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Learning Force Distribution Estimation for the GelSight Mini
Optical Tactile Sensor Based on Finite Element Analysis
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Abstract— Contact-rich manipulation remains a major chal-
lenge in robotics. Optical tactile sensors like GelSight Mini
offer a low-cost solution for contact sensing by capturing soft-
body deformations of the silicone gel. However, accurately
inferring shear and normal force distributions from these gel
deformations has yet to be fully addressed. In this work, we
propose a machine learning approach using a U-net architecture
to predict force distributions directly from the sensor’s raw
images. Our model, trained on force distributions inferred
from Finite Element Analysis (FEA), demonstrates promising
accuracy in predicting normal and shear force distributions.
It also shows potential for generalization across sensors of
the same type and for enabling real-time application. The
codebase, dataset and models are open-sourced and available
at https://feats-ai.github.io.

I. INTRODUCTION

Tactile sensing plays an important role in advancing the
state-of-the-art in robotic manipulation [1], [2], [3], [4], [5],
[6], [7], [8]. Successful applications include grip adaptation
through slip detection [9], [10], [11], medical procedures
[12], [13] and tele-operation [14].

In particular, optical tactile sensors have emerged as a
promising technology for capturing contact information due
to their high spatial resolution, multimodal sensing capabil-
ities—including shape [15], hardness [16], texture [17], and
temperature [18]—and cost-effectiveness [19], [13]. How-
ever, many prior works have focused on extracting only low-
dimensional tactile information, such as total force [20], [21],
[22], limiting operational flexibility. Access to contact force
distributions, on the other hand, would enable better handling
of multiple contacts and diverse manipulation scenarios [23].

Conventional methods for extracting force distributions
require calculating the three-dimensional deformation of the
contact medium and utilizing elasticity theory [24], [25],
[26], [27]. Yet, accounting for non-linear material behavior,
such as with Finite Element Analysis (FEA), is computation-
ally intensive and unsuitable for real-time applications.

*Authors contributed equally.
Corresponding author: Erik Helmut. Email: erik.helmut1@gmail.com.
1Department of Computational Engineering, Technical University of

Darmstadt 2Department of Computer Science, Technical University of
Darmstadt 3German Research Center for AI (DFKI) 4 Centre for
Cognitive Science, Technical University of Darmstadt 5 Hessian Center
for Artificial Intelligence (Hessian.AI), Darmstadt

This work received funding from “The Adaptive Mind” grant, the EU’s
Horizon Europe project ARISE (Grant no.: 101135959), the AICO grant
by the Nexplore/Hochtief Collaboration with TU Darmstadt, and from the
Hessisches Ministerium für Wissenschaft & Kunst through the DFKI grant.

This work has been submitted to the IEEE for possible publication.
Copyright may be transferred without notice, after which this version may
no longer be accessible.

Fig. 1: Complete Method Overview: from data collection to force distri-
bution prediction. After data collection in a precisely calibrated setup with
a CNC milling machine, Finite Element Analysis is employed to generate
labels (“ground truth” force distributions). Using the labels and raw images
captured by the GelSight Mini tactile sensor, we train a U-net for efficiently
mapping raw tactile images to the corresponding force distributions.

Recent works leverage Deep Learning to address the
challenge of real-time force estimation. In [28], Convolu-
tional Neural Networks (CNNs) were used to predict contact
forces from sensor images, while [29] introduced CANFnet
for estimating normal force distributions at the pixel level.
In [23], [30], [31], FEA-derived data was used to train
a model for predicting force distributions, demonstrating
the effectiveness of combining simulations with data-driven
methods.

