object lift, we aim to

minimize grasping force while holding the object. We thus

attempt to open the gripper, i.e. decrease the grasping force

until slip is detected, and then counteract it, similar as in the

previous maneuver. However, since now, gravity is also acting

on the object, we use a bigger increment to counteract slip-

page. In particular, we use the same time-varying feedforward

term. Now, we open the gripper through ui(t)=0.01 as long

as no slip is detected, and close it through ui(t)= − 2 upon

detecting slip. Moreover, the first moment of detecting slip

(i.e., s(t−1)=0 and s(t)=1), activates the reference position of

minimal force for holding the object (xref=xg(t−1)). Before,

xe has been set to zero. Additionally, as initially, we want to

open the gripper, we clip uff(t) within [−5, 2]. However, upon

first slip detection, we adapt it to [−5, 0], as we do not want

to open the gripper beyond the reference position, which is

the last stable position.

For evaluating the performance of our closed-loop grasp

controller, we employ the following metrics. First, we con-

sider the success rates of the individual phases. Success lift

represents successful lifting of the object by around 10 cm,

i.e., lifting the object without it slipping completely through

the fingers. Successful balance means successful completion

of the second phase, i.e., opening the gripper until slippage

is detected, catching the object, and subsequently holding

the object applying as little force as possible. This phase is

successful, if it still ends with the object in between the fingers.

The two phases take 10 and 20 s, respectively. Please note

that the balance success rate only counts the trials for which

the lifting was successful. Overall success, is the amount of

trajectories for which both phases were successful. As shown

in Figure 15, we also attached Optitrack markers to the objects

to measure by how much the object moved relative to the

gripper throughout the entire maneuver. Lastly, we will also

report the change in gripper opening width, which provides

insight on the grasping strength applied to the objects. As we

do not have any force sensing capabilities available, similar

as in [44], we assume the grasp strength to be proportional to

the gripper closing width.

B. Evaluating the Closed-Loop Pickup and Grasp Controller

Figure 16 shows the experimental results for the testing

objects, i.e., the objects that have not been seen during model

training (cf. Table VI). For every object, we conduct 10 trials,
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and we use the same fast slow slip prediction model, predicting

slip 10ms ahead in time, and control strategy. To ensure that

the initial closing of the gripper for establishing object contact

does not erroneously result in already establishing sufficient

forces for successful lifting, for all objects, we also did 5

repetitions in closing the gripper, however, then attempting to

lift the object without any further control. This resulted in

0% lifting successes. Therefore, slip detection and appropriate

closed-loop control are crucial for successful completion. As

shown in the first row of Figure 16, across all objects, in

total, we have a success rate of 92%. Only for Objects 12 &

15 we have one failure during lifting, and for Object 14, in

the nominal configuration, we have 4 failures during balance

control. Regarding the two lifting failures, the initial contact

forces might have been too light, and thus slip has not been

detected. Moreover, they occur with the two lightest objects

that are lighter than all of the training objects (cf. Table VI).

These failed lifts are also in line with the results from the

offline slip detection & prediction experiments, where for both

objects (12 & 15), we had more than 10% probability of

not detecting slip at all. For the cone-shaped Object 14, the

4 balancing failures might be due to the fact that we had

to grasp the object upside down, which makes the task of

stably grasping and balancing more difficult once the object

has slipped and accelerated. As can also be seen in the last

column of the figure, we repeated the experiment for Object 14

and doubled the grasp control gain (Kp) during the balancing

phase. This resulted in a reduced number of balancing failures.

This hints at the fact that the failures in balancing might

not only be due to the slip detection, but the interplay with

control is also crucial. However, we believe that, in general,

one should try to keep the control signals rather small in

order to avoid exerting excessive forces, which is especially

problematic when dealing with more delicate objects. For all

the other six objects, we did not observe any failures. Looking

at the second row, which shows the change in gripper opening

width, we can actually see that the grasping force during lifting

and the overall maneuver is really adaptive w.r.t. the object

that is grasped. Since object properties such as their surface

might also play a role in the required grasping forces, the

first two columns of the figure provide a good comparison

as they compare the grasping efforts for the same object

(i.e., a bottle), that is once filled (Obj 18) and once empty

(Obj 17). We can clearly observe that for the heavier, filled

object, the closed-loop grasping control pipeline applies more

grasping strength, during lifting and also balance. Comparing

the filled and unfilled object, the overall change in gripper

opening width for grasping and stabilizing is −13.4 and −7.6,

on average, respectively. This underlines the adaptiveness of

the proposed grasp controller. The filled bottle is also roughly

twice as heavy as the empty one. In the figure, we can also

see, that the balancing phase is effective in that the grasping

strength can be reduced across all the objects, on average by

43%. Lastly, when investigating the distance that the object

traveled, we see that during lifing, in almost all attempts, the

objects only move by a couple of millimeters. Considering

the overall maneuver, for most experiments, the objects move

less than 1 cm. As it is also shown in the supplementary
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Fig. 17: Grasp controller robustness evaluation. Contrary to data
collection and the previous experiments, Object 16 is now grasped
sideways. The left column presents the results for the standard
maneuver as done in Fig. 15, while the other two columns consider
cases where the grasp is further perturbed during the balancing phase
by dropping weights with 20 and 100 g onto the object after having
established an initial stable grasp. As metrics, success rate and the
distance that the object moved relative to the gripper are reported.