In this paper we introduce FEATS (see Fig. 1)—a machine
learning approach that directly maps raw tactile images to
force distributions, building upon the method by Sferrazza
et al. [31]. We utilize FEA to generate labeled data for
training, ensuring accurate ground truth across various in-
denters and force levels. A U-net neural network architecture
[32] is employed to estimate force distributions from images
captured by the GelSight Mini optical sensor [28], [33].

https://feats-ai.github.io


In contrast to [31], our method is tailored to a widely
available commercial sensor GelSight Mini, dropping the
requirement of a custom-made gel with immersed parti-
cles, thereby drastically extending the applicability of the
approach. Furthermore, this sensor allows for a significantly
expanded range of measurable forces 0 − 40N, an 8-fold
increase in the maximum measurable force compared to [31].
Finally, we open source our code, dataset and model, aiding
reuse and reproducibility.

Experimental results demonstrate that the proposed
method accurately predicts high-dimensional contact force
distributions from raw tactile images. This capability ad-
vances robotic manipulation by accommodating a wider
range of contact scenarios and offers a versatile represen-
tation applicable to downstream tasks.

II. RELATED WORK

Extracting meaningful contact-related information from
the raw RGB images of optical tactile sensors is a major
challenge in visual-tactile perception [14], [24], [29], [31],
[34], [35]. A number of methods have been proposed for
constructing or learning such “tactile representations”.

A. Marker Displacement Methods
Li et al. [34] posit that it is the contact layer deformations

that capture the crucial information within tactile images. By
analyzing these deformations, various contact features can
be extracted, with Marker Displacement Methods (MDMs)
being the most common approach [34]. In MDMs, markers
are placed on or within the elastomer and appear as features
in the sensor’s imagery (Fig. 1). For the GelSight sensor [28],
[33], markers were first introduced in [36] to study normal
and shear forces, along with slip dynamics. They identified a
linear relationship between loads and marker motion, but this
applied only in non-slip conditions. Beyond marker motion,
optical sensors can capture detailed height maps and con-
tact geometry through careful illumination and photometric
stereo [35]. These height maps can be used to estimate
contact forces with a third-degree polynomial [14].

In this paper, we use a gel with markers, but their
movement is not explicitly tracked. Instead, they serve as
implicit features within the sensor image, which is analyzed
by a neural network to predict force distributions.

B. Deep Learning-Based Tactile Representations
Advancements in computer vision directly translate to

vision-based tactile sensing. Models such as CNNs and
LSTMs were adapted to assess object hardness [16] and
grip stability [37], whereas SVMs were used for lump
detection [38]. More tactile-specific deep learning methods
have been developed for overall force prediction [28] and for
pixel-wise contact area and normal force estimation [29].

Building on the demonstrated effectiveness of deep neural
networks for feature extraction and prediction, we employ
a U-net architecture similar to that of [29]. However, in
contrast to [29], FEATS estimates both normal and shear
forces, thus providing a physically grounded representation
in the form of a 3D force distribution acting upon the sensor.

Fig. 2: Models of 3D-printed indenters used for data collection. Different
colors represent groups of indenters with similar shapes.

C. Force Distribution Prediction Through Elasticity Theory

Elasticity theory has been effectively applied to create
more refined and accurate load distributions acting upon the
soft silicone gel of optical tactile sensors. In [24], elasticity
theory with MDMs was used to derive force vectors from
marker movements assuming a linear elastic, uniform and
half-spaced material. This method was later adopted in [25]
for the GelSlim sensor [39]. More recently, sensors enabling
3D surface deformation reconstruction have been proposed,
such as TacLINK [26] and Tac3D [27]. They compute force
distributions from measured 3D marker displacements.

However, direct prediction of force distributions from
displacements, usually through a linear stiffness matrix, does
not account for the nonlinearities of soft elastomers. Sun et
al. [40] addressed this limitation by employing ResNet [41],
which was trained on sensor images with approximated force
distributions. Similarly, Sferrazza et al. [31] utilized a Deep
Neural Network (DNN) trained on image features with force
distributions obtained from FEA, and later improved this
method by incorporating simulated training data [23], [30].

Building on these approaches, we also aim to estimate con-
tact forces using supervised deep learning. However, instead
of working on optical flow features or grayscale images [30]
applicable to the custom-made sensor with a dense 3D-
marker field [23], [30], [31], we use raw RGB images from a
widely available GelSight Mini sensor. Crucially, we develop
specific procedures for data collection and model training
that enable the efficient use of this widely accessible sensor,
thereby significantly lowering the entry barrier into the field.

Our key contributions are: i) method for creating force
labels from FEA outputs tailored to GelSight Mini + imple-
mentation in CalculiX, ii) data collection procedure + dataset,
iii) trained model applicable to varying objects and gels.

III. METHOD

Our proposed method—Finite Element Analysis for Tac-
tile Sensing (FEATS)—estimates the force distribution acting
upon the gel of the GelSight Mini sensor by approximating
the output of a Finite Element Analysis (FEA) computation
with a neural network that takes the raw RGB image as input.
Querying a neural network is much faster than running FEA,
and importantly, for FEA computation, one needs a precise
geometrical description of the contact, whereas FEATS only
needs a raw input image and no further geometric informa-
tion. Thus, FEATS enjoys fast inference time and does not



Fig. 3: Label creation process when a spherical indenter presses into the sensor’s soft silicone gel. The visualized contact force distributions correspond to
the shear force’s x component. Left: Simulation of the contact configuration and the raw output from running the 3D FEA. Middle: Projecting the result
from the 3D FEA into the coordinate system of Gelsight Mini, i.e., into an image plane. Right: Force labels after changing the resolution to 24× 32.

require any additional object tracking equipment at run time.
Only at training time FEATS requires a dataset collected in
a controlled environment on a set of calibration objects.

A. Data Collection

The data collection process involves a series of precise
indentation experiments. We attach a GelSight Mini sensor
to the fixed spindle of a Computer Numerical Control (CNC)
milling machine, with a positional tolerance of ±0.25µm to
automatically create different contact configurations between
the sensor and selected indenters (cf. Fig. 1). Following [30],
we use 12 indenters of varying shapes and sizes (see Fig. 2).
The Gelsight Mini sensor is equipped with the dotted gel to
better track the indentation motion. We additionally place a
six-axis RESENSE-HEX-21 Force/Torque (F/T) sensor above
the Gelsight Mini to have a complementary external force
measurement, which is later used to validate the material
model. With this setup, we collected a total of 5173 samples.
Each sample contains the respective GelSight Mini RGB
image, the CNC motion data, i.e., the current indentation,
and the F/T sensor’s readings. The forces in the z direction
reach up to 40N, and in the x and y directions up to ±5N.

B. Finite Element Analysis

For simulating the indentation experiments, we employ
FEA using the open-source solver CalculiX [42]. The
solver’s capability for nonlinear computations makes it an
appropriate tool for the stress analysis of soft elastomers.
Consequently, it can calculate the resulting force distribu-
tions corresponding to the previously described real-world
indentation experiments – an essential component for label
generation as described in the next Section III-C. We gener-
ate tetrahedral volume meshes for both the gel and indenters,
with denser meshing at the contact surface to ensure higher
accuracy of the simulated contact forces (see Fig. 3). The
gel mesh comprises 2504 contact surface elements out of a
total of 7591 elements. The elements are implemented as
ten-node tetrahedral (C3D10 [42]) elements. The FEA is
conducted as a static analysis, assuming hard contact and
applying tied contact constraints. This approach permits the
execution of simulations without requiring a friction coeffi-
cient, and is substantiated by the fact that the experiments are
conducted in a manner that precluded slippage. Assuming
no deformation of the indenters, they are characterized as
a hard material with a Young’s modulus of 210 GPa and
a Poisson ratio of 0.3. In [28], the gel elastomer of the