videos, some objects move more than once in the balancing

phase. This on the one hand illustrates the reactiveness of our

controller and also underlines that the gripper opening width

has to be carefully chosen. It can occur that the first desired

setpoint is still too open, which might potentially be related

with the finger’s velocity during the opening movement. The

slip detector and grasp controller are run jointly, and in real-

time on a single desktop PC with 128 GB RAM, NVIDIA

GeForce RTX 3090 GPU, and AMD Ryzen 9 5950X 16-Core

CPU. All components from reading the sensor, tracking the

dots, and evaluating the neural network slip detector (mean

inference time of 95 µs) were run at 1000Hz.

C. Evaluating Controller Robustness w.r.t. Grasp Orientation

& External Disturbances

In the last experiments, we show the effectiveness of the

proposed pipeline for scenarios in which objects might be

grasped differently, i.e., from the side. Such data has not been

included in the raw training data. It is only covered through our

data augmentation. The sideways grasps result in a different

orientation of Evetac w.r.t. the object. We also investigate the

reactiveness of the proposed control laws by dropping weights

of either 20 g or 100 g onto the object, after successful initial

stabilization in the balancing phase. As dropping 100 g onto

the object is a substantial perturbation, in this configuration,

we again double the control gain (Kp) to maintain high success

rates. We perform 10 trials per experiment configuration.

As can be seen in Figure 17, grasping the object sideways

still results in ten out of ten successful trials for Object 16.

Also, the distance that the object moves is only slightly in-

creased and still comparable to the previous experiment. Con-

sidering the scenarios where additional weights are dropped

onto the object upon grasp stabilization, we see that the

distances that the object moves increase. The results also

show that the closed-loop control pipeline is reactive as the

balancing success rates remain high at 90%. Only in one

trial there is one balancing failure for both configurations.
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Additionally, the experiments with dropping the 20 g weight

object indicate that the grip controller does not apply excessive

forces. The addition of 20 g is already sufficient to destabilize

the grasp and make the object move inside the gripper, as can

also be seen in the supplementary videos.

IX. DISCUSSION

In the previous experimental sections, we investigated Eve-

tac’s properties, demonstrated different models for offline slip

detection and prediction, and finally showed Evetac’s effective-

ness in grasping different known and previously unseen objects

with different surfaces, materials, and weights. While Evetac –

in combination with the corresponding touch processing and

control algorithms – yields good performance across all the

tasks and satisfies the desiderata of high-frequency sensing,

processing, and control, we also discovered some limitations.

In the grasp control experiments, our approach had the most

failures with the cone-shaped Object 14. We hypothesize that

one reason for these difficulties is that Evetac’s gel surface is

planar and cannot adapt well to the geometry of the grasped

object. One way to overcome this limitation might be to

employ a different gel with more curvature, as used in the

BioTacs [32] or TacTip [24]. Another limitation of Evetac is

the sensor’s dimension, which makes integration with dexter-

ous robotic hands challenging. For this purpose, we hope that

in the near future smaller event-based cameras will be released,

as the camera’s size is currently the major limiting factor.

Regarding the slip detection and prediction experiments, it

would be interesting to consider additional network types,

such as spiking neural networks, in the future. They hold the

potential to further decrease the latency of the overall pipeline,

as they can directly operate on the sensor’s asynchronous

output. Lastly, the slip timing experiments indicated that it is

object-dependent. Future work should try to identify the causes

for these findings. They could provide essential information

regarding feature selection or sensor material choice.

X. CONCLUSION

This work introduced a new event-based optical tactile

sensor called Evetac. The sensor design aims to maximize

re-use of existing components and solely requires 3D printing

of a housing that connects together the event-based camera,

the soft silicone gel, and the lighting. In addition to the sensor

design, this work also presented the necessary software to read

out the sensor in real-time at 1000Hz, as well as suitable

touch processing algorithms running at the same frequency.

In particular, we devised a novel algorithm for tracking the

dots imprinted in the gel and proposed a set of tactile features

that were exploited for learning efficient neural network-based

slip detectors from collected data. The thorough experimental

section first demonstrated the sensor’s natural properties of

being able to detect tactile vibrations of up to 498Hz, provid-

ing significantly reduced data rates compared to RGB optical

tactile sensors despite Evetac’s high temporal resolution, and

exploiting the dot displacements for shear force reconstruction.

To showcase Evetac’s practical relevance, we also evaluated

and compared different neural network architectures for the

task of slip detection and prediction from Evetac’s data on

a wide range of objects. The models formed the basis for

designing an effective real-time grasp control loop, achieving

high success rates of 92%, robustness to perturbations, and

adaptiveness w.r.t. object mass. We hope that our proposed

open-source Evetac sensor, together with the touch processing

algorithms and closed-loop grasping controller, will encourage

further research in the field of event-based tactile sensing, and

contribute to the efforts for achieving the still unparalleled

human manipulation capabilities.
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