GelSight sensor is characterized as a material similar to
a Neo-Hookean solid with a shear modulus, µ, of 0.145.
When employing a hyperelastic Neo-Hookean model in the
CalculiX solver [42], the strain energy potential is expressed
as U = C10(Ī1 − 3) + 1/D1(J − 1)2 where Ī1 denotes
the first invariant of the right Cauchy-Green deformation
tensor, while J represents the determinant of the deformation
gradient tensor. C10 and D1 are the material constants to be
set. In agreement with [28], C10 is chosen to be 0.0725. Due
to CalculiX’s lack of support for perfectly incompressible
materials, the solver assigns a default value to D1 prior to
the simulation. This model is later validated in the results
section (cf. Sec. IV-A) by optimizing the material parameters
through load-depth indentation data [43], comparing the
normal forces from the FEA with F/T sensor measurements.

C. Creating Labels

To obtain the “ground truth” force distribution labels, each
real-world indentation experiment (cf. Sec. III-A) is repeated
in simulation in order to calculate the contact forces using
FEA (cf. Sec. III-B & Fig. 3). For each element on the
surface of the gel, three force components are computed:
shear forces in the x and y directions, and normal forces in
the z direction.

a) Mesh Projection: To align the results from the three-
dimensional FEA with the sensor’s raw images, the 3D
coordinates of the gel mesh nodes are initially projected
onto the 2D image plane of the GelSight Mini through
xGS = P ·XFEA, where XFEA are the 3D coordinates of the
mesh nodes, xGS the image projections and P the projection
matrix. The projection matrix P can be determined using the
least squares method. Four point correspondences are needed
for a minimal solution. To establish point correspondences,
we gently press the GelSight Mini against an object, such as a
cuboid of known size, using the CNC milling machine. Once
the object’s shape is clearly visible in the raw sensor image,
we identify distinctive object points, such as its corners,
in the image. We subsequently repeat the same indentation
experiment in simulation and also extract the corner points
in the coordinates of the simulation. This leaves us with the
point correspondences needed for calculating P.

b) Discretization Process: Once all nodes have been
projected onto the image plane, the force distributions for
shear and normal forces are binned within the image bound-
aries. The number of bins decides the resolution of the force
distribution. In most experiments, it is 24×32, however, the
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Fig. 4: U-net model which maps raw images from GelSight Mini sensor to shear and normal force distributions. The architecture comprises 4 down-
sampling (encoder) and 4 up-sampling (decoder) blocks, connected by skip connections. The number of feature channels at each stage is labeled at the
bottom of the corresponding block. Different colors of the boxes and arrows indicate specific operations and activation functions. This image is generated
using PlotNeuralNet [44].

resolution can be seamlessly adapted. Each bin’s force value
is calculated by summing the contact force contributions of
all elements intersecting that bin (see Fig. 3), where the
element position refers to its state before deformation. The
contribution of each element to a bin is proportional to the
fraction of the element that falls within the bin.

D. U-net for Learning Force Distribution Estimation

To predict shear and normal force distributions from the
raw GelSight images, we employ a U-net architecture [32],
which is well-suited for spatially-detailed tasks. The net-
work’s encoder-decoder structure allows for efficiently map-
ping raw sensor images to force distributions, as demon-
strated by [30]. The model takes 240 × 320 RGB images
as input and outputs three force maps for both shear force
components and the normal forces (see Fig. 4).

a) Architecture: The U-net follows an encoder-decoder
structure, consisting of a contracting path (encoder) and
an expansive path (decoder). High-level image features are
extracted by the encoder, by iteratively applying two 3 × 3
convolutions with zero padding, followed by a ReLU acti-
vation function, and a 2× 2 max-pooling with a stride of 2.
This leads to down-sampling while progressively doubling
the feature channels at each step. The decoder up-samples
the feature map at each step and then applies a 2 × 2
convolution, which halves the number of feature channels
but doubles the resolution. The up-sampled feature map is
then concatenated with the corresponding cropped feature
map from the encoder. Subsequently, two 3×3 convolutions
are applied, both of which are followed by a ReLU activation.
In the final decoder layer, the last feature map is transformed
into the specified number of classes via 1× 1 convolution.

b) Training: The model is trained by minimizing the
Mean Squared Error (MSE) loss

MSE(f , f̂) =
1

3WH

W∑
i=0

H∑
j=0

∥f (i,j) − f̂ (i,j)∥22 (1)

between predicted (̂f ) and ground truth (f ) FEA force distri-
bution components. The MSE is averaged across all entries
of the force distribution grid.

The dataset is split into three parts: 85% are used for train-
ing, 5% for validation, and 10% for testing. Prior to training,
both input images and the ground truth force distribution
labels are normalized with respect to the training dataset to
ensure a consistent baseline across the data. Shear forces are
normalized to a range of −1 to +1, while normal forces
range from 0 to +1. Data augmentation techniques, such
as adding Gaussian noise and adjusting image brightness,
contrast, saturation, and hue, are used to enhance the model’s
generalization capabilities. Training is carried out using the
Adam optimizer [45], with an initial learning rate of 0.001
and a batch size of 8. The learning rate is adjusted adaptively
based on validation performance. As validation loss, the
Mean Absolute Error (MAE) on the sum of total forces in
the unnormalized space is used. We train for 600 epochs and
select the model with the lowest validation loss.

IV. RESULTS

This section evaluates the performance of our proposed
FEATS method. The employed FEA model, which is the
basis for our label generation procedure, has one free pa-
rameter C10 that characterizes the response of the material
to shear stress and needs to be set correctly. Therefore, we
start by validating a value for C10 previously reported for
GelSight [28] for applicability to GelSight Mini (Sec. IV-A).
Subsequently, we evaluate the U-net accuracy in predicting
shear and normal force distributions, along with its ability
to reconstruct total forces (Sec. IV-B). Particular attention is
given to how different force distribution resolutions impact
total force reconstruction accuracy. We end with assessing
the U-net’s inference speed (Sec. IV-C).

A. Material Characterization

To validate the Neo-Hookean material model parame-
ter C10, load-depth indentation data can be utilized (cf. Sec.
III-B). The load-depth measurements are obtained, using a
sphere indenter with a 15mm diameter, by sampling data
points at different indentation depths ranging from 0.5 mm
to 2.0 mm, increasing in 0.5 mm intervals. The measured
normal forces from the F/T sensor f̃

(i)
z are compared with



x
co

m
po

ne
nt

0 10 20 30

0

5

10

15

20

0 10 20 30

0

5

10

15

20

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03
y

co
m

po
ne

nt

0 10 20 30

0

5

10

15

20

0 10 20 30

0

5

10

15

20

-0.03

-0.02

-0.01

0.00

0.01

0.02

0.03

z
co

m
po

ne
nt

0 10 20 30

0

5

10

15

20

0 10 20 30

0

5

10

15

20 -0.15

-0.12

-0.10

-0.08

-0.05

-0.02

0.00

ground truth prediction
Fig. 5: Ground truth labels (left column) and predictions of our FEATS
model (right column) of the force distributions, in Newtons. The sphere
indenter (cf. Fig. 3) penetrates the gel for 1.2mm, exerting a significant
normal force. The resulting gel deformation causes shear forces, in this case
roughly cancelling each other due to the absence of horizontal movement
of the indenter.

the forces f (i)
z (C10) calculated by the FEA via the MSE loss

J(C10) =
1

N

N∑
i=1

(
f (i)
z (C10)− f̃ (i)

z

)2

. (2)

When running Bayesian optimization to find the best fit for
these N = 4 measurements, we found that Ĉ10 = 0.0792
provided the best fit with a MAE of 0.5166N between FEA
and F/T sensor measurements. Thus, we confirm that our
estimate is within the range of C10 = 0.0725 previously
reported in [28] for the GelSight sensor. In the experiments,
we use that value as it was stated in the original GelSight
paper and our estimate closely matches it.

B. Evaluation of U-net Force Distribution Estimation

To assess the U-net’s capacity to accurately estimate shear
and normal force distributions from the raw RGB images
across a wide range of forces, after training, we use a test
dataset consisting of 492 samples. The test data is recorded
using the same sensor and approach as for the training data,
described in Sec. III-A. The value ranges of the ground truth
force distribution in the test dataset for the Total Force (TF)
estimation task are shown in Fig. 6. Given the nature of the
indentation experiments, the GelSight Mini sensor primarily

TABLE I
U-NET MEAN ABSOLUTE ERROR (MAE) ON THE TEST SET

MAEGUF [N] MAETF [N]
fx 0.0006± 0.0006 0.2242± 0.4007
fy 0.0005± 0.0003 0.0934± 0.1356
fz 0.0015± 0.0010 0.3720± 0.4727

fx fy
−5.0

−2.5

0.0

2.5

5.0

[N
]

fz
−40

−30
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−10

0

Fig. 6: Test data ranges for the Total Force (TF) estimation task. The range
of the tested normal forces is considerably larger than for the shear forces.

encounters normal forces, while the range of the encountered
shear forces is comparatively smaller.

a) Evaluation of U-net Predictions on the Test Dataset:
Our main U-net model outputs the force distribution with
dimensions 24 × 32 × 3, striking a good balance between
maintaining a sufficiently high spatial resolution and at the
same time low error on the test data (cf. Tables I and II).
An example of the model prediction is shown in Fig. 5,
resulting from the contact with a spherical object as in Fig. 3.
The U-net demonstrates a noteworthy capability to predict
shear and normal force distributions which closely align with
the ground truth data (cf. left vs. right column in Fig. 5).
This visual comparison highlights the U-net’s effectiveness in
capturing the fundamental structures of the underlying force
distribution patterns. Additional examples that underscore
this finding are provided on the accompanying website.

In order to quantitatively evaluate the performance of
predicting force distributions, the MAE metric was used.
With MAE, the deviations between the predicted and ground
truth force values can be measured, both for per-Grid Unit
Forces (GUF) and for the Total Force (TF) values. We are
showing the GUF errors since they directly reflect the error
in the model outputs and in addition capture the contact area
coverage, whereas TF is obtained as the sum of the GUFs and
therefore is missing the local force information. The results
of the main U-net evaluation on the test dataset are shown
in Table I. The U-net is capable of accurately predicting
the total shear and normal forces, with MAE values bellow
1N. It has been shown that the U-net performs better when
dealing with shear forces in the x- and y-directions than
with normal forces in the z-direction. This difference in
performance may be attributed to two factors. First, the range
of force values encountered by the U-net for shear forces are
generally smaller than for normal forces. Second, the markers
in the GelSight mini sensor’s gel inherently encompass a
richer set of features for extracting and representing shear
behavior. Shear forces cause a greater displacement of the
markers compared to normal forces, and might therefore
trigger a clearer signal.

b) Impact of Label Resolution on Prediction Accuracy:
We compare our main U-net model with variants of the U-
net architecture and against a ResNet to investigate whether
changing the output resolution and network structure affects
the prediction quality. The results on the Total Force (TF)
estimation task in Table II show that the ResNet, which solely



TABLE II
MODEL ABLATION ON THE TOTAL FORCE ESTIMATION TASK

Method MAETF [N]
fx fy fz

ResNet1×3 0.085 ± 0.115 0.069 ± 0.085 1.593 ± 1.131

U-net12×16×3 0.102 ± 0.216 0.089 ± 0.123 0.447 ± 0.539

3×U-net24×32×1 0.438 ± 0.585 0.189 ± 0.225 0.448 ± 0.523

U-net24×32×3 (ours) 0.224 ± 0.401 0.093 ± 0.136 0.372 ± 0.473

U-net48×64×3 0.318 ± 0.436 0.119 ± 0.184 0.459 ± 0.516

regresses to the total force, outperforms all considered U-net
architectures in predicting the shear forces but is significantly
less accurate in predicting the normal forces. Importantly, the
ResNet only outputs a single 3D vector of force for the whole
sensor, and therefore significantly lacks in resolution.

The top performing model according to the MAE on the
total force is the U-net with output dimension of 12×16×3.
Within the variance of the results, it is however very close to
our main architecture with output 24×32×3, outperforming
it on x-shear force but being worse on the z-normal force.
That is why we recommend the network with a higher-
resolution output, as it strikes the best balance between
resolution and achieving small error on the test dataset.

We also compare against training three separate U-net
models, where each model is designed to solely predict a
single force component, i.e., each individual model outputs a
force distribution of shape 24×32×1. Although these models
collectively possess three times the number of parameters,
their predictive accuracy is generally inferior to that of the
main U-net. This suggests that predicting all three force
directions simultaneously can capture correlations between
normal and shear forces, yielding more accurate predictions.

Lastly, when training a U-net model with shape 48×64×3,
its predictive accuracy remains relatively strong but exhibits
a slight decline compared to our main U-net.

c) Generalization to Different Sensors: To explore the
generalization capability of our FEATS method, it is tested
on images captured with a different GelSight Mini sensor of
the same type (cf. Fig. 7). The predictions remain largely
accurate, although there is a notable downward and slight
rightward shift in the localization of the contact area. This
shift is likely due to differences in the alignment of the
camera relative to the gel, thus causing the markers in the
image of the test sensor to appear lower than in the image of
the GelSight Mini sensor used during training. Furthermore,
sensor-related factors such as image brightness, contrast,
saturation and hue may also contribute to the shift in the
localization of the contact area.

C. Inference Speed

To determine the speed of the U-net, we measure the time
it takes to process a single input on a NVIDIA Quadro RTX
5000 GPU and a Intel Core i7-10875H 8-Core CPU with
a frequency of 2.3GHz. The time required for transferring
data between the CPU and GPU, as well as asynchronous
execution and warm-up of the GPU is taken into consid-
eration. On average, the U-net achieves an inference time
of 4.1746 ± 1.339ms over 300 runs, which is sufficient
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Fig. 7: Generalization to a different sensor. We evaluate our FEATS U-net on
indenters from the test set using a different GelSight Mini sensor to validate
the model generalization capability. The first row displays the raw images
captured by the sensor, and the subsequent rows show the components of
the force distribution, in Newtons. While the general outline of the force
distribution is captured correctly, there is a noticeable downward and slight
rightward shift in the localization of the predicted forces, likely due to
different alignments of the gels in different sensors.

for obtaining the force distributions in real-time since the
GelSight Mini sensor runs at 25Hz. This is significantly
faster compared to running the FEA simulations, which may
take 10− 120 minutes depending on the contact geometry.

V. CONCLUSION

We introduced FEATS—a machine learning approach for
estimating force distributions using the GelSight Mini tactile
sensor. By training a U-net model on FEA-derived data, we
achieved accurate predictions of both shear and normal forces
from raw sensor images, with Mean Absolute Error (MAE)
under 0.4N on average in the range 0 − 40N for the total
normal force and −5N to 5N for total shear force in each di-
rection. The model shows potential for real-time applications
and generalization to different sensors, although additional
improvements are needed to account for the domain gap
when a different sensor is used, which could be addressed,
e.g., via the recently proposed domain adaptation for optical
tactile sensors [46]. Our FEATS method offers an efficient
online approach that amortizes the cost of running inverse
FEA into a forward pass of a neural network, resulting in
physically-grounded, interpretable representations for optical
tactile sensors. Future work will focus on enhancing the
model’s robustness to different tactile scenarios, refining its
generalization capabilities across a broader range of objects
and sensor types, and work towards demonstrating the rep-
resentation’s effectiveness in robotic manipulation tasks.
